最新人教版中考数学仿真模拟考试题
2024年中考数学模拟考试卷(含参考答案)

2024年中考数学模拟考试卷(含参考答案) 学校:___________班级:___________姓名:___________考号:___________ 一、选择题(各小题的四个选项中,只有一项符合题意)1.2024的倒数是()A.﹣2024B.12024C.2024 D.120242.下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2C.a2•a3=a6D.(a﹣2)2=a2﹣43.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥2C.x≥﹣2D.x≤24.下列运算正确的是()A.B.|3.14﹣π|=π﹣3.14C.a2⋅a3=a6D.(a﹣1)2=a2﹣2a﹣15.如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360°B.300°C.270°D.180°6.若x=2是关于x的一元一次方程ax﹣b=3的解,则4a﹣2b+1的值是()A.7B.8C.﹣7D.﹣87.每周四下午的活动课是学校的特色课程,同学们可以选择自己喜欢的课程.小明和小丽从“二胡课”“轮滑课”“围棋课”三种课程中随机选择一种参加,则两人恰好选择同一种课程的概率是()A.B.C.D.8.已知点A(﹣4,y1),B(2,y2),C(3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y2<y19.如图,边长为2的正方形ABCD的对角线相交于点O,将正方形沿直线AN折叠,点B 落在对角线上的点M处,折痕AN交BD于点E,则BE的长为()A.B.C.D.10.如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④二、填空题(本大题共6小题,共24分)11.分解因式:a3﹣4ab2=.12.如图,在直角坐标系中,△ABC与△ODE是位似图形,其中点A(2,1),则位似中心的坐标是.13.已知关于的x方程有两个实数根,请写出一个符合条件的m 的值.14.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=2,则下列结论中正确的有.①4a+b=0;②9a+3b+c<0;③若点A(﹣3,y1),点,点C(5,y3)在该函数图象上,则y1<y3<y2;④若图象过(﹣1,0),则方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.15.如图,放置在直线l上的扇形OAB,由①图滚动(无滑动)到图②,在由图②滚动到图③,若半径OA=2,∠AOB=45°,则点O的路径长为.16.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是.三.解答题17.(1)计算:;(2)解不等式组:,并写出它的所有整数解.18.为降低校园欺凌事件发生的频率,某课题组针对义务教育阶段学生校园欺凌事件发生状况进行调查并分析.课题组对全国可查的2800例欺凌事件发生原因进行抽样调查并分析,所得数据绘制成统计图如下:根据以上信息,回答下列问题:(1)本次抽样调查的样本容量为.(2)补全条形统计图;(3)在欺凌事件发生原因扇形统计图中,“因琐事”区域所在扇形的圆心角的度数为.(4)估计所有2800例欺凌事件中有多少事件是“因琐事”或因“发泄情绪”而导致事件发生的?19.为响应国家东西部协作战略,烟台对口协作重庆巫山,采购巫山恋橙助力乡村振兴.巫山恋橙主要有纽荷尔和默科特两个品种,已知1箱纽荷尔价格比1箱默科特少20元,300元购买纽荷尔的箱数与400元购买默科特的箱数相同.(1)纽荷尔和默科特每箱分别是多少元?(2)我市动员市民采购两种巫山恋橙,据统计,市民响应积极,预计共购买两种隥子150箱,且购买纽荷尔的数量不少于默科特的2倍,请你求出购买总费用的最大值.20.(10分)如图,一次函数y=﹣x+5的图象与函数的图象交于点A (4,a)和点B.(1)求n的值;(2)若x>0,根据图象直接写出当时x的取值范围;(3)点P在线段AB上,过点P作x轴的垂线,交函数的图象于点Q,若△POQ 的面积为1,求点P的坐标.21.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.22.