IRAC Mid-Infrared Imaging of the Hubble Deep Field South Star Formation Histories and Stell
infra开头的单词和短语

膝下皮质 脚间窝核 舟骨下结节 锁骨下入路 顶下动脉 胸膜下淋巴结 幕下疝 肩胛下动脉 幽门溃疡 蝶鞍下肿瘤 顶下静脉 膝下束 脚间窝区 舟骨下韧带 锁骨下臂丛 顶下小叶病变 胸膜下积液 幕下病变 肩胛下滑囊炎 幽门狭窄 蝶鞍下脓肿 顶下小叶癫痫 膝下通路 脚间窝综合征
第5页
123、 infrascaphoid fracture 124、 infraclavicular lymph node 125、 infraparietal lobe atrophy 126、 infrapleural metastasis 127、 infratentorial mass 128、 infrascapular nerve injury 129、 infrapyloric obstruction 130、 infrasellar cyst 131、 infraparietal lobe tumor 132、 infragenual lesion 133、 infrapeduncular hematoma 134、 infrascaphoid dislocation 135、 infraclavicular block 136、 infraparietal lobe infarction 137、 infrapleural abscess 138、 infratentorial hematoma 139、 infrascapular pain 140、 infrapyloric inflammation 141、 infrasellar aneurysm 142、 infraparietal lobe hemorrhage 143、 infragenual white matter 144、 infrapeduncular cavernoma 145、 infrascaphoid arthritis 146、 infraclavicular nerve entrapment
磁共振脂肪抑制图像获取方法、存储介质及扫描系统发明专利

图10与图11是在一扫描系统中利用双射频压脂脉冲与单射频压脂脉冲分别扫描腹部横断与盆腔横断位。
具体实施方式为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步详细说明。
应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
请参阅图1与图2,本发明实施例提供一种扫描系统100,包括磁共振扫描设备10及与磁共振扫描设备10连接的计算机12,该计算机12中存储有可以运行的计算机程序,该计算机程序在运行时可以运行本发明所提供的一种磁共振脂肪抑制图像获取方法。
在本实施例中,磁共振扫描设备10包括磁共振机架,机架内有主磁体101,主磁体101可以是由超导线圈构成,用来产生主磁场,在一些情况下也可以采用永磁体。
主磁体101可以用来产生0.2特斯拉、0.5特斯拉、1.0特斯拉、1.5特斯拉、3.0特斯拉或者更高的主磁场强度。
在磁共振成像时,成像对象150例如患者由患者床106进行承载,随着床板的移动,将成像对象150移入主磁场磁场分布较为均匀的区域105内。
通常对于磁共振扫描设备,如图2所示,空间坐标系(即设备的坐标系)的z方向设置为与磁共振系统机架的轴向相同,通常将患者的身长方向与z方向保持一致进行成像,磁共振系统的水平平面设置为xz平面,x方向与z方向垂直,y方向与x和z方向均垂直。
磁共振扫描设备10还包括射频线圈、梯度线圈102、脉冲控制单元111、梯度信号产生单元112、射频脉冲产生单元116、开关控制单元117、射频接收单元118及图像重建单元121。
在磁共振成像时,脉冲控制单元111控制射频脉冲产生单元116产生射频脉冲,射频脉冲由放大器放大后,经过开关控制单元117,最终由射频线圈(图未标号)发出,对成像对象150进行射频激发。
射频线圈包括体线圈103与局部线圈104射频线圈在发出射频脉冲通常通过体线圈103或者局部线圈104发出。
成像对象150根据射频激发,会由共振产生相应的射频信号。
基于硅氧烷水凝胶的荧光测定和接触镜片[发明专利]
![基于硅氧烷水凝胶的荧光测定和接触镜片[发明专利]](https://img.taocdn.com/s3/m/b205b4cbe109581b6bd97f19227916888486b935.png)
专利名称:基于硅氧烷水凝胶的荧光测定和接触镜片专利类型:发明专利
发明人:J·R·拉考维茨,R·巴杜古,E·A·里斯
申请号:CN201780057635.7
申请日:20170720
公开号:CN109715066B
公开日:
20220405
专利内容由知识产权出版社提供
摘要:一种材料、制品、系统和方法包括探针组合物,所述探针组合物包括疏水性部分、亲水性部分、分析物结合部分以及荧光团部分。
分析物结合部分被配置成与水溶液中的分析物结合。
荧光团部分被配置成当探针组合物在分析物未结合分析物结合部分的第一状态与分析物结合分析物结合部分的第二状态之间改变时,改变响应于入射激发光而发射的荧光的光学特性。
材料包括探针组合物和硅氧烷水凝胶基质,所述硅氧烷水凝胶基质具有允许水溶液流过溶液的水凝胶网络和占据水凝胶网络的空隙的硅氧烷网络。
具有所述材料的接触镜片能够实现受试者的泪液中的葡萄糖浓度的远程检测。
申请人:巴尔的摩马里兰大学
地址:美国马里兰州
国籍:US
代理机构:北京市铸成律师事务所
更多信息请下载全文后查看。
64层螺旋CT3D成像技术在胆道梗阻性疾病病变的检出率、准确率及鉴别诊断的价值

64层螺旋CT3D成像技术在胆道梗阻性疾病病变的检出率、准确率及鉴别诊断的价值范 磊长江大学附属仙桃市第一人民医院介入医学科,湖北仙桃 433000[摘要] 目的 探析64层螺旋CT3D成像技术在胆道梗阻性疾病病变的检出率、准确率及提高鉴别诊断的临床应用价值。
方法 选取2018年3月~2019年3月我院160例胆道梗阻性疾病患者,对患者行64层螺旋CT3D成像技术和磁共振胆胰管水成像技术诊断,比较两种诊断方法检出率和定位准确率,分析诊断价值。
结果 磁共振胆胰管水成像诊断良性病变诊断率为77.8%,恶性病变诊断率为73.1%,64排螺旋CT胆道成像诊断良性病变诊断率为92.6%,恶性病变诊断率为88.5%,与磁共振胆胰管水成像诊断比较,64排螺旋CT胆道成像诊断定位准确率更高(P<0.05)。
结论 64层螺旋CT3D成像技术对病变部位及胆道占位性病变显像,可为疾病治疗提供更准确理论资料,有利于患者临床症状改善和治疗有效率提升。
[关键词] 64层螺旋CT;3D成像技术;胆道梗阻性疾病;检出率;准确率[中图分类号] R814.42;R575.7 [文献标识码] A [文章编号] 2095-0616(2020)23-200-04 Investigation of the clinical application value of the detection rate, accuracy rate and improvement of differential diagnosis of 64-slice spiral CT3D imaging technology in biliary tract obstructive diseasesFAN LeiDepartment of Interventional Medicine, Xiantao First People's Hospital, Affiliated to Yangtze University, Hubei, Xiantao 433000, China[Abstract] Objective To explore the clinical application value of 64-slice spiral CT3D imaging technology in the detection rate and accuracy of biliary obstructive diseases and to improve the differential diagnosis. Methods 160 patients with biliary obstructive diseases in our hospital from March 2018 to March 2019 were selected, and the patients were diagnosed with 64-slice spiral CT3D imaging technology and magnetic resonance cholangiopancreatic hydrography, and the two diagnostic methods were compared. Detection rate and positioning accuracy rate, analysis and diagnosis value. Results The diagnosis rate of MR cholangiopancreatography was 77.8% for benign lesions and 73.1% for malignant lesions. The diagnosis rate for 64-slice spiral CT cholangiography was 92.6% for benign lesions and 88.5% for malignant lesions. Compared with the diagnosis of resonance cholangiopancreatography, 64-slice spiral CT biliary imaging has a higher diagnostic positioning accuracy (P<0.05). Conclusion The 64-slice spiral CT3D imaging technology can visualize the lesions and biliary space-occupying lesions, and can provide more accurate theoretical data for disease treatment, which is beneficial to the improvement of patients' clinical symptoms and the improvement of treatment efficiency.