11《艺术作品中的动物》优质教案

11《艺术作品中的动物》优质教案
11《艺术作品中的动物》优质教案

11《艺术作品中的动

物》优质教案

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

11《艺术作品中的动物》教案

教学目标:

1.知识与技能:

知识:够认识辨别雕塑、泥塑、中国画、儿童画艺术表现形式的基本特征,知道很多艺术作品中的动物,艺术家在色彩、造型上进行了变形、夸张,其目的是为了更好地展现动物的特征,以寄托人们美好的愿望。

技能:学习描述不同表现形式的作品,能抓住作品在色彩、造型、材质上的基本特点,用简短的语言大胆表述出自己对作品的感受。

2.过程与方法:

通过视频欣赏、图片对比、小组讨论、互动游戏等多样的教学方法,引导学生感受艺术作品中动物的造型特点与色彩特点。通过视觉、听觉甚至触觉的体验,激发学生大胆表达出自己对不同艺术形式的感受。指导学生利用发现式、小组合作式等学习方式感悟到动物造型中夸张、变形的表现手法。

3.情感态度与价值观:

通过本课学习了解艺术的丰富性,激发学生对美术的兴趣。同时对民间文化的接触,培养学生珍视民间文化艺术的情感,同时对学生进行热爱小动物、热爱大自然的情感教育。

教学重点:

1.认识多种美术表现形式,能从色彩、造型、材质、呈现方式方面进行描述。

2.了解艺术作品中经常运用的夸张、变形手法。

3.初步了解动物在民间艺术中的寓意。

教学难点:

体会不同艺术形式给我们带来的不同美感,并将此感受加以描述。

课时安排:1课时

教学过程:

一、激趣导入

师:小朋友们,你们去过动物园吗在动物园里给你留下深刻印象的是什么动物呢

生:大象、老虎、狮子、猴子……

师:看来小朋友们都非常喜欢动物,动物是人类的朋友,很多艺术家同样喜欢动物,他们用自己的方式去表达对动物的喜爱之情。今天就让我们一起来看一看艺术作品中的动物。

揭示课题:《艺术作品中的动物》。

二、讲授新课

1.赏析探究

(1)欣赏书中作品

你们知道下面的两幅画分别是哪两位画家画的吗

多媒体课件出示图片,让学生连连看,哪位画家擅长画哪样动物。

生:李可染——牛

张仃——鸡

师:我们先来看一看李可染老先生画的牛。

师:你知道李可染为什么喜欢画牛吗他为什么要把牛称作老师呢请你从这个小故事中寻找答案。

师:利用多媒体播放音频,通过这个小故事,激发学生兴趣。

生:因为李可染佩服牛勤劳无私,顽强奋进的品格。

师:这幅《浅塘渡牛图》给你的感受是什么?

生:画家寥寥数笔,就惟妙惟肖地描绘出如此生动的一幅田园小景。体现出人与动物的亲密关系。

师:小朋友们水墨画会动吗?让水墨画动起来,我们来一起感受水墨画的韵味。(课件播放《牧笛》)

师:这是我国第二部水墨动画片,取材于画家李可染的作品,获得了国际金奖。画家李可染是不是很厉害呢!

利用多媒体课件播放水墨动画《牧笛》,激发学生的学习探索兴趣,感受水墨画的韵味。

(2)欣赏书中作品

师:我们再来欣赏一下张仃笔下的公鸡作品《雄鸡》,这幅画主要使用了什么线条?

生:直线。

师:你能用一些词语来形容一下这幅画吗?

生:强壮、威武、挺拔。

师:刚刚我们欣赏了《浅塘渡牛图》和《雄鸡》两幅作品,谁来说说看这两幅作品用的是什么表现形式?

生:中国画(笔,墨,纸,砚)。

师:刚才我们学习的是中国画这种表现形式,接下来,还有几种表现形式的作品,我们来看一看。

2.分析教材作品

课件欣赏《坐虎》、《北京故宫太和门前的铜狮》、《铜奔马》。

(1)欣赏《坐虎》

师:这是一件泥塑作品,在我们中国陕西凤翔农村,哪家要是生了个小宝宝,爷爷奶奶会送他一个老虎玩具,希望他像老虎一样健康强壮,你觉得送给小宝宝的老虎在色彩上有什么特点?

生:小组讨论(太凶猛-吓哭宝宝,色彩鲜艳、造型可爱-宝宝喜欢)色彩:丰富,鲜艳。

师:坐虎跟真老虎比一比有什么不同的地方?

造型:夸张、变形。

纹样:多装饰花纹。

师:坐虎身上都画了哪些图案,这些图案有什么寓意呢?

生:脸部:金钱纹——象征财富

牡丹、石榴——象征富贵、多子

师:想不到这可爱的坐虎,原来还有这么多美好的寓意!

(2)欣赏《北京故宫太和门前的铜狮》

师:看完老虎看狮子,接下来我们欣赏一只精美的铜狮子雕塑,这是北京故宫太和殿门前的铜狮子,跟刚刚的泥塑老虎比较一下,同学们来说说铜狮子有什么特点?

生:威风、凶猛等。

师:为什么要把狮子塑造得这么威风凶猛呢?原来它们是古时候给皇帝守门口的,所以要很威风。太和殿是皇帝向天下宣布命令的地方,所以狮子还象征着高贵的权力。

(3)欣赏《铜奔马》

师:《铜奔马》又名《马踏飞燕》,这件东汉时期的青铜雕塑,把马奔跑的动态表现得很生动,马的三足腾起,一足悬踏飞燕,体行健美,给人以轻盈的动感。这件作品被誉为“绝世珍宝”、“天才的中国马”。

三、艺术实践

1.请同学们选择一件你喜欢的作品,把它介绍给大家,并填写《收藏卡》。

收藏卡

《》

收藏人

作品信息

表现形式

材质

色彩

造型特点

收藏感言

2.学生展示自己的收藏卡。

四、总结

动物是人类的好朋友,人们借助艺术作品中的动物传递思想,抒发感情,动物与我们的生活息息相关,我们身边还有很多以动物为题材的不同艺术形式的作品,课下可以继续去发现、去欣赏!