如图,已知抛物线y=ax2+2x+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,直线l:y=﹣2x+b与x轴、y轴分别交于点E,F,直线与抛物线有唯一交点G.(1)求抛物线和直线的解析式.(2)点H为抛物线对称轴上的动点,且到B,G的距离之和最小时,求点H的坐标,并求△HBG内切圆的半径.(3)在第一象限内的抛物线上是否存在点K,使△KBC的面积最大?如果存在,求出△KBC的最大面积,如果不存在,请说明理由.参考答案与试题解析一、选择题(各小题的四个选项中,只有一项符合题意)11.2024的倒数是()A.﹣2024B.12024C.2024 D.12024【解答】解:2024的倒数是1 2024故选:D.2.下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2 C.a2•a3=a6D.(a﹣2)2=a2﹣4【解答】解:A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.(x+1)(x﹣2)=x2﹣x﹣2,故本选项符合题意;C.a2•a3=a5,故本选项不合题意;D.(a﹣2)2=a2﹣4a+4,故本选项不合题意.故选:B.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥2C.x≥﹣2D.x≤2【解答】解:∵3x﹣6≥0∴x≥2故选:B.4.下列运算正确的是()A.B.|3.14﹣π|=π﹣3.14C.a2⋅a3=a6D.(a﹣1)2=a2﹣2a﹣1【解答】解:A.+无法合并,故此选项不合题意;B.|3.14﹣π|=π﹣3.14,故此选项符合题意;C.a2⋅a3=a5,故此选项不合题意;D.(a﹣1)2=a2﹣2a+1,故此选项不合题意;故选:B.5.如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360°B.300°C.270°D.180°【解答】解:如图,过点P作P A∥a,则a∥b∥P A∴∠3+∠NP A=180°,∠1+∠MP A=180°∴∠1+∠2+∠3=180°+180°=360°.故选:A.6.若x=2是关于x的一元一次方程ax﹣b=3的解,则4a﹣2b+1的值是()A.7B.8C.﹣7D.﹣8【解答】解:∵x=2是方程ax﹣b=3的解∴2a﹣b=3∴4a﹣2b=6∴4a﹣2b+1=7故选:A.7.每周四下午的活动课是学校的特色课程,同学们可以选择自己喜欢的课程.小明和小丽从“二胡课”“轮滑课”“围棋课”三种课程中随机选择一种参加,则两人恰好选择同一种课程的概率是()A.B.C.D.【解答】解:画树状图为:(用A、B、C分别表示“二胡课”“轮滑课”“围棋课”三种课程)∵共有9种等可能的结果数,其中两人恰好选择同一课程的结果数为3∴两人恰好选择同一课程的概率=.故选:A.8.已知点A(﹣4,y1),B(2,y2),C(3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y2<y1【解答】解:∵反比例函数∴函数图象的两个分支分别在第二、四象限内,且在每一个象限内y随x的增大而增大又∵点A(﹣4,y1),B(2,y2),C(3,y3)∴点A在第二象限内,点B、点C在第四象限内∴y1>0,y2<0,y3<0又∵2<4∴y2<y3∴y2<y3<y1故选:C.9.如图,边长为2的正方形ABCD的对角线相交于点O,将正方形沿直线AN折叠,点B落在对角线上的点M处,折痕AN交BD于点E,则BE的长为()A.B.C.D.【解答】解:如图所示,连接MN∵边长为2的正方形ABCD的对角线相交于点O∴AD=AB=BC=2∴∵将正方形沿直线AN折叠,点B落在对角线上的点M处,折痕AN交BD于点E ∴∠AMN=∠ABN=90°,MN=BN,AM=AB=2∴∵∠ACB=45°∴∠MNC=45°∴∴∵AD∥BN∴△ADE∽△NBE∴,即解得.故选:B.10.