[Key words] 64-slice spiral CT; 3D imaging technology; Biliary tract obstructive diseases; Detection rate; Accuracy rate目前胆道梗阻性疾病发病率不断上升,磁共振胆胰管水成像技术、内镜逆行胰胆管造影、CT、经皮肝穿刺造影、彩超为临床当中的主要诊断方式[1]。
经皮穿刺椎间盘髓核射频靶点消融联合臭氧注射治疗腰椎间盘突出症疗效观察

经皮穿刺椎间盘髓核射频靶点消融联合臭氧注射治疗腰椎间盘突出症疗效观察刘锋,温建生,陈明凤,寇艳艳北京中医药大学孙思邈医院周围血管病科,陕西铜川727106【摘要】目的观察经皮穿刺椎间盘髓核射频靶点消融联合臭氧注射治疗腰椎间盘突出症的疗效。
方法选取2020年5月至2022年5月期间北京中医药大学孙思邈医院收治的102例腰椎间盘突出症患者作为研究对象,按照随机数表法分为研究组和对照组各51例。
对照组患者给予臭氧注射治疗,研究组患者则给予经皮穿刺椎间盘髓核射频靶点消融联合臭氧注射治疗。
比较两组患者的术后优良率、术前及术后10d 的视觉模拟疼痛(V AS)评分、日本矫形外科协会(JOA)评分及炎症因子白细胞介素-6(IL -6)、白细胞介素-8(IL -8)、肿瘤坏死因子-α(TNF -α)水平。
结果研究组患者的术后优良率为96.08%,明显高于对照组的82.35%,差异具有统计学意义(P <0.05);术前,两组患者的V AS 评分、JOA 评分比较差异均无统计学意义(P >0.05),术后10d ,两组患者的V AS 评分均降低,且研究组患者的V AS 评分为(1.35±0.16)分,明显低于对照组的(2.46±0.72)分,但两组患者的JOA 评分较术前均升高,且研究组患者的JOA 评分为(21.46±4.06)分,明显高于对照组的(15.43±3.84)分,差异均具有统计学意义(P <0.05);术前,两组患者的IL -6、IL -8、TNF -α水平比较差异均无统计学意义(P >0.05),术后10d ,两组患者的IL -6、IL -8、TNF -α水平均降低,且研究组患者的IL -6、IL -8、TNF -α水平分别为(93.54±6.48)pg/mL 、(111.32±30.85)μg/L 、(95.18±13.48)pg/mL ,明显低于对照组的(120.48±7.62)pg/mL 、(132.68±31.46)μg/L 、(124.28±10.28)pg/mL ,差异均具有统计学意义(P <0.05)。
磁-光多模态分子影像在胰腺癌精准诊疗中的应用进展

磁-光多模态分子影像在胰腺癌精准诊疗中的应用进展胰腺癌是世界上最致命的癌症之一,全球胰腺癌年龄标准化发病率已由1990年的5.0/10万人上升至2017年的5.7/10万人,胰腺癌死亡人数也相应从19.6万人上升至44.1万人[1-2]。
我国流行病学调查数据显示,胰腺癌发病率位列恶性肿瘤的第10位,死亡率位列第6位[3]。
胰腺导管腺癌(PDAC)是胰腺癌最常见的病理类型,占所有胰腺肿瘤的90%以上。
由于胰腺癌早期临床表现不典型、缺乏敏感和特异的肿瘤标志物,加之胰腺癌早诊体系尚不健全,早期诊断率不足5%,约30%的患者在首诊时已处于局部进展期,约60%的患者在首诊时已出现转移,失去手术机会,导致胰腺癌整体预后极差,5年生存率不足10%。
因此,早期发现和有效治疗是改善胰腺癌患者预后、提高其生存率的关键。
超声、CT、MRI等传统影像学检查是临床常用的无创评估手段,在胰腺癌诊断、可切除性评估、疗效评价及预后预测等方面发挥了重要作用,但此类影像学检查仅可提供解剖形态方面的信息,无法反映肿瘤的生物学行为,诊断准确性尚待提高。
分子影像具有创伤小、实时、灵敏度高等优点,可在活体内识别特定的分子和细胞事件,表征和量化微观水平的分子生物学过程;此外,通过对分子探针进行靶向修饰,能够在胰腺癌发生的早期阶段(尤其是在宏观解剖学发生变化之前)实现对活体病灶的微创甚至无创精准成像,为胰腺癌的早期诊断提供了新思路。
分子影像探针还可作为多功能纳米平台装载多种治疗剂从而实现精准治疗,并通过影像动态监测治疗反应,及时评估疗效。
本文将聚焦磁-光多模态分子影像在胰腺癌精准诊疗中的应用进展,探讨其现状并展望未来发展方向。
1磁-光多模态分子影像实现胰腺癌精准成像每种成像方式都有其特有的优势和局限性,仅凭某一种成像方式很难同时满足诊断疾病的多方面需要[15]。
而多模态成像可联合应用2种及以上成像方式对活体进行成像,在不同成像模态间取长补短,实现优势互补,已成为生物医学基础研究和临床诊断的有力工具。
MRI基本知识
90度脉冲激发使质子发生共振,产生最大的旋转 横向磁化矢量,这种旋转的横向磁化矢量切割接 收线圈,MR 仪可以检测到。
氢 质 子 多
氢 质 子 少
此时的MR 图像仅仅区分氢质子密度不同的两种组织,所以 要在射频脉冲关闭后等待一定时间并对信号进行干预和采集
无线电波激发使磁场偏转90度,射频脉冲停 止后,在主磁场的作用下,横向宏观磁化矢量逐 渐缩小到零,纵向宏观磁化矢量从零逐渐回到平
“ ”
磁共振成像基本知识
1
核磁共振成像
• 发展历史
• 基本原理
目
• 扫描仪的基本硬件构成
录
• 脉冲序列及其临床应用
• MRI 特点以及禁忌证
• 总结
2
Nuclear Magnetic Resonance Imaging
首字母缩写:
NMRI
为了和原子核及射线的放射性危害区分开 来,临床医生建议去掉N,简称为磁共振成像
• 所谓的加权就是“重点突出”的意思
– T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别 – T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别 – 质子密度加权成像(PD)-突出组织氢质子含量差别
34
•在任何序列图像上,信号采集时刻旋转横 向的磁化矢量越大,MR信号越强
➢ 主磁场场强
场强越高,磁化率越高,场强几乎与磁化率成 正比
➢ 质子含量
质子含量越高,与主磁场同向的质子总数增加 (磁化率不变)
15
在主磁场中质子的磁化矢量方向与主
磁场方向不平行——进动
进动
场相互作用
核磁(小磁场)与主磁
陀螺
进动使每个质子的核磁存在方向稳 定的纵向磁化分矢量和旋转的横向
2024吲哚菁绿荧光成像技术在胆道疾病中的应用
2024 口那朵菁绿荧光成像技术在胆道疾病中的应用摘要近年来,口引噪菁绿荧光成像技术在胆道疾病的诊断和治疗中得到了广泛应用。
口那朵菁绿对胆道系统的荧光显影可准确定位病变组织,精确识别胆道结构,有效避免对正常胆道结构的损伤,极大提高了胆道外科手术的精确性及安全性,具有重要临床意义。
然而,目前该技术在胆道外科领域的应用尚处在探索阶段,表现出巨大应用潜力的同时亦暴露出诸多问题及争议。
相信随着技术的不断发展和完善,未来该技术将在胆道疾病的诊断与治疗中发挥更大作用,使患者更多获益。
关键词胆道疾病"那朵菁绿;胆道显影;应用现状;进展近年来,口即朵菁绿荧光成像技术在医学领域尤其是肝胆外科的应用愈发广泛[1 -2 ]O 得益于该技术的迅猛发展和日益成熟,腹腔镜下肝胆外科手术技术得到进一步发展和提高。
目前,口m朵菁绿荧光导航技术应用于肝脏疾病手术如肝脏肿瘤染色、解剖性肝切除、肝切缘界定等方面的研究正如火如荼地进行并已取得显著成效[36 ]0然而其在胆道疾病方面的应用仍处于探索阶段,相关研究较少,临床经验不足。
笔者通过文献回顾结合团队经验,探讨口那朵菁绿荧光成像技术在胆道外科领域的应用现状。
一、荧光成像的原理及机制荧光成像的原理主要是运用口即朵菁绿等染料被近红外光线激发后发射光线的特性,其发出的光可由光学传感器检测并实时投射至显示器,从而实现荧光可视化。
口即朵菁绿在血液中的光谱吸收峰值为800~810nm ,发射峰值为835nm ,发射出的光线可穿透Iomm的组织,而人眼可透过8mm 的组织看到荧光[7 ]0经外周静脉注射口引噪菁绿后,其迅速与血浆Od球蛋白结合参与血液循环。
经间质注射口即朵菁绿后,其首先流入淋巴系统并汇集在淋巴结,随后进入胸导管,最后进入血液系统参与循环[89 ]0血液中的口即朵菁绿被肝实质细胞高效吸收代谢,然后几乎以原型排泄至胆汁中,经胆道排出,最终随粪便排出体外,且不参与肝肠循环。