板书设计艺术作品中的动物

金钱纹——象征财富

牡丹、石榴——象征富贵、多子

新人教版数学八年级上册第十一章三角形教案

新人教版八年级上册数学教案 第11章三角形 教材内容 本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。 三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用. 教学目标 〔知识与技能〕www. 12999. com 1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线; 2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形; 3、会证明三角形内角和等于1800,了解三角形外角的性质。 4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。 5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。 〔过程与方法〕 1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯; 2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。 〔情感、态度与价值观〕 1、体会数学与现实生活的联系,增强克服困难的勇气和信心; 2、会应用数学知识解决一些简单的实际问题,增强应用意识; 3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。 重点难点 三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。 课时分配 11.1与三角形有关的线段……………………………………… 2课时 11.2 与三角形有关的角………………………………………… 2课时 11.3多边形及其内角和………………………………………… 2课时 本章小结………………………………………………………… 2课时

第十一章三角形教案

11.1 全等三角形 一、学习目标 1、知道什么是全等形、全等三角形及全等三角形的对应元素。 2、知道全等三角形的性质,能用符号正确地表示两个三角形 全等。 3、能熟练找出两个全等三角形的对应角、对应边。 二、重点难点 教学重点:全等三角形的性质。 教学难点:找全等三角形的对应边、对应角。 三、合作探究 1.观察p 2图案,指出这些图案中中形状与大小相同的图形 2.学生自己动手(同桌两名同学配合) 取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板 、 完全一样. 3.获取概念 形状与大小都完全相同的两个图形就是 .(要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同.) 即:全等形的准确定义:能够完全重合的两个图形叫做全等形. 推得出全等三角形的概念: 对应顶点: 、对应角: 、 对应边: 。 “全等”符号: 读作“全等于” 导入新课 D C A B O

将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180°得到△DBC ;将△ABC 旋转180°得△AED . 甲 D C A B F E 乙 D C A B 丙 D C A B E 议一议:各图中的两个三角形全等吗? 得出: ≌△DEF ,△ABC ≌ ,△ABC ≌ . (注意强调书写时对应顶点字母写在对应的位置上) 启示:一个图形经过平移、翻折、旋转后,位置变化了,?但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻求全等的一种策略. 观察与思考: 寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? 全等三角形的性质: , 。 四、精讲精练 精讲: 例1、如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,? 说出这两个三角形中相等的边和角. 例2、如图,已知△ABE ≌△ACD ,∠ADC=∠AEB , ∠B=∠C ,?指出其他的对应边和对应角. (1)全等三角形对应角所对的边是对应边;两个对应角所夹的 B C

第十二章全等三角形教案

第十二章全等三角形教案 篇一:人教版第十二章《全等三角形》一一最新版 12. 1全等三角形教学目标1.知道什么是全等形、全等三角形及全等三角形的对应元素;2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的对应角、对应边.教学重点全等三角形的性质.教学难点找全等三角形的对应边、对应角.教学过程I .提出问题,创设情境1、问题:你能发现这两个三角形有什么美妙的关系吗?AAlCIl这两个三角形是完全重合的.2.学生自己动手(同桌两名同学配合)取一张纸, 将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.3.获取概念让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.形状与大小都完全相同的两个图形就是全等形.要是把两个图形放在一起,能够完全重合,?就可以说明这两个图形的形状、大小相同.概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义?仔细阅读课本中”全等”符号表示的要求.1【.导入新课利用投影片演示将AABC沿直线BC平移得ADEF;将AABC沿BC翻折180° 得到ZiDBC;将Z?ABC 旋转180° 得AAED. ADADEBCBC 甲EF 乙D B丙C议一议:各图中的两个三角形全等吗?不难得出:AABC9Z?DEF, ΔABC^ΔDBC, ΔABC^ΔAED.(注虑强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,?但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.观察与思考:寻找中图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(引导学生从全等三角形可以完全重合出发找等量关系)得到全等三角形的性质:全等三角形的对应边相等.全等三角形的对应角相等.[例1]如图,AOCA^Z?OBD, C和B, A和D是对应顶点,?说出这两个三角形中相等的边和角.CAB问题:AOCABZiOBD,说明这两个三角形可以重合,?思考通过怎样变换可以使两三角形重合?将AOCA翻折可以使Δ0CA与AOBD重合.因为C和B、A和D是对应顶点,?所以C和B重合,A和D 重合.DZC=ZB:ZA=ZD; ZAOC=ZDOB. AC二DB; OA=OD; OC二OB. 总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.[例

初中八年级上册数学第11章《全等三角形

新课标人教版初中八年级上册数学第11章《全等三角形》精品试题 一、填空题(每题2分,共32分) 1.能够____ 的两个图形叫做全等图形. 2.判定两个三角形全等除用定义外,还有几种方法,它们分别可以简写成_______;_______;_______;_______;_________. 3.已知,如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有 对全等三角形. 4.如图,△ABC ≌△ADE ,则,AB = ,∠E =∠ .若∠BAE =120°,∠BAD =40°,则∠ BAC = . 5.△ABC ≌△DEF ,且△ABC 的周长为12,若AB =3,EF =4,则AC = . 6.如图,AE =BF ,AD ∥BC ,AD =BC ,则有ΔADF ≌ ,且DF = . 7.如图,在ΔABC 与ΔDEF 中,如果AB =DE ,BE =CF ,只要加上∠ =∠ , 或 ∥ ,就可证明ΔABC ≌ΔDEF . 8.△ABC ≌△BAD ,A 和B ,C 和D 是对应顶点,如果AB =8cm ,BD =?6cm ,AD =5cm ,则BC =________cm . 9.△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,且CD =4cm ,则点 D 到AB ?的距离是________. 10.如图,已知AC =BD ,21∠=∠,那么△ABC ≌ , 其判定根据是__________. 11.如图,ABC ?中,BC AD ⊥于D ,要使△ABD ≌△ACD ,若根据“HL ”判定,还需加条件___ = ___. 12.如图,已知AC =BD ,D A ∠=∠,请你添一个直接条件, = ,使△AFC ≌△DEB . B A C B A E D 第3题图 第4题图