如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④【解答】解:∵△PBC是等边三角形,四边形ABCD是正方形∴∠PCB=∠CPB=60°,∠PCD=30°,BC=PC=CD∴∠CPD=∠CDP=75°则∠BPD=∠BPC+∠CPD=135°,故①正确;∵∠CBD=∠CDB=45°∴∠DBH=∠DPB=135°又∵∠PDB=∠BDH∴△BDP∽△HDB,故②正确;如图,过点Q作QE⊥CD于E设QE=DE=x,则QD=x,CQ=2QE=2x∴CE=x由CE+DE=CD知x+x=1解得x=∴QD=x=∵BD=∴BQ=BD﹣DQ=﹣=则DQ:BQ=:≠1:2,故③错误;∵∠CDP=75°,∠CDQ=45°∴∠PDQ=30°又∵∠CPD=75°∴∠DPQ=∠DQP=75°∴DP=DQ=∴S△BDP=BD•PD sin∠BDP=×××=,故④正确;故选:D.二、填空题(本大题共6小题,共24分)11.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).12.如图,在直角坐标系中,△ABC与△ODE是位似图形,其中点A(2,1),则位似中心的坐标是(4,2).【解答】解:如图所示:位似中心的坐标是(4,2)故答案为:(4,2).13.已知关于的x方程有两个实数根,请写出一个符合条件的m 的值 1.2.【解答】解:∵关于x方程(m﹣1)x2﹣=0的有两个实数根∴解得:0≤m≤2且m≠1.故答案为:1.2.14.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=2,则下列结论中正确的有①③④.①4a+b=0;②9a+3b+c<0;③若点A(﹣3,y1),点,点C(5,y3)在该函数图象上,则y1<y3<y2;④若图象过(﹣1,0),则方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.【解答】解:∵∴4a+b=0故①正确;∵抛物线与x轴的一个交点为(﹣1,0),对称轴为直线x=2∴另一个交点为(5,0)∵抛物线开口向下∴当x=3时,y>0,即9a+3b+c>0故②错误;∵抛物线的对称轴为x=2,C(5,0)在抛物线上∴点(﹣1,y3)与C(5,y3)关于对称轴x=2对称∵,在对称轴的左侧,抛物线开口向下,y随x的增大而增大∴y1<y3<y2故③正确;若图象过(﹣1,0),即抛物线与x轴的一个交点为(﹣1,0)方程a(x+1)(x﹣5)=0的两根为x=﹣1或x=5过y=﹣3作x轴的平行线,直线y=﹣3与抛物线的交点的横坐标为方程的两根∵x1<x2,抛物线与x轴交点为(﹣1,0),(5,0)∴依据函数图象可知:x1<﹣1<5<x2故④正确故答案为:①③④.15.如图,放置在直线l上的扇形OAB,由①图滚动(无滑动)到图②,在由图②滚动到图③,若半径OA=2,∠AOB=45°,则点O的路径长为.【解答】解:如图点O的运动路径的长=的长+O1O2+的长==故答案为:.16.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是()n﹣1.【解答】解:∵直线l为正比例函数y=x的图象∴∠D1OA1=45°∴D1A1=OA1=1∴正方形A1B1C1D1的面积=1=()1﹣1由勾股定理得,OD1=,D1A2=∴A2B2=A2O=∴正方形A2B2C2D2的面积==()2﹣1同理,A3D3=OA3=∴正方形A3B3C3D3的面积==()3﹣1…由规律可知,正方形A n B n∁n D n的面积=()n﹣1故答案为:()n﹣1.三.解答题17.(1)计算:;(2)解不等式组:,并写出它的所有整数解.【解答】解:(1)原式=1﹣2×+2+2=4;(2)由①得:x≤1由②得:x>﹣1∴不等式组的解集为﹣1<x≤1则不等式组的整数解为0,1.18.为降低校园欺凌事件发生的频率,某课题组针对义务教育阶段学生校园欺凌事件发生状况进行调查并分析.课题组对全国可查的2800例欺凌事件发生原因进行抽样调查并分析,所得数据绘制成统计图如下:根据以上信息,回答下列问题:(1)本次抽样调查的样本容量为50.(2)补全条形统计图;(3)在欺凌事件发生原因扇形统计图中,“因琐事”区域所在扇形的圆心角的度数为213°.(4)估计所有2800例欺凌事件中有多少事件是“因琐事”或因“发泄情绪”而导致事件发生的?【解答】解:(1)本次抽样调查的样本容量为:30÷60%=50;故答案为:50;(2)满足欲望的人数有:50×12%=6(人)其他的人数有:50×8%=4(人)补全统计图如下:(3)“因琐事”区域所在扇形的圆心角的度数为:360°×60%=216°;故答案为:216°;(4)2800×(60%+20%)=2240(例)答:估计所有3000例欺凌事件中有2240例事件是“因琐事”或因“发泄情绪”而导致事件发生的.19.