其在血液中的半衰期为2.5~3min ,进入循环系统后,肝脏2~5min即可呈现荧光, 而胆道系统可在8~10min显示荧光[10-12 ]o 目前国内应用的口即朵菁绿荧光成像技术主要使用近红外一区(near-infrared-1 , NIR-I )光线进行成像,其波长为700~900 nm o近年来,近红外二区(n ear-infra red- ∏ , NIR-Π )荧光成像表现出优良的性能和巨大应用前景,其波长范围为900-1 700 nm0有研究通过测量和比较口即朵菁绿胆汁在NlR-II和NIR- I窗口的吸收光谱、发射光谱、荧光强度和光稳定性,得出口m朵菁绿胆汁的荧光光谱可以很好地延伸到NIR-Π ,并表现出强烈的荧光值和良好的光稳定性,足以用于NlR-II窗口胆道成像[13]o此外,口引口朵菁绿在NIR-II 窗口的荧光显影明显降低了肝脏背景信号,加深了穿透深度,在模拟的临床场景中可提供更多的组织结构信息,从而提升胆管或病变区域的可视化效果,其各方面表现明显优于在NlRT窗口的成像[14]0由此可见,未来口引口朵菁绿在NIR-II窗口的荧光显影可在胆道外科发挥更为重要的作用, 尤其在困难或复杂病例中,是提高胆道手术安全性的有效手段。
基于水平集的钢水图像分割方法
2 双几何活动轮廓曲线模型
C h a n -v e s e 几 何 活 动 轮 廓 模 型 是 一 种 曲 线 演 化 描 述 模 型 ,能 够 被 用 于 解 决 红 外 灰 度 图 像 分 割 问题。该模型定义了轮廓曲线以及轮廓曲线演化 泛函能量函数F CT,如式(1)所示 。 Fcv(ci »c2,C) = n ' Lenth(C) + v • Area(inside(C)) +
1 红外热成像转炉出钢下渣检测
红外热成像转炉出钢下渣检测[1(113]方法是根
据红外热成像仪拍摄的转炉出钢图像中钢水和钢 渣灰度值差异,通过图像处理实现钢渣下渣检测, 并 由 检 测 结 果 判 断 是 否 停 止 转 炉 出 钢 、控 制 钢 渣 , 进而优化转炉出钢工艺。如 图 1 所 示 ,转炉出钢 下 渣 检 测 方 法 主 要 分 为 三 个 单 元 模 块 :1 ) 图像采 集单元模块:利用红外热成像仪采集转炉出钢图 像;2 )钢渣下渣检测单元模块:通过工控机图像处 理 算 法 对 转 炉 出 钢 图 像 进 行 图 像 分 割 、钢 水 钢 渣 区 域 检 测 、钢 渣 钢 水 比 值 计 算 ,判 断 是 否 下 渣 ;其 中 ,正 确 的 分 割 钢 水 、钢 渣 与 背 景 图像区域是该单 元模块的核心;3)转炉控制单元模块:根据下渣检 测 结 果 ,对 转 炉 及 转 炉 出 钢 工 艺 进 行 优 化 控 制 。 由 此 可 见 ,钢 水 图 像 分 割 是 转 炉 出 钢 工 艺 优 化 的 关 键 技 术 。由 于 ,转 炉 出 钢 钢 水 图 像 具 有 背 景 噪 声 干 扰 大 、钢 渣 呈 多 目 标 分 离 标 状 且 边 缘 非 规 则 等 特 点 。所 以 提 高 钢 水 图 像 分 割 及 钢 淹 占 比 检 测 准确率一直是难点问题[3]。
MRCP在儿童胆总管囊肿诊断中的临床意义
MRCP在儿童胆总管囊肿诊断中的临床意义周琦芳① 盛茂① 郭万亮① 陈萌萌① 【摘要】 目的:探讨磁共振胆胰管成像(MRCP)诊断儿童胆总管囊肿的临床价值。
方法:选取2015年1月—2020年12月苏州大学附属儿童医院收治的100例胆总管囊肿患儿,所有研究对象均行磁共振成像(MRI)、MRCP检查,评价MRCP对儿童胆总管囊肿定性诊断的效果。
结果:100例胆总管囊肿患儿接受MRI检查,Todani Ⅰ型88例,胆总管全程呈囊性扩张并累及左右主肝管,其壁薄而均匀,肝内胆管无扩张,囊状扩张的胆管在T1WI和T2WI上呈水样信号;Ⅱ型3例,胆总管外侧壁囊性低密度影,胆总管侧壁与囊肿样扩张的短蒂或狭窄的基底连接;Ⅲ型2例,胆总管梭状扩张或囊性扩张;Ⅳ型2例,肝外胆管呈囊性扩张,且囊性扩张为多发性,伴或不伴肝内胆管囊性扩张;Ⅴ型5例,可见肝内以周围部分布为主的多发囊性高信号灶,与肝内胆管交通。
100例胆总管囊肿患儿接受MRCP检查,Todani分型Ⅰ型88例,肝内胆管无明显扩张,胆总管呈局限性的梭形或囊状扩张,胆总管壁有轻微均一增厚;Ⅱ型2例,胆总管明显扩张,肝管轻度扩张,胆囊下方有明显囊袋样改变,且与胆总管相连;Ⅲ型2例,胆总管末端囊状扩张,胰胆管合流异常;Ⅳ型3例,多个囊状或梭形扩张出现在肝内外胆管,扩张大小不一,胆总管远端有不同程度的狭窄;Ⅴ型5例,有多个串珠状和囊状扩张,扩张沿肝内胆管树分布,扩张囊腔与肝内胆管交通。
结论:MRCP利用重T2加权技术,使胆汁和胰液等水性结构呈现明显的高信号,而周围区域呈现低信号,诊断儿童胆总管囊肿的准确率较高。
【关键词】 磁共振成像 磁共振胆胰管成像 胆总管囊肿 Clinical Significance of MRCP in the Diagnosis of Choledochal Cyst in Children/ZHOU Qifang, SHENG Mao, GUO Wanliang, CHEN Mengmeng. //Medical Innovation of China, 2023, 20(23): 119-122 [Abstract] Objective: To investigate the clinical value of magnetic resonance cholangiopancreatography (MRCP) in the diagnosis of choledochal cyst in children. Method: A total of 100 children with choledochal cyst admitted to Children's Hospital of Soochow University from January 2015 to December 2020 were selected. All subjects underwent magnetic resonance imaging (MRI) and MRCP to evaluate the qualitative diagnosis effect of MRCP on choledochal cyst in children. Result: A total of 100 children with choledochal cyst were examined by MRI. Todani type Ⅰ 88 cases, the common bile duct cystic dilatation throughout the whole process and involved the left and right main hepatic ducts, the wall was thin and uniform, the intrahepatic bile duct no dilatation, and the cystic dilated bile duct showed water-like signals on T1WI and T2WI. Type Ⅱ 3 cases, the lateral wall of the common bile duct had a cystic low density shadow, and the lateral wall of the common bile duct was connected with a short pedicle or a narrow basal of cystic dilatation. Type Ⅲ 2 cases, common bile duct fusiform dilatation or cystic dilatation. Type Ⅳ 2 cases, extrahepatic bile duct cystic dilatation, and the cystic dilatation was multiple, with or without cystic dilatation of intrahepatic bile duct. Type Ⅴ 5 cases, multiple cystic hypersignal foci mainly distributed in the peripheral part of the liver, and communicated with the intrahepatic bile duct. A total of 100 children with choledochal cyst were examined by MRCP. Todani type Ⅰ 88 cases, intrahepatic bile duct dilatation was not obvious, and the common bile duct had localized fusiform or cystic dilatation, and the common bile duct wall was slightly uniform thickened. Type Ⅱ 2 cases, the common bile duct was obviously dilated, the hepatic duct was slightly dilated, and there were obvious bag-like changes under the gallbladder, which were connected to the common bile duct. Type Ⅲ 2 cases, the end of the common bile duct cystic dilatation, anomalous pancreaticobiliary ductal junctio. Type Ⅳ 3 cases, multiple cystic or fusiform dilatation appeared in the intrahepatic and extrahepatic