新人教版八年级数学第十一章三角形教案(共8课时)

第十一章三角形 11.1.1三角形的边 三维目标 知识与能力:认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形. 过程与方法:经历度量三角形边长的实践活动中,理解三角形三边不等的关系. 情感态度与价值观:懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题. 重点:1.对三角形有关概念的了解,能用符号语言表示三条形. 难点: 1.在具体的图形中不重复,且不遗漏地识别所有三角形. 2.用三角形三边不等关系判定三条线段可否组成三角形. 教学过程 一、看一看 1.图形见章前图. 教师叙述:三角形是一种最常见的几何图形之一.(看条件许可,可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P1的图,到微小的分子结构,处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题来源于实际生活之中. 学生活动:(1)交流在日常生活中所看到的三角形. (2)选派代表说明三角形的存在于我们的生活之中. 2.板书:在黑板上老师画出以下几个图形. (1) C B A (2) C B A (3) E D C B A (4) E D B A (5) D C B A (1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC 、CB 、AB 是否首尾顺序相接.(是) (2)观察发现,以上的图,哪些是三角形? (3)描述三角形的特点: 板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”. 教师提问:上述对三角形的描述中你认为有几个部分要引起重视. 学生回答: a.不在一直线上的三条线段.

八年级数学上册第十一章三角形11.1与三角形有关的线段教案(新版)新人教版

八年级数学上册第十一章三角形11.1与三角形有关的线段教案 (新版)新人教版 一、课标要求 (1)理解三角形及三角形有关的线段(边、高、中线、角平分线)的概念,证明三角形两边的和大于第三边,了解三角形的重心的概念,了解三角形的稳定性。 (2)理解三角形的内角、外角的概念,探索并证明三角形内角和定理,探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形,掌握三角形的一个外角等于与它不相邻的两个内角的和。 (3)了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并掌握多边形的内角和公式与外角和。 二、教材分析 第1节研究与三角形有关的线段。首先结合引言中的实际例子给出三角形的概念,进而研究三角形的分类。对于三角形的边,证明了三角形两边的和大于第三边。然后给出三角形的高、中线与角平分线的概念。结合三角形的中线介绍三角形的重心的概念。最后结合实际例子介绍三角形的稳定性。 第2节研究与三角形有关的角,对于三角形的内角,证明了三角形内角和定理。然后由这个定理推出直角三角形的性质:直角三角形的两个锐角互余。最后给出三角形的外角的概念,并由三角形内角和定理推出:三角形的外角等于与它不相邻的两个内角的和。 第3节介绍多边形的有关概念与多边形的内角和公式、外角和。三角形是多边形的一种,因而可以借助三角形给出多边形的有关概念,如多边形的边、内角、外角、内角和都可由三角形的有关概念推广而来。三角形是最简单的多边形,因而常常将多边形分为若干个三角形,利用三角形的性质研究多边形。多边形的内角和公式就是利用上述方法得到的。将多边形的有关内容与三角形的有关内容紧接安排,可以加强它们之间的联系,便于学生学习。 三、教学建议 1.把握好教学要求 与三角形有关的一些概念在本章中只要求达到理解的程度就可以了,进一步的要求可通过后续学习达到。如对于三角形的角平分线,在本章中只要知道它的定义,能够从定义得出角相等就可以了,学生在画角平分线时发现三条角平分线交于一点,可直接肯定这个结论,在下一章“全等三角形”中再证明这个结论,同样,三角形的三条中线交于一点的结论也可直接点明。 在本章中,三角形的稳定性是通过实验得出的,待以后学过“三边分别相等的两个三角形全等”,可进一步明白其中的道理,证明三角形的内角和等于180°有一定的难度,只要学生了解得出结论的过程,不要在辅助线上花太多的精力,以免影响对内容本身的理解与掌握,

2017年秋人教版八年级数学上第十二章全等三角形教案

第十二章全等三角形 12.1全等三角形 1.了解全等形及全等三角形的概念. 2.理解全等三角形的性质. 重点 探究全等三角形的性质. 难点 掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角形 的对应元素. 一、情境导入 一位哲人曾经说过:“世界上没有完全相同的叶了”,但是在我们的周围却有着好多形状、大小完全相同的图案.你能举出这样的例子吗? 二、探究新知 1.动手做 (1)和同桌一起将两本数学课本叠放在一起,观察它们能重合吗? (2)把手中三角板按在纸上,画出三角形,并裁下来,把三角板和纸三角形放在一起,观察它们能够重合吗? 得出全等形的概念,进而得出全等三角形的概念. 能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形. 2.观察 观察△ABC与△A′B′C′ 重合的情况. 总结知识点: 对应顶点、对应角、对应边. 全等的符号:“≌”,读作:“全等于”. 如:△ABC≌△A′B′C′. 3.探究 (1)在全等三角形中,有没有相等的角、相等的边呢? 通过以上探索得出结论:全等三角形的性质. 全等三角形的对应边相等,对应角相等. (2)把△ABC沿直线BC平移、翻折,绕定点旋转,观察图形的大小形状是否变化.