为响应国家东西部协作战略,烟台对口协作重庆巫山,采购巫山恋橙助力乡村振兴.巫山恋橙主要有纽荷尔和默科特两个品种,已知1箱纽荷尔价格比1箱默科特少20元,300元购买纽荷尔的箱数与400元购买默科特的箱数相同.(1)纽荷尔和默科特每箱分别是多少元?(2)我市动员市民采购两种巫山恋橙,据统计,市民响应积极,预计共购买两种隥子150箱,且购买纽荷尔的数量不少于默科特的2倍,请你求出购买总费用的最大值.【解答】解:(1)设纽荷尔每箱a元,则默科特每箱(a+20)元由题意得:=解得:a=60经检验,a=60是原分式方程的解∴a+20=80答:纽荷尔每箱60元,默科特每箱80元;(2)设购买纽荷尔x箱,则购买默科特(150﹣x)箱,所需费用为w元由题意得:w=60x+10(150﹣x)=﹣20x+12000∵x≥2(150﹣x)∴x≥100∵﹣20<0∴w随x的增大而减小∴当x=100时,w取得最大值,此时w=﹣20×100+12000=10000答:购买总费用的最大值为10000元.20.(10分)如图,一次函数y=﹣x+5的图象与函数的图象交于点A (4,a)和点B.(1)求n的值;(2)若x>0,根据图象直接写出当时x的取值范围;(3)点P在线段AB上,过点P作x轴的垂线,交函数的图象于点Q,若△POQ 的面积为1,求点P的坐标.【解答】解:(1)∵一次函数y=﹣x+5的图象与过点A(4,a)∴a=﹣4+5=1∴点A(4,1)∵点A在反比例函数的图象上∴n=4×1=4;(2)由,解得或∴B(1,4)∴若x>0,当时x的取值范围是1<x<4;(3)设P(x,﹣x+5),则Q(x,)∴PQ=﹣x+5﹣∵△POQ的面积为1∴=1,即整理得x2﹣5x+6=0解得x=2或3∴P点的坐标为(2,3)或(3,2).21.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.【解答】解:(1)∵⊙O与边AB相切于点E,且CE为⊙O的直径∴CE⊥AB∵AB=AC,AD⊥BC∴BD=DC又∵OE=OC∴OD∥EB∴OD⊥CE;(2)连接EF∵CE为⊙O的直径,且点F在⊙O上,∴∠EFC=90°∵CE⊥AB∴∠BEC=90°.∴∠BEF+∠FEC=∠FEC+∠ECF=90°∴∠BEF=∠ECF∴tan∠BEF=tan∠ECF∴又∵DF=1,BD=DC=3∴BF=2,FC=4∴EF=2∵∠EFC=90°∴∠BFE=90°由勾股定理,得∵EF∥AD∴∴.22.如图,已知抛物线y=ax2+2x+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,直线l:y=﹣2x+b与x轴、y轴分别交于点E,F,直线与抛物线有唯一交点G.(1)求抛物线和直线的解析式.(2)点H为抛物线对称轴上的动点,且到B,G的距离之和最小时,求点H的坐标,并求△HBG内切圆的半径.(3)在第一象限内的抛物线上是否存在点K,使△KBC的面积最大?如果存在,求出△KBC的最大面积,如果不存在,请说明理由.【解答】解:(1)把A(﹣1,0)代入y=ax2+2x+3得:0=a﹣2+3解得a=﹣1∴抛物线的解析式为y=﹣x2+2x+3;∵直线y=﹣2x+b与抛物线有唯一交点G∴﹣x2+2x+3=﹣2x+b有两个相等的实数解即x2﹣4x+b﹣3=0有两个相等的实数解∴Δ=0,即16﹣4(b﹣3)=0解得b=7∴直线的解析式为y=﹣2x+7;(2)在y=﹣x2+2x+3中,令y=0得x=﹣1或x=3∴B(3,0)∴抛物线y=﹣x2+2x+3的对称轴为直线x==1由得:∴G(2,3)∵点H为抛物线对称轴上的点∴HB=HA∴HB+HG=HA+HG∴当G,H,A共线时,HB+HG最小,最小值即为AG的长度;如图:由A(﹣1,0),G(2,3)可得直线AG解析式为y=x+1在y=x+1中,令x=1得y=2∴H(1,2);∴OH=OA=2∴△AOH是等腰直角三角形∴∠AHO=45°由对称性可得∠BHO=45°∴∠GHB=90°,即△GHB是直角三角形∵G(2,3),H(1,2),B(3,0)∴HG=,BG=,BH=2设△HBG内切圆的半径为r∴2S△BHG=BH•HG=(HG+BG+BH)•r∴r==∴△HBG内切圆的半径为;(3)存在点K,使△KBC的面积最大,理由如下:过K作KQ∥y轴交BC于Q,如图:设K(m,﹣m2+2m+3)在y=﹣x2+2x+3中,令x=0得y=3∴C(0,3)由B(3,0),C(0,3)可得y=﹣x+3∴Q(m,﹣m+3)∴KQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m∴S△KBC=×(﹣m2+3m)×3=﹣(m﹣)2+∴当m=时,S△KBC取最大值∴△KBC的最大面积是.。