bile duct, the dilatation size was different, and the distal common bile duct had different degrees of stenosis. Type Ⅴ 5 cases, there were multiple beading and cystic dilatations, which were distributed along the intrahepatic bile duct tree and communicated with the intrahepatic bile duct. Conclusion: MRCP uses heavy T2 weighting technology to①苏州大学附属儿童医院 江苏 苏州 215000通信作者:陈萌萌 儿童胆总管囊肿往往是由于小儿管壁存在先天性发育缺损,或存在异位胰腺组织,从而导致管壁处于低紧张状态,又或是先天性胆总管闭锁,导致管内压力增加,引起扩张所导致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :a s t r o -p h /0504219v 1 8 A p r 2005Preprint typeset using L A T E X style emulateapj v.6/22/04IRAC MID-INFRARED IMAGING OF THE HUBBLE DEEP FIELD SOUTH:STAR FORMATION HISTORIES ANDSTELLAR MASSES OF RED GALAXIES AT Z >21I VO L ABBÉ2,J IASHENG H UANG 3,M ARIJN F RANX 4,G REGORY R UDNICK 5,P AULINE B ARMBY 3,E MANUELE D ADDI 6,P IETER G.VAN D OKKUM 7,G IOVANNI G.F AZIO 3,N ATASCHA M.F ÖRSTER S CHREIBER 8,A LAN F.M.M OORWOOD 9,H ANS -W ALTER R IX 10,H UUBR ÖTTGERING 4,I GNACIO T RUJILLO 10,P AUL VAN DER W ERF 4(Accepted for publication in the ApJ Letters)ABSTRACTWe present deep 3.6−8µm imaging of the Hubble Deep Field South with IRAC on the Spitzer Space Tele-scope .We study Distant Red Galaxies (DRGs)at z >2selected by J s −K s >2.3and compare them to a sample of Lyman Break Galaxies (LBGs)at z =2−3.The observed UV-to-8µm spectral energy distributions are fit with stellar population models to constrain star formation histories and derive stellar masses.We find that 70%of the DRGs are best described by dust-reddened star forming models and 30%are very well fit with old and “dead”ing only the I −K s and K s −4.5µm colors we can effectively separate the two groups.The dead systems are among the most massive at z ∼2.5(mean stellar mass <M ∗>=0.8×1011M ⊙)and likely formed most of their stellar mass at z >5.To a limit of 0.5×1011M ⊙their number density is ∼10×lower than that of local early-type galaxies.Furthermore,we use the IRAC photometry to derive rest-frame near-infrared J ,H ,and K fluxes.The DRGs and LBGs together show a large variation (a factor of 6)in the rest-frame K −band mass-to-light ratios (M /L K ),implying that even a Spitzer 8µm −selected sample would be very different from a mass-selected sample.The average M /L K of the DRGs is about three times higher than that of the LBGs,and DRGs dominate the high-mass end.The M /L K ratios and ages of the two samples appear to correlate with derived stellar mass,with the most massive galaxies being the oldest and having the highest mass-to-light ratios,similar as found in the low-redshift universe.Subject headings:galaxies:evolution —galaxies:high redshift —infrared:galaxies1.INTRODUCTIONGalaxies at z >2exhibit very diverse properties:they range from the blue Lyman Break Galaxies (LBGs)which are bright in the rest-frame ultraviolet (Steidel et al 1996a,b)to the Dis-tant Red Galaxies (DRGs)which are generally faint in the rest-frame UV and have fairly red rest-frame optical colors.The DRGs are selected in the observers’near-infrared (NIR)by the simple criterion J s −K s >2.3(Franx et al.2003,van Dokkum et al.2003).The variety in the galaxy population at z >2is comparable to that seen in the local universe,where colors range from very blue for young starbursting galaxies to very red for old elliptical galaxies.An urgent question is what causes the red colors of DRGs at z >2.Are they “old and dead”,or are they actively star forming and more dusty than U-dropout galaxies?First analyses of the optical-to-NIR Spectral Energy Dis-tributions (SEDs)and spectra have suggested that both ef-1Based on observations with the Spitzer Space Telescope ,which is op-erated by the Jet Propulsion Laboratory,California Institute of Technology under NASA contract 1407.Support for this work was provided by NASA through contract 125790issued by JPL/Caltech.Based on service mode ob-servations collected at the European Southern Observatory,Paranal,Chile (LP Program 164.O-0612).Based on observations with the NASA/ESA Hub-ble Space Telescope ,obtained at the Space Telescope Science Institute which is operated by AURA,Inc.,under NASA contract NAS5-265552Carnegie fellow,OCIW,813Santa Barbara