得出结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状. 把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B 和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角. 三、应用举例 例1如图,△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长. 分析:由全等三角形的性质可知,全等三角形的对应边相等,找出对应边即可. 解:∵△ADE≌△BCF,∴AD=BC.∵AD=6 cm, ∴BC=6 cm.又∵CD=5 cm, ∴BD=BC-CD=6-5=1(cm). 四、巩固练习 教材练习第1题. 教材习题12.1第1题. 补充题: 1.全等三角形是() A.三个角对应相等的三角形 B.周长相等的三角形 C.面积相等的两个三角形 D.能够完全重合的三角形 2.下列说法正确的个数是() ①全等三角形的对应边相等; ②全等三角形的对应角相等; ③全等三角形的周长相等; ④全等三角形的面积相等. A.1B.2C.3D.4 3.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EF=5,求∠DFE 的度数与DE的长.

11、手术台就是阵地培训资料

11、手术台就是阵地

11、手术台就是阵地 【教学目标】 1.在阅读中自主识字。朗读可无奈,借助填空说说课文主要内容。能结合 课文说说对“手术台就是阵地”这句话的理解。 2.理解“陆续、继续、连续”,会正确使用。 3.通过朗读比较,了解反问句加强语气的作用。选背课文2、3、4节中一 节。 4、学习白求恩大夫对工作极端负责任,对同志极端热忱的高尚品质及把中国人民的解放事业当作自己事业的国际主义精神。 【教学重点和难点】 理解描写危险环境和白求恩大夫在这样的环境中怎样坚持手术台这块阵地为伤员做手术的语句,深入体会白求恩大夫的崇高品质和伟大精神。 结合课文内容,说说对“手术台就是阵地”这句话的理解。 【教学过程】 一、导入新课,简介白求恩 1.谈话:“手术台”、“阵地”是做什么用的?为什么把为病人做手术的地方当作阵地?是谁说的这句话?从文中找出含有“手术台就是阵地”的句子读出来。 2.简介白求恩:白求恩是加拿大共产党党员,著名的胸外科医师。我国的抗日战争爆发后,他受加拿大共产党和美国共产党的派遣,率领医疗队到中国解放区,1938年3、4月间到达延安,不久转赴晋察冀边区工作。他以精湛的医疗技术为中国的抗日军民服务,并培养了大批医务干部,为中国人民的解放

事业做出了卓越贡献。后因抢救伤员感染中毒,于1939年11月 12日在河北唐县逝世。 二、初读课文,整体感知 1.自读课文,注意读准生字字音,画出本课的生字词,画出自然段序号。 2.以开火车的形式每人读一个自然段。多音字正音。 出示:读出加点字的正确读音: 大.夫伟大.没.有淹没. 3.出声读全文,边读边思考:本文写了一件什么事?通过讨论,同学们对文章有个整体的认识。 三、理清顺序找出重点 1.指名一位学生朗读全文,其他学生思考:文中哪几个自然段具体描写了白求恩为伤员做手术的内容?(2、3、4节) 2.出声自读第1自然段。思考:主要写了哪些内容?(齐会战斗打响了,点明了事情发生的时间、地点和战斗的形势。) 3.出声自读第5自然段。思考:告诉我们什么内容?(齐会战斗胜利了,白求恩在手术台连续工作了69个小时。) 4.文章的重点部分是哪几个自然段?(2、 3、 4)为什么? (因为第1自然段是“战斗打响”、第5自然段是“战斗结束”。而2、3、4自然段内容是具体地介绍了白求恩在环境气氛越来越危险的情况下,始终以手术台为阵地,争分夺秒地抢救伤员的情况。)按“战斗打响”、“激烈进行”、“战斗结束”的顺叙叙述的。这就是事情的发展顺序。 四、抓关键词句,品读人物特点。

第十一章三角形全章教学设计

三角形的边

检测练习一、如图,在三角形ABC中, (1)AB+BC AC AC+BC AB AB+AC BC (2)假设一只小虫从点B出发,沿三角形的边爬到点C, 有路线。路线最近,根据是:, 于是有:(得出的结 论)。 (3)下列下列长度的三条线段能否构成三角形,为什么? ①3、4、8 ②5、6、11 ③5、6、10 研读三、认真阅读课本认真看课本( P64例题,时间:5分钟) 要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。 (2)、对这例题的解法你还有哪些不理解的? (3)、一边阅读例题一边完成检测练习三。 检测练习二 9、一个等腰三角形的周长为28cm.①已知腰长是底边长的3倍,求各边的长; ②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程啊!) 解: (三)在研读的过程中,你认为有哪些不懂的问题? 四、归纳小结 (一)这节课我们学到了什么?(二)你认为应该注意什么问题? 五、强化训练 【A】组 1、下列说法正确的是 (1)等边三角形是等腰三角形 (2)三角形按边分类课分为等腰三角形、等边三角形、不等边三角形 (3)三角形的两边之差大于第三边 (4)三角形按角分类应分锐角三角形、直角三角形、钝角三角形 其中正确的是() A、1个 B、2个 C、3个 D、4个 2、一个不等边三角形有两边分别是 3、5另一边可能是() A、1 B、2 C、3 D、4 3、下列长度的各边能组成三角形的是() A、3cm、12cm、8cm B、6cm、8cm、15cm 、3cm、5cm D、6.3cm、6.3cm、12cm 【B】组 4、已知等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长。 5、已知三角形的一边长为5cm,另一边长为3cm.则第三边的长取值范围是多少? 【C】组(共小1-2题) 6、已知三角形的一边长为5cm,另一边长为3cm.则第三边的长取值范围是。 小方有两根长度分别为5cm、8cm的游戏棒,他想再找一根,使这三根游戏棒首尾相连能搭成一个三角形. (1)你能帮小方想出第三根游戏棒的长度吗?(长度为正整数) (2)想一想:如果已知两边,则构成三角形的第三边的条件是什么?