(最新)部编人教版数学《中考仿真模拟检测试题》 (含答案解析)

中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.下列四个等式中,正确的是()A.()2=﹣2 B.(﹣)2=﹣2 C.=﹣2 D.[]2=42.下列运算正确的是()A.a2•a5=a10B.(3a3)2=6a6C.(a+b)2=a2+b2D.(a+2)(a﹣3)=a2﹣a﹣6 3.下列各式从左到右的变形中,是分解因式的是()A.m(a+b+c)=ma+mb+mc B.x2+5x=x(x+5)C.x2+5x+5=x(x+5)+5 D.a2+1=a(a+)4.以2和4为根的一元二次方程是()A.x2+6x+8=0 B.x2﹣6x+8=0 C.x2+6x﹣8=0 D.x2﹣6x﹣8=05.下列函数y=﹣8x,y=5x﹣1,y=,y =﹣中,y随x的增大而减小的为()A.y=﹣8x B.y=5x﹣1 C.D.6.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB 的中点,则tan∠ODA=()A.B.C.D.27.一列数a1,a2,a3…,其中a1=,a2=,a3=,……,a n=(n为不小于2的整数),则a2018=()A.B.2 C.2018 D.﹣18.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④9.如图,在▱ABCD中,E为CD边上的中点,AE交BD于点O,若S△DOE=2,则▱ABCD的面积为()A.8 B.12 C.16 D.2410.如图,已知⊙O的半径为5,弦AB=8,CD=6,则图中阴影部分面积为()A.π﹣24 B.9πC.π﹣12 D.9π﹣6二.填空题(共5小题,满分15分,每小题3分)11.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.12.若多项式2x2+3x﹣7的值为﹣10,则多项式6x2+9x+7的值为.13.双曲线y1=、y2=在第一象限的图象如图,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=3,则k的值为.14.如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以12海里/时的速度向西北方向航行,我渔政船立即沿北偏东60°方向航行,1.5小时后,在我航海区域的C处截获可疑渔船,问我渔政船的航行路程是海里(结果保留根号).15.如图,图形B是由图形A旋转得到的,则旋转中心的坐标为.三.详解题(共7小题,满分55分)16.(6分)先化简:÷﹣;再在不等式组的整数解中选取一个合适的解作为a的取值,代入求值.17.(6分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B (4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2.(2)求点C1在旋转过程中所经过的路径长.18.(7分)自实施新教育改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分同学进行了为期半个月的跟踪调查,并将调查结果分为四类:A.特别好;B.好;C.一般;D.较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图详解下列问题:(1)本次调查中,张老师一共调查了多少名同学?(2)求出调查中C类女生及D类男生的人数,将条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.19.(8分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?20.