Street,Pasadena,CA 91101[e-mail:ivo@ ]3CFA,60Garden Street Cambridge,MA 021384Leiden Observatory,P.O.Box 9513,NL-2300RA,Leiden,The Nether-lands5Goldberg fellow,NOAO,950N.Cherry Ave,Tucson,AZ 857196Spitzer fellow,NOAO,950N.Cherry Ave,Tucson,AZ 857197Department of Astronomy,Yale University,P.O.Box 208101,New Haven,CT 06520-81018MPE,Giessenbackstrasse,D-85748,Garching,Germany 9ESO,D-85748,Garching,Germany10MPIA,Königstuhl 17,D-69117,Heidelberg,Germanyfects play a role:they have higher ages,contain more dust,and have higher mass-to-light (M /L )ratios in the rest-frame optical than LBGs (Franx et al.2003,van Dokkum et al.2004,Forster Schreiber et al.2004;F04).Furthermore,many have high star formation rates >100M ⊙yr −1(van Dokkum et al.2004,F04).Unfortunately,the number of DRGs with rest-frame optical spectroscopy is very small.Inferences in-evitably depend on SED fitting,which has large uncertainties (see e.g.,Papovich,Dickinson,&Ferguson 2001).The SED constraints on the stellar and dust content are expected to im-prove significantly by extending the photometry to the rest-frame near-infrared.Here we present the first results on rest-frame NIR pho-tometry of DRGs and LBGs in the Hubble Deep Field South (HDFS)as observed with the Infrared Array Camera (IRAC;Fazio et al.2004)on the Spitzer Space Telescope .Where necessary,we assume an ΩM =0.3,ΩΛ=0.7,cosmology with H 0=70km s −1Mpc −1,and a Salpeter Initial Mass Function (IMF)between 0.1and 100M ⊙.Magnitudes are expressed in the AB photometric system unless explicitly stated otherwise.2.THE OBSERV ATIONS,PHOTOMETRY ,AND SAMPLE SELECTIONWe have observed the 5arcmin 2HDFS/WFPC2field with the IRAC camera integrating 1hour each in the mid-infrared (MIR)3.6,4.5,5.8,and 8µm −bands.The observations,data reduction,and photometry will be described by Labbéet al.(in preparation).Briefly,we reduced and calibrated the data using standard procedures (e.g.,Barmby et al.2004).The limiting depths at 3.6,4.5,5.8,and 8µm are 25.0,24.6,22.6,and 22.5mag,respectively (5σ,3′′diameter aperture).We PSF-matched the IRAC images and a very deep K s −image (Labbéet al.2003)to the 8µm −band.Nearby sources were fitted and subtracted to avoid confusion (see Labbéet al.2004).We measured fluxes in 4.′′4diameter apertures.The K s −IRAC colors were then combined with the HDFS-catalog2Labbéet al.of Labbéet al.(2003)resulting in 11-band photometry from 0.3to 8µm.In addition to the photometric errors,we add in quadrature an error of 10%to reflect absolute calibration un-certainties of IRAC.We selected DRGs in the field of the HDFS using the crite-ria of Franx et al.(2003)yielding 14galaxies with photomet-ric redshifts (Rudnick et al.2003)in the range 1.9<z <3.8.One blended source was excluded.In addition,we selected isolated LBGs in the same field to the same K s -band limit and in the same redshift range,using the U-dropout criteria of Madau et al.(1996)on the WFPC2imaging (Casertano et al.2000).The two samples are complementary,with only 1source in common.For both samples,the mean redshift is z =2.6with a standard deviation of 0.511.F IG .1.—Observed I −K s versus K s −4.5µm color-color diagram of two samples of z >2galaxies.Distant Red Galaxies (DRGs;filled circles and stars ),occupy a different color region than z ∼2.5Lyman Break Galaxies (LBGs;diamonds ).DRGs that are best described by an old single-age burst model (SSP;stars )have colors distinct from those better described by con-stant star-forming models (CSF)and dust,indicating that IRAC fluxes may help in separating these populations.The curves show the color-evolution tracks of Bruzual &Charlot (2003)models at a fixed z =2.6:an SSP model with ages ranging from 0.3to 3Gyr (dashed line )and two CSF models with ages ranging from 0.1to 3Gyr,and reddenings of A V =0.6and A V =2.0respectively (solid lines ).The vector indicates a reddening of A V =1mag for a Calzetti et al.