部编语文《手术台就是阵地》优秀教案

教学目标: 1.会认11个生字,掌握多音字“斗、大”。 2.有感情地朗读课文,把握课文的主要内容;能结合课文内容,理解“手术台就是阵地”的意思。 3.学习白求恩大夫对工作极端负责任、对同志极端热情的高尚品质和国际主义精神。教学重、难点:1.能结合课文内容,理解“手术台就是阵地”的意思。 2.使学生从白求恩大夫坚守岗位、救死扶伤的事迹中,受到国际主义精神的教育。教具准备:多媒体投影 教学过程: 一、揭题导入 1.板书课题,鼓励学生质疑。 2.什么是“阵地”?为什么说手术台就是阵地?是谁的阵地? 二、整体感知 1.指名说说通过预习,知道课文主要讲了什么。 2.交流对白求恩的了解,师可补充介绍:白求恩:加拿大共产党员,著名的胸外科医生,抗日战争爆发后,他受加拿大共产党员的派遣,率领由加拿大和美国人

组成的医疗队于1938年三、四月间到达延安,以精湛的医疗技术为中国的抗日军民服务,并培养了大批医务干部,后因抢救伤员感染中毒,1939年11月12日在河北唐县逝世,毛主席曾写《纪念白求恩》一文。 3.指名接读课文,找出文中最使人感动的句子,注意以下词语读音:气焰嚣张当头一棒几发炮弹淹没仍然敏捷迅速争分夺秒注意以下多音字:斗挨大血发弹空没 4.自己再读课文,找出使人感动的句子和同桌交流,说说为什么?三、细读感悟(一)学习课文第1自然段 1.指名读,标出句子,体会每句话的意思。 2.交流读懂了什么?查字典理解“嚣张”,联系上下文理解“当头一棒”。(二)引导学习课文第2—4自然段 1.指导学习第2自然段。 (1)默读,看自己能读懂哪些问题? (2)交流讨论:从哪些地方体会到战斗非常激烈?白求恩所处的环境怎样?你从哪些词句中体会到的?白求恩是怎样做的?你抓住重点词语体会到了白求恩什么精神? (3)互相谈谈感受,小结:白求恩在极其危险的环境中忘我地工作。 2.重点学习第3自然段。

八年级数学上册第十二章全等三角形12.1全等三角形教案(新版)新人教版

八年级数学上册第十二章全等三角形12.1全等三角形教案(新 版)新人教版 一、课标要求 (1)理解全等三角形的概念,能识别全等三角形中的对应边、对应角,掌握并能运用全等三角形的性质。 (2)经历探索三角形全等条件的过程,掌握判定三角形全等的基本事实(“边边边”“边角边”和“角边角”)和定理(“角角边”),能判定两个三角形全等。 (3)能利用三角形全等证明一些结论。 (4)探索并证明角平分线的性质定理,能运用角平分线的性质。 二、教材分析 中学阶段重点研究的两个平面图形间的关系是全等和相似,本章以三角形为例研究全等。对全等三角形研究的问题和研究方法将为后面相似的学习提供思路,而且全等是一种特殊的相似,全等三角形的内容是学生学习相似三角形的重要基础。本章还借助全等三角形进一步培养学生的推理论证能力,主要包括用分析法分析条件与结论的关系,用综合法书写证明格式以及掌握证明几何命题的一般过程。由于利用全等三角形可以证明线段、角等基本几何元素相等,所以本章的内容也是后面将学习的等腰三角形、四边形、圆等内容的基础。 全等形在几何中处处可见,为了避免学生将全等的概念局限于全等三角形,本章从现实世界中各种各样的全等图形谈起。接着,教科书从“重合”的角度定义了全等形和全等三角形的概念,这种定义方式有利于学生借助生活经验直观地认识所定义的对象,也便于引出全等形的对应部分。 性质与判定是研究全等三角形的两个重要方面。教科书由全等三角形的定义直接导出全等三角形的性质。在研究全等三角形的判定方法时,由图形的性质与判定在命题陈述上的互逆关系出发,引出由三条边分别相等、三个角分别相等判定两个三角形全等的方法。接下来,教科书构建了一个完整的探索三角形全等条件的活动——首先提出探究的问题:由全等三角形的定义可知,满足三条边分别相等、三个角分别相等的两个三角形全等,那么能否减少条件,简捷地判定两个三角形全等呢?然后从“一个条件”开始,逐渐增加条件的数量,分别探究“一个条件”“两个条件”“三个条件”……能否保证两个三角形全等。对于“三个条件”的情形,分为三条边、两条边和一个角、两个角和一条边以及三个角分别相等的情况依次进行了探究。同时,根据对各判定方法学习要求的差别设置了不同的学习方式,有的让学生通过作图实验,猜想结论,再以基本事实的形式给出判定方法,有的让学生通过举反例说明判定方法不成立,有的则由已获得的判定方法证明新的判定方法。最后,探究了判定直角三角形全等的特殊方法。 由于角的平分线的性质可以用全等三角形的知识证明,本章的最后一节安排了角的平分线的

部编版语文三年级上册《手术台就是阵地》公开课一等奖教学设计

部编版语文三年级上册《手术台就是阵地》公开课一等奖教学设计 教学目标: 1.会认11个生字,掌握多音字“斗、大”。 2.有感情地朗读课文,把握课文的主要内容;能结合课文内容,理解“手术台就是阵地”的意思。 3.学习白求恩大夫对工作极端负责任、对同志极端热情的高尚品质和国际主义精神。教学重、难点:1.能结合课文内容,理解“手术台就是阵地”的意思。 2.使学生从白求恩大夫坚守岗位、救死扶伤的事迹中,受到国际主义精神的教育。教具准备:多媒体投影