(8分)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)直接写出k的值及点E的坐标;(2)若点F是OC边上一点,且FB⊥DE,求直线FB的解析式.21.(9分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求BE的长.22.(11分)在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.答案解析一.选择题(共10小题,满分30分,每小题3分)1.【解析】A、根据平方根性质即可判定;B、根据平方根定义即可判定;C、根据平方根性质可判定;D、根据平方根性质和乘方运算法则可判定.【详解】解:A、没有意义,故本选项错误;B、(﹣)2=2,故本选项错误;C、,故本选项错误;D、=22=4,故本选项正确;故选:D.【点评】本题主要考查二次根式的意义及实数的运算,准确运用平方根的意义和性质是关键.2.【解析】各式计算得到结果,即可作出判断.【详解】解:A、原式=a7,不符合题意;B、原式=9a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=a2﹣a﹣6,符合题意,故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.【解析】利用因式分解的定义判断即可.【详解】解:A、m(a+b+c)=ma+mb+mc,不符合题意;B、x2+5x=x(x+5),符合题意;C、x2+5x+5=x(x+5)+5,不符合题意;D、a2+1=a(a+),不符合题意,故选:B.【点评】此题考查了因式分解的意义,熟练掌握因式分解的定义是解本题的关键.4.【解析】根据已知两根确定出所求方程即可.【详解】解:以2和4为根的一元二次方程是x2﹣6x+8=0,故选:B.【点评】此题考查了根与系数的关系,弄清根与系数的关系是解本题的关键.5.【解析】根据函数的图象,研究函数的性质,解决问题.【详解】解:∵y=﹣8x中,k=﹣8<0,∴y随x增大而减小,故A符合题意;∵y=5x﹣1中,k=5>0,∴y随x增大而增大,故B不合题意;∵y=中,k=6>0,∴在每一个分支,y随x增大而减小,故C不合题意.∵y=﹣中,k=﹣1<0,∴在每一个分支,y随x增大而增大,故D不合题意;故选:A.【点评】本题综合考查一次函数、反比例函数、正比例函数的增减性(单调性),是一道难度中等的题目.6.【解析】设⊙O与AB,AC,BC分别相切于点E,F,G,连接OE,OF,OG,则OE⊥AB.根据勾股定理得AB=10,再根据切线长定理得到AF=AE,CF=CG,从而得到四边形OFCG是正方形,根据正方形的性质得到设OF=x,则CF=CG=OF=x,AF=AE=6﹣x,BE=BG=8﹣x,建立方程求出x值,进而求出AE与DE的值,最后根据三角形函数的定义即可求出最后结果.【详解】解:过O点作OE⊥ABOF⊥ACOG⊥BC,∴∠OGC=∠OFC=∠OED=90°,∵∠C=90°,AC=6 BC=8,∴AB=10∵⊙O为△ABC的内切圆,∴AF=AE,CF=CG(切线长相等)∵∠C=90°,∴四边形OFCG是矩形,∵OG=OF,∴四边形OFCG是正方形,设OF=x,则CF=CG=OF=x,AF=AE=6﹣x,BE=BG=8﹣x,∴6﹣x+8﹣x=10,∴OF=2,∴AE=4,∵点D是斜边AB的中点,∴AD=5,∴DE=AD﹣AE=1,∴tan∠ODA==2.故选:D.【点评】此题要能够根据切线长定理证明:作三角形的内切圆,其中的切线长等于切线长所在的两边和与对边差的一半;直角三角形内切圆的半径等于两条直角边的和与斜边的差的一半.7.【解析】把a1,a2,a3代入代数式计算,找出规律,根据规律计算.【详解】解:a1=,a2===2,a3===﹣1,a4===……,2018÷3=672……2,∴a2018=2,故选:B.【点评】本题考查的是规律型:数字的变化类问题,正确找出数字的变化规律是解题的关键.8.【解析】根据抛物线与x轴的交点坐标为(1,0)对①进行判断;根据对称轴方程为x=﹣=﹣1对②进行判断;根据抛物线的对称性得到抛物线与x轴的交点坐标为(﹣3,0)和(1,0),由此对③进行判断;根据抛物线与y轴的交点在x轴下方,得到c<0,而a+b+c=0,则a﹣2b+c=﹣3b,由b>0,于是可对④进行判断.