(2000)law.3.RED GALAXIES AT Z >2:OLD OR DUSTY OR BOTH?In Fig.1we analyze the I −K s versus the K s −4.5µm col-ors.The K −4.5µm color has a sufficiently large baseline and much higher signal-to-noise ratio than the K s −5.8µm or K s −8µm colors.The DRGs and LBGs lie in very differ-ent regions,with little overlap.The mean K −4.5µm color of the DRGs is significantly redder than that of LBGs,con-firming that DRGs have higher M /L ratios in the rest-frame optical.The red I −K s and K −4.5µm colors of the DRGs imply that they must be prominent in IRAC selected sam-ples.Indeed,the majority of red z −3.6µm sources selected by Yan et al.(2004)in the GOODS survey satisfy the DRG selection criteria.We show color tracks for stellar popula-11The photometric redshift accuracy of DRGs from other studies is |z spec −z phot |/(1+z spec )≈0.1(F04,Wuyts et al.in preparation).The esti-mate is based on direct comparison of 16galaxies with both photometric and spectroscopic redshifts.Uncertainties in rest-frame magnitudes and model parameters are based on Monte Carlo simulations that take into account un-certainties in the observed fluxes and redshift estimates.tion models (Bruzual &Charlot 2003;BC03),redshifted to a fixed z =2.6:a single-age burst model (SSP)and two mod-els with constant star formation (CSF),and reddenings typical for LBGs (A v =0.6,Shapley et al 2001),and typical for DRGs (A V =2.0,F04).The K s −4.5µm colors of LBGs are consis-tent with low reddening models,whereas most of the DRGs lie in the area of models with substantial extinction.3.1.Dead galaxies at z =2−3Three of 13DRGs (indicated by star symbols in Fig.1)lie well outside the area of constant star-forming models.Their I −K s colors are too red for their K −4.5µm color and they lie close to the line of an old single-age burst model with ages of 2−3Gyr.The candidate old,passive galaxies are shown in Fig.2.Their SEDs are very well fit by an old single burst population.The gray model curves are predictions based on fits to the exceptionally deep optical/NIR data only,demon-strating that the Spitzer fluxes lie very close to the expected values.Dead galaxies have blue K −4.5µm colors and with Spitzer we can now effectively separate them from dusty star-forming DRGs,which are red in K −4.5µm.Models with ongoing star-formation and dust-reddening fit the SEDs badly.Star-formation histories (SFHs)with expo-nentially declining star-formation rates (SFRs)and timescales >300Myr can be ruled out at the 99.9%confidence level.For the marginally acceptable models,the ratio of on-going to past-average SFR is SFR (t )/<SFR >=0.001indicating that these 3galaxies are truly “red and dead”.The best-fit ages and implied formation redshifts depend on the assumed metallicity Z ,as expected.Super-solar Z =0.05models give a mean age of <t >=1.4Gyr and mean formation redshift <z f >=5,solar Z =0.02models yield <t >=2.9Gyr and <z f >≫5,while sub-solar metallicity models fail to provide good fits to the IRAC fluxes as they are too blue.Hence we in-fer from the models that the “dead”galaxies had formed most of their stellar mass by z ∼5(Z =0.05)or much earlier z ≫5(Z =0.02).The number density of “dead”galaxies is 1.9×10−4h 370Mpc −3,assuming a top hat redshift distribu-tion between z =2and 3.For stellar masses >0.5×1011M ⊙and the same IMF,that number density is 10×lower than that of early-type galaxies in the nearby universe (Bell et al.2003).Obviously,the sampled volume is too small to allow firm conclusions,but the result is indicative of strong evolution of passive galaxies from z =2.5to z =0.3.2.Dusty star forming galaxiesIn Fig.2we show the SEDs for 3of the 8DRGs whose optical/NIR fluxes were better fit with CSF models and red-dening by a Calzetti et al.(2000)dust law.The observed MIR flux points are often different from predictions based on shorter wavelengths,especially where the flux density F λwas still rising at the observed K s −band.Hence,for the very dusty DRGs (A V >1.5)the MIR fluxes help to better constrain the age and dust in the models.The average ages and extinction of the fits changed mildly after inclusion of the IRAC data:from <t >=1.1to 1.3Gyr,and <A V >=1.9to 1.5mag,re-spectively.Finally,two remaining galaxies could not be fit well by any model,most likely due to emission line contamination.One of them is spectroscopically confirmed as a very strong Lyman-αemitter (Wuyts et al.in preparation).However,the generally good fits to the UV-to-8µm SEDs of the DRGs in-dicate that the red J s −K s colors were caused by old age andIRAC observations of red z >2galaxies3F IG .2.