教学过程:一、揭题导入

1.板书课题,鼓励学生质疑。 2.什么是“阵地”?为什么说手术台就是阵地?是谁的阵地? 二、整体感知 1.指名说说通过预习,知道课文主要讲了什么。 2.交流对白求恩的了解,师可补充介绍:白求恩:加拿大共产党员,著名的胸外科医生,抗日战争爆发后,他受加拿大共产党员的派遣,率领由加拿大和美国人组成的医疗队于1938年三、四月间到达延安,以精湛的医疗技术为中国的抗日军民服务,并培养了大批医务干部,后因抢救伤员感染中毒,1939年11月12日在河北唐县逝世,毛主席曾写《纪念白求恩》一文。 3.指名接读课文,找出文中最使人感动的句子,注意以下词语读音:气焰嚣张当头一棒几发炮弹淹没仍然敏捷迅速争分夺秒注意以下多音字:斗挨大血发弹空没 4.自己再读课文,找出使人感动的句子和同桌交流,说说为什么?三、细读感悟(一)学习课文第1自然段 1.指名读,标出句子,体会每句话的意思。 2.交流读懂了什么?查字典理解“嚣张”,联系上下文理解“当头一棒”。(二)引导学习课文第2—4自然段 1.指导学习第2自然段。

三角形教案优质

第十一章三角形 §11.1.1三角形的边 教学目标 1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形. 2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系. 3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题. 4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣. 重点、难点 重点: 1.对三角形有关概念的了解,能用符号语言表示三条形. 2.能从图中识别三角形. 3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系. 难点: 1.在具体的图形中不重复,且不遗漏地识别所有三角形. 2.用三角形三边不等关系判定三条线段可否组成三角形. 教学过程 一、看一看 1.投影:图形见章前P1图. 教师叙述: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题来源于实际生活之中. 学生活动:(1)交流在日常生活中所看到的三角形. (2)选派代表说明三角形的存在于我们的生活之中. 2.板书:在黑板上老师画出以下几个图形.

(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是) (2)观察发现,以上的图,哪些是三角形? (3)描述三角形的特点: 板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”. 教师提问:上述对三角形的描述中你认为有几个部分要引起重视. 学生回答: a.不在一直线上的三条线段. b.首尾顺次相接. 二、读一读 指导学生阅读课本P2,第一部分至思考,一段课文,并回答以下问题: (1)什么叫三角形? (2)三角形有几条边?有几个内角?有几个顶点? (3)三角形ABC用符号表示________. (4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________. 三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示. 三、做一做 画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗? 同学们在画图计算的过程中,展开议论,并指定回答以上问题: (1)小虫从B出发沿三角形的边爬到C有如下几条路线. a.从B→C b.从B→A→C (2)从B沿边BC到C的路线长为BC的长. 从B沿边BA到A,从A沿边C到C的路线长为BA+AC. 经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的. 四、议一议 1.在同一个三角形中,任意两边之和与第三边有什么关系? 2.在同一个三角形中,任意两边之差与第三边有什么关系? 3.三角形三边有怎样的不等关系? 通过动手实验同学们可以得到哪些结论? 三角形的任意两边之和大于第三边;任意两边之差小于第三边. 五、想一想 三角形按边分可以,分成几类? 六、练一练 有三根木棒长分别为3cm、6cm和2cm,用这些木棒能否围成一个三角形? 分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合 三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构 成一个三角形.

第十二章全等三角形12.1全等三角形备课资料教案新版新人教版1

第十二章 12.1全等三角形 知识点1:全等形与全等三角形的概念 定义:能够完全重合的两个图形叫做全等形. 能够完全重合的两个三角形叫做全等三角形,重合的顶点叫做对应点,重合的边叫做对应边,重合的角叫做对应角.全等三角形是最简单的全等形. 关键提醒:1. 全等三角形是特殊的全等形,全等三角形关注的是两个三角形的形状和大小是否完全一样,叠合在一起是否重合,与它们的位置没有关系. 2. “全等”用“≌”表示,读作“全等于”,记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上. 3. 一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等,所以两个全等的三角形都能通过适当的平移、翻折、旋转等变换后重合. 知识点2:全等三角形的性质 全等三角形的对应边相等、对应角相等.由全等三角形的定义还容易知道全等三角形的周长相等、面积相等、对应边上的中线相等、对应角的平分线相等、对应边上的高相等. 关键提醒:1. 全等三角形的周长相等,面积相等,但周长相等或面积相等的两个三角形不一定是全等三角形. 2. 要正确区分对应边与对边、对应角与对角的概念.一般地,对应边、对应角是就两个三角形而言的,指两条边、两个角的关系,而对边、对角是就同一个三角形的边和角而言的,对边是指角的对边,对角是指边的对角. 考点1:全等三角形的对应边和对应角判定 【例1】如图所示,△ABC绕点B顺时针旋转90°到△DBE,且∠ABC=90°. (1)△ABC和△DB E是否全等?若全等,指出对应边和对应角; (2)直线AC、DE有怎样的位置关系?