【详解】解:∵x=1时,y=0,∴a+b+c=0,所以①正确;∵x=﹣=﹣1,∴b=2a,所以②错误;∵点(1,0)关于直线x=﹣1对称的点的坐标为(﹣3,0),∴抛物线与x轴的交点坐标为(﹣3,0)和(1,0),∴ax2+bx+c=0的两根分别为﹣3和1,所以③正确;∵抛物线与y轴的交点在x轴下方,∴c<0,而a+b+c=0,b=2a,∴c=﹣3a,∴a﹣2b+c=﹣3b,∵b>0,∴﹣3b<0,所以④错误.故选:C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).9.【解析】根据平行四边形的性质得到AB∥BC,证明△DOE∽△BOA,根据相似三角形的性质、平行四边形的性质计算即可.【详解】解:∵四边形ABCD是平行四边形,E为CD边上的中点,∴AB∥BC,DE=DC=AB,∴△DOE∽△BOA,∴===,=()2,即=,∴S△BOA=8,S△AOD=4,∴S△BAD=12,∴▱ABCD的面积=24,故选:D.【点评】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.10.【解析】过点O作OE⊥AB于E,作OF⊥CD于F,根据垂径定理求出AE、CF,再利用勾股定理列式求出OE=OF,从而得到AE=OF,OE=CF,然后利用“边角边”证明△AOE和△OCF 全等,根据全等三角形对应角相等可得∠AOE=∠OCF,再求出∠AOE+∠COF=90°,然后求出∠AOB+∠COD=180°,把弧CD旋转到点D与点B重合,构建直角三角形ABC;然后根据圆的面积公式和直角三角形的面积公式来求阴影部分的面积:阴影面积=半圆面积﹣直角三角形ABC的面积.【详解】解:如图,过点O作OE⊥AB于E,作OF⊥CD于F,由垂径定理得,AE=AB=×8=4,CF=CD=×6=3,由勾股定理得,OE===3,OF===4,∴AE=OF,OE=CF,在△AOE和△OCF中,,∴△AOE≌△OCF(SAS),∴∠AOE=∠OCF,∵∠OCF+∠COF=90°,∴∠AOE+∠COF=90°,∴∠AOB+∠COD=2(∠AOE+∠COF)=2×90°=180°,把弧CD旋转到点D与点B重合.∴△ABC为直角三角形,且AC为圆的直径;∵AB=8,CD=6,∴AC=10(勾股定理),∴阴影部分的面积=S半圆﹣S△ABC=π×52﹣×6×8=π﹣24;故选:A.【点评】本题考查了全等三角形的判定与性质,垂径定理和扇形的面积公式,作辅助线构造成全等三角形并求出两个阴影部分的圆心角的和等于180°,推知三角形ABC是直角三角形是解题的关键.二.填空题(共5小题,满分15分,每小题3分)11.【解析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n 为比整数位数少1的数.【详解】解:5 400 000=5.4×106万元.故答案为5.4×106.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).12.【解析】由已知多项式的值求出2x2+3x的值,原式变形后代入计算即可求出值.【详解】解:∵2x2+3x﹣7=﹣10,∴2x2+3x=﹣3,则原式=3(2x2+3x)+7=﹣9+7=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.13.【解析】根据S△BOC﹣S△AOC=S△AOB,列出方程,求出k的值.【详解】解:由题意得:S△BOC﹣S△AOC=S△AOB,,解得,k=10,故答案为:10.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.根据面积关系得出方程是解决问题的关键.14.【解析】作CD⊥AB于点D,垂足为D,首先在Rt△BCD中求得CD的长,然后在Rt△ACD 中求得AC的长即可.【详解】解:作CD⊥AB于点D,垂足为D,在Rt△BCD中,∵BC=12×1.5=18(海里),∠CBD=45°,∴CD=BC•sin45°=18×=9(海里),则在Rt△ACD中,AC==9×2=18(海里).故我渔政船航行了18海里.故答案为:18.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中构造出直角三角形并利用三角函数的知识求解.15.【解析】利用旋转的性质,作两组对应点的连线段的垂直平分线,它们相交于点P,则P 点为旋转中心,然后写出P点坐标即可.【详解】解:如图,旋转中心P点坐标为(0,1).故答案为(0,1).