—The UV-to-8µm spectral energy distributions (SEDs)of Distant Red Galaxies (DRGs).The best-fit Bruzual &Charlot (2003)models to the full SEDs (black solid lines )are shown,but also predictions based on the ultradeep optical and near-infrared fluxes only (gray solid lines ).Top row:the 3DRGs best fit with an single-age burst (SSP)model.The mid-infrared (MIR)IRAC fluxes (filled circles )directly confirm the predictions.Old and dead DRGs have bluer K s −4.5µm colors than very dusty star-forming DRGs.Galaxy 767shows a flux excess at 8µm,possibly related to AGN activity.Bottom row:the MIR predictions for galaxies better fit with constant star forming models and Calzetti et al.(2000)dust-reddening.For highly-reddened galaxies,the MIR observations can be very different from the predictions.Here IRAC fluxes help to better constrain the total age,dust content,and stellar mass in the models.dust-reddened star light,and not other anomalies.We note that one of the dead galaxies (see Fig.1)has an apparent flux excess at 8µm,suggesting the presence of an obscured AGN which starts to dominate the flux in the rest-frame K −band (see e.g.,Stern et al.2005).4.MASS-TO-LIGHT RATIO V ARIATIONS AT Z =2−3We next study the M /L ratios inferred from the SED fits described above,adopting the best fitting SFH (SSP or CSF).Figure 3a shows the modeled M /L K (rest-frame K )versus rest-frame U −V .The curves show the dust-free BC03model M /L K ratios.Galaxies generally lie to the red of the model curves as a result of dust attenuation.The fits imply a large range in M /L K for DRGs and LBGs together (a factor of 6).Furthermore,the M /L K ratio correlates with rest-frame U −V color,where galaxies red in the rest-frame optical have higher M /L K ratios than blue galaxies.The average M /L K of the DRGs is 0.33±0.04,about three times higher than that of the LBGs.Figure 3b shows the derived M /L K against the derived age.The M /L K correlates well with the age,as expected from the models.The role of extinction is greatly reduced in the rest-frame K −band,implying that the differences in the M /L K ratios for DRGs and LBGs are driven by age differences.Figure 3c shows the M /L K ratio against stellar mass M ∗.DRGs dominate the high-mass end.The highest-mass galax-ies (>0.5×1011M ⊙)in this sample all have high M /L K ra-tios,and here the M /L K ratio does not depend strongly on M ∗.At lower masses galaxies have much lower M /L K ratios.This may be a selection effect caused by our magnitude cut-off,as we would miss low-mass galaxies with high M /L K .How-ever,high-mass galaxies with low M /L K would be detected if they existed,hence the lower envelope of the M /L K versus M ∗distribution is real.Two intriguing possibilities are that the mean M /L K decreases towards lower stellar mass,or that the intrinsic scatter in M /L K increases.Our DRGs and LBGs were selected in the observed K s −band (rest-frame V −band).We find a large variation inM /L V (a factor of 25),hence selection effects play a major role in NIR studies at high redshift.Selection using MIR ob-servations with Spitzer would improve the situation,but the wide range in M /L K ratios and ages found here indicates that even a IRAC 8µm −selected sample would still be very differ-ent from a mass-selected sample.5.DISCUSSION AND CONCLUSIONSWe have presented rest-frame UV-to-NIR photometry of a sample of DRGs and LBGs at z =2−3in the HDFS.These galaxies span a wide range in properties,similar to low-redshift galaxies.The rest-frame NIR photometry from IRAC helps significantly:first,by allowing us to separate “old and dead”from dusty star forming DRGs using only the observed I ,K s ,and 4.5µm-band,and second,by improving model con-straints on the heavily obscured DRGs.The wide range in galaxy properties at z =2.5raises sev-eral important issues.First,it demonstrates it is impossible to obtain mass-selected samples photometrically.Even in the rest-frame K -band,the M /L ratio varies by a factor of 6for the DRGs and LBGs in the HDFS.Second,we need to under-stand what produces these variations.If a relation between to-tal stellar mass and M /L K exists (see Fig.3c)then stellar mass might be driving the variations.Deeper IRAC data is needed to establish this well,as incompleteness effects may play a role.It is tantalizing that Kauffmann et al.