解:(1)因为△ABC绕点B顺时针旋转90°后与△DBE重合,所以△ABC≌△DBE. 对应边:AB与DB,BC与BE,AC与DE;对应角:∠A与∠D,∠ABC与∠DBE,∠ACB与∠E. (2)延长AC交DE于点F.如图所示, 由(1)知∠A=∠D,又∠ACB=∠DCF,所以在△ABC和△DFC中,有∠DFC=∠ABC=90°,即直线AC与DE 互相垂直. 点拨:(1)中的△ABC和△DBE形状和大小没有发生变化,只是位置发生改变,所以这两个三角形是全等三角形,根据旋转过程中点的对应关系,从而确定出对应边和对应角;(2)延长AC交DE于点F,可以证明∠CFD=∠ABC=90°,从而可以判断出两条线段是垂直关系. 考点2:利用全等三角形的定义判断三角形的全等 【例2】如图,在△ABC中,AB=AC,D是BC边的中点,连接AD.DE⊥AB,DF⊥AC,垂足分别为E、F,则图中共有多少对全等三角形?请直接用符号“≌”把它们分别表示出来.(不要求证明)

第十一章《三角形》教案人教版

11.1.1三角形的边教案 课型:新授课主备人:黄海娟复备人:八年级数学备课组 教学目标:1.三角形的概念,用符号语言表示三角形,并把三角形分类. 2.三角形三边不等的关系. 3.让学生懂得判断三条线段能否构成一个三角形的方法,?能用于解决有关的问题教学重点:三角形三边不等关系.教学难点:判断三条线段能否构成一个三角形的方法. 教学过程: 一、读一读:课本1-3页探究前的内容 二、填一填:(见导学案),然后个别展示答案 三、练一练:(见导学案) (小组合作、交流、展示) 四、探一探,说一说:(课本第3页探究) 小结:三角形的三边关系 五、用一用:(导学案及课本第3页例题,) (小组合作、交流、展示) 六、谈一谈:本节课你学到了那些知识?还有哪些疑惑? 七、测一测:(见导学案)

11.1.2三角形的高,中线与角平分线教案 课型:新授课主备人:黄海娟复备人:八年级数学备课组 教学目标:1.让学生认识并会画出三角形的高线,利用其解决相关问题; 2. 让学生认识并会画出三角形的中线,利用其解决相关问题; 3. 让学生认识并会画出三角形的角平分线,利用其解决相关问题;教学重点:让学生认识三角形的高线、中线与角平分线,并会画出图形 教学难点: 画出三角形的高线、中线与角平分线. 教学过程: 一、想一想: 1、三角形按边分可分为什么?按角分可分为什么? 2、下列长度的三个线段能否组成三角形? (1)3,6,8 (2)1,2,3 (3)6,8,2 二、看一看:课本第4-5页内容 三、探一探:(先独立再合作) (一)高线: 1、高线的定义 2、作出下列三角形三边上的高并归纳结论(见导学案) (二)中线: 1、中线的定义 2、作出下列三角形三边上的中线并归纳结论(见导学案) (三)角平分线: 1、角平分线的定义 2、作出下列三角形三角的角平分线并归纳结论(见导学案) 总结:三角形的高、中线、角平分线都是一条。 巩固练习:课本第5页 四、谈一谈:本节课你学到了那些知识?还有哪些疑惑? 五、测一测:(见导学案)

部编版人教数学八年级上册《第十一章(三角形)全章教学设计及教学反思(表格版)》精品教案

最新精品 部编版人教初中八年级数学上册第十一章三角形 优 秀 教 学 设 计 (全章完整版含教学反思)

前言: 该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。实用性强。高质量的教学设计(教案)是高效课堂的前提和保障。 (最新精品教学设计)

二、师生互动,探究新知 1.观察三角形的构成,探索三角形的概念 问题1:你能画出一个三角形吗? 让学生画出三角形,直观感受三角形的构成. 问题2:结合你画的三角形,说明三角形是由什么组成的? 学生回答:三角形是由三条线段组成的. 问题3:什么叫三角形? 学生回答,教师归纳:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2.自主学习三角形的表示方法及分类 阅读教材第2页到第3页探究前内容,回答下列问题. 问题1:根据右图回答以下问题: (1)在三角形中,什么叫边?什么叫内角?什么叫顶点? (2)如何用符号表示三角形ABC? (3)如何用小写字母表示三角形ABC的三条边? 学生回答:三角形边、内角、顶点的概念.三角形ABC用符号表示为△ABC.△ABC的边AB为∠C所对的边,可以用顶点C的小写字母c表示,同样,边AC可用b 表示,边BC可用a表示. 问题2:如果将三角形分类,按照边的关系可以分成几类?按照角的关系又如何分类呢? 学生回答:三角形按照“有几条边相等”可以分为: 3. 通过观察实践,理解三角形三边关系 问题1:任意画一个△ABC,假设有一只小虫从点B 本环节设计了阶梯式的问题,引导学生经历了动手画图、回顾旧知、归纳总结三个过程.在归纳总结时,要留给学生一定的时间进行思考和归纳,教师也要适时进行引导和强调. 自学三角形的表示方法,并能在具体的图形中不重不漏地识别所有三角形.在表示方法上要注意:在表示△ABC 时,三个顶点字母A,B,C的顺序可以 改变,所以△ABC,△ACB,△BAC,△BCA,△CAB,△CBA表示的是同一个三角形.同时,要让学生明白,并不是所有的图形都可以用符号表示,目前只有角和三角形可以分别用“∠”和“△”表示.对于三角形的分类,教师要加以引导,启发学生进行思考. 通过观察与实践,

第十二章 全等三角形单元教学计划

第十二章全等三角形单元教学计划单元要点分析 教学内容 本章的主要内容是全等三角形.主要学习全等三角形的性质以及探索判定三角形全等的方法,并学会怎样应用全等三角形进行证明,本章划分为三个小节,第一节学习三角形全等的概念、性质;第二节学习三角形全等的判定方法和直角三角形全等的特殊判定方法;第三节利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明.教材分析 教材力求创设现实、有趣的问题情境,使学生经历从现实活动中抽象出几何模型和运用所学内容解决实际问题的过程.在内容呈现上,把研究三角形全等条件的重点放在第一个条件上,通过“边边边”条件探索什么是三角形的判定,如何判定,怎样进行推理论证,怎样正确地表达证明过程.学生开始学习三角形判定定理时的困难在于定理的证明,而这些推理证明并不要求学生掌握.为了突出判定方法这条主渠道,教材都作为基本事实提出来,在画图、实验中让学生知道它们的正确性就可以了.在“角的平分线的性质”一节中的两个互逆定理,只要求学生了解其条件与结论之间的关系,不必介绍互逆命题、互逆定理等内容,这将在“勾股定理”中介绍. 三维目标 1.知识与技能 在探索全等三角形的性质与判定中,提高认知水平,积累数学活动经验. 2.过程与方法 经历探索三角形全等的判定的,发展空间观念和有条理的表达能力,掌握两个三角形全等的判定并应用于实际之中. 3.情感、态度与价值观 培养良好的观察、操作、想象、推理能力,感悟几何学的内涵. 重、难点与关键 1.重点:使学生理解证明的基本过程,掌握用综合法证明的格式. 2.难点:领会证明的分析思路,学会运用综合法证明的格式. 3.关键:突出三角形全等的判定方法这条主线,淡化对定理的证明.教学建议

《手术台就是阵地》优秀教案设计范文.doc

刚才,我们用了——(师指板贴,生说)想前因后果、抓重点词语、看图想象、联系上下文这些方法来学习课文,现在就请大家从中选择自己喜欢的方法来自学课文最后两 段。(生自学) 自学了4、5自然段,你有什么感想呢? 四、课堂练习 学完全篇课文,相信大家一定能读懂这三个句子。 (屏示:我军的伤员陆续从火线上抬下来。 白求恩低下头,继续给伤员做手术。 白求恩大夫在手术台旁,连续工作了69个小时。 (配音)要求:1、先在课文中找出这三句话,用“~~”标出来。 2、小组交流:“陆续、继续、连续”这三个词有什么不同?) (生自学) 老师也找到了区分这三个词的好方法,想和大家交流交流。请看——(师边画线段图边解释)这个方法有趣吗? 学习的方法是多种多样的,我们要善于总结最适合自己的

方法! 五、总结全文 1、那么请大家回忆一下,我们这节课用哪些方法来学习? (师生口头填空)学课文时,要想前因后果、抓重点词语、看图想象、联系上下文,其中最重要的是多读多想。 (屏示:1、多读读、多想想,不理解时前后联系起来想。 2、边读边记、边想边划,把重要的词句背下来。) 请同学们一起读一读。(生齐读) 这是学习语文的基本方法,希望同学们课后能用这种方法学习其它文章! 2、理解了课文内容,我们一起分角色、有感情地把这篇课文读一读!(一生读当时的战斗情况,一生读写卫生部长的句子,其余学生读描写白求恩的句子)(课件) 3、同学们,国际主义战士加拿大共产党员白求恩大夫为中国人民的解放事业作出了卓越贡献,1939年10月,他因抢救伤员感染中毒,11月12日在河北唐县逝世。事情距今已六十多年了,但“手术台就是阵地”这句铿锵有力的话将永远回荡在亿万中国人耳边。直到21世纪的今天,仍有无数像白求恩这样的战士,为了和平、为了正义,奋战在中东地区、阿富汗的难民营、非洲的大沙漠上……同学们,为和平而战斗的精神是永垂不朽的。(屏示:纪念碑)全体起立,让我们怀着深切的敬意再次悼

新人教版第十二章.全等三角形全章教案

C 1 1C A B A 1 第十二章 §12.1 全等三角形 教学目标 (一)知识技能: 1、了解全等形及全等三角形的概念。 2、理解掌握全等三角形的性质。 3、能够准确辩认全等三角形的对应元素。 (二)过程与方法 : 1、在图形变换以用操作的过程中发展空间观念,培养几何直觉。 2、在观察发现生活中的全等形和实际操作中获得全等 三角形的体验。 (三) 情感态度与价值观: 在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。 教学重点: 全等三角形的性质. 教学难点:找全等三角形的对应边、对应角. 预习导航:什么是全等三角形?如何找全等三角形的对应边和对应角? 全等三角形有哪些性质? 教学过程 (一)提出问题,创设情境 出示投影片 :1.问题:你能 发现这两个图形有什么美妙 的关系吗? 这两个图形是完全重合的. 2.那同学们能举出现实生活中能够完全重合的图形的例子吗003F 生:同一张底片洗出的同大小照片是能够完全重合的。 形状与大小都完全相同的两个图形就是全等形. 3.学生自己动手(同桌两名同学配合) 取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样. 4.获取概念 让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、 对应边,以及有关的数学符号. 记作:△ABC ≌ △ A ’B ’C ’ 符号“ ≌ ”读作“全等于” 甲 D C A B F E

(注意强调书写时对应顶点字母写在对应的位置上) (二).新知探究 利用投影片演示 1.活动:将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180 得到△DBC ; 将△ABC 旋转180°得△AED . 2. 议一议:各图中的两个三角形全等吗? 启示:一个图形经过平移、翻折、旋转后,位置变化了,?但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的 一种策略. 3. 观察与思考: 寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? (引导学生从全等三角形可以完全重合出发找等量关系) 得到全等三角形的性质:全等三角形的对应边相等. 全等三角形的对应角相等. (三)例题讲解 [例1]如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,?说出这两个三角形中相等的边和角. 1. 分析:△OCA ≌△OBD ,说明这两个三角形可以重合,?思考通过怎样变换可以使两三角 形重合? 将△OCA 翻折可以使△OCA 与△OBD 重合.因为C 和B 、A 和D 是对应顶点,?所以C 和B 重合,A 和D 重合. ∠C=∠B ;∠A=∠D ;∠AOC=∠DOB .AC=DB ;OA=OD ;OC=OB . 2. 总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法. [例2]如图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,?指出其他的对应边和对应角. 1. 分析:对应边和对应角只能从两个三角形中找,所以需将△ABE 和△ACD 从复杂的图形 中分离出来. 2小结:找对应边和对应角的常用方法有: D C A B O D C A B E 乙 D C A B 丙 D C A B E

相关文档
最新文档