(2003)find a simi-lar correlation at z =0.1,with the most massive galaxies being the oldest and having the highest M /L ratios.The authors also found that above a stellar mass M ∗=6×1010M ⊙galaxy prop-erties correlate only weakly with M ∗,similar to what we find at z =2−3.The simplest explanation is that we observe the same galaxies at z =0.1and z =2.5,although we note that hi-erarchical formation scenarios predict significant merging for galaxies at z >2.Alternatively,we observe merging processes occurring at a critical mass of about 6×1010M ⊙.A partial ex-planation may be a simple relation between mass and metal-licity:higher mass galaxies might have higher metallicity,and4Labbéetal.F IG .3.—The mass-to-light ratios in the rest-frame K −band (M /L K )of distant red galaxies (DRGs)and z =2−3Lyman break galaxies (LBGs).Symbols are as in Fig.1.(a )M /L K versus rest-frame U −V color,showing a clear correlation.On top we indicate the corresponding observed J s −K s color and the J s −K s >2.3limit (upward arrow ).Color tracks of an SSP (dotted line )and CSF model (dashed line )are shown.(b )The relation between M /L K and best-fit age.The M /L K is more sensitive to the age of the stellar population than to dust extinction,hence the DRGs are on average older,not just more dusty versions of LBGs.(c )M /L K versus stellar mass.The highest-mass galaxies all have high M /L K ratios.The mass completeness limit (downward arrow )corresponds to our observed K s ,tot =22.5magnitude cut-off and a maximal M /L .A selection by rest-frame K-light corresponds to taking everything to the right of the constant L K line (dashed line ).Obviously this is still far from a vertical cut-off which would represent a selection by stellar mass.thus be redder.It is very noteworthy that there are “red and dead”galaxies at z =2−3.Previous authors found such galaxies at z =1−2(e.g.,Cimatti et al.2004;McCarthy et al.2004).Whereas the number density of “dead”galaxies at z =2.5is probably much lower than at z =0,the mere existence of these systems at such high redshift raises the question what caused such a rapid and early decline in star formation.Our model fits imply that their star formation stopped by z =5or higher,close to or during the epoch of reionization.Possibly a strong feedback mechanism caused this,such as an AGN or galactic-scale outflow.We note that these galaxies are among the most massive galaxies at z =2.5,and hence were probably at the extreme tail of the mass function at z =5.Obviously,many questions remain unanswered by this study.Only a very small field has been studied,and simi-lar studies on wider fields are necessary.Finally,the M /L ratios derived here remain model dependent and vary with the assumed SFH,metallicity,and IMF (e.g.,Bell et al.2003).Direct mass determinations are presently very challenging,but are becoming more important to understand the z =2−3galaxy population.This research was supported by the Carnegie Institution of Washington,the Netherlands Foundation for Research (NWO),the Leids Kerkhoven-Bosscha Fonds,the Lorentz Center,and the Smithsonian Institution.REFERENCESBarmby,P.,et al.2004,ApJS,154,97Bell,E.F.,et al.2003,ApJS,149,289Bruzual,G.&Charlot,S.2003,MNRAS,344,1000(BC03)Casertano,S.et al.AJ,120,pp.2747–2824,2000Calzetti,D.,et al.2000,ApJ,533,682Cimatti,A.,et al.2004,Nature,430,184Fazio,G.G.,et al.2004,ApJS,154,10Franx,M.et al.2003,ApJ,587,L79Förster Schreiber,N.M.,et al.2004,ApJ,616,40(F04)Kauffmann,G.,et al.2003,MNRAS,341,54Labbé,I.,et al.2003,AJ,125,1107Labbé,I.,2004,Doctoral Thesis,Leiden UniversityMadau,P.,et al.1996,MNRAS,283,1388McCarthy,P.J.,et al.2004,ApJ,614,L9Papovich,C.,Dickinson,M.,&Ferguson,H.C.2001,ApJ,559,620Rudnick,G.,et al.2003,ApJ,599,847Steidel,C.C.,et al.1996,AJ,112,352Steidel,C.C.,et al.1996b,ApJ,462,L17Stern,D.,et al.2005,ApJ,submitted (astro-ph/0410523)van Dokkum,P.G.et al.2003,ApJ,587,L83van Dokkum,P.G.,et al.2004,ApJ,611,703Yan,H.,et al.2004,ApJ,616,63。