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.三.详解题(共7小题,满分55分)16.【解析】先根据分式混合运算的法则把原式进行化简,再求出不等式的解集,在其解集范围内选取合适的a的值代入分式进行计算即可.【详解】解:原式=•﹣=1﹣=﹣=﹣,解不等式3﹣(a+1)>0,得:a<2,解不等式2a+2≥0,得:a≥﹣1,则不等式组的解集为﹣1≤a<2,其整数解有﹣1、0、1,∵a≠±1,∴a=0,则原式=1.【点评】本题考查的是分式的化简求值及一元一次不等式组的整数解,详解此类问题时要注意a的取值要保证分式有意义.17.【解析】(1)①利用点平移的坐标规律,分别写出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A2、B2、C2即可;(2)根据弧长公式计算.【详解】解:(1)①如图,△A1B1C1为所作;②如图,△A2B2C2为所作;(2)点C1在旋转过程中所经过的路径长==2π.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.18.【解析】(1)根据A类的人数是3,所占的百分比是15%,据此即可求得总人数;(2)根据百分比的意义求得C、D两类的人数,进而求得C类女生及D类男生的人数;(3)利用列举法表示出所有可能的结果,然后利用概率公式即可求解.【详解】解:(1)调查的总人数是:(1+2)÷15%=20(人);(2)C类学生的人数是:20×25%=5(人),则C类女生人数是:5﹣3=2(人);D类的人数是:20×(1﹣50%﹣25%﹣15%)=2(人),则D类男生的人数是:2﹣1=1(人);如图所示:;(3)如图所示:则恰好是一位男同学和一位女同学的概率是:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.【解析】(1)根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;(2)根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE的函数关系式;(3)根据点(17,340)的坐标利用待定系数法即可求出线段OD的函数关系式,联立两函数关系式求出交点D的坐标,此题得解.【详解】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450;(3)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∵点D的坐标为(18,360),∴试销售期间第18天的日销售量最大,最大日销售量是360件.【点评】本题考查了一次函数的应用、待定系数法一次函数解析式,解题的关键是利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式.20.【解析】(1)首先根据点B的坐标和点D为BC的中点表示出点D的坐标,代入反比例函数的解析式求得k值,然后将点E的横坐标代入求得E点的纵坐标即可;(2)根据条件判定△FBC∽△DEB,利用相似三角形对应边的比相等确定点F的坐标,即可求得直线FB的解析式.【详解】解:(1)∵BC∥x轴,点B的坐标为(2,3),∴BC=2,∵点D为BC的中点,∴CD=1,∴点D的坐标为(1,3),代入双曲线y=(x>0)得,k=1×3=3;∵BA∥y轴,∴点E的横坐标与点B的横坐标相等,为2,∵点E在双曲线上,∴y=,∴点E的坐标为(2,);(2)∵FB⊥DE,∴∠CBF+∠EDB=90°=∠BED+∠EDB,∴∠CBF=∠BDE,又∵∠C=∠DBE=90°,∴△FBC∽△DEB,∵点E的坐标为(2,),B的坐标为(2,3),点D的坐标为(1,3),∴BD=1,BE=,BC=2,∵△FBC∽△DEB,∴=,即:,∴FC=,∴点F的坐标为(0,),设直线FB的解析式y=kx+b(k≠0),则,解得:k=,b=,∴直线FB的解析式y=x+.【点评】本题主要考查了待定系数法求函数解析式,相似三角形的判定与性质以及矩形的性质,解题时注意点的坐标与线段长的相互转化.21.【解析】(1)连OD,OE,根据圆周角定理得到∠ADO+∠1=90°,而∠CDA=∠CBD,∠CBD=∠1,于是∠CDA+∠ADO=90°;(2)根据切线的性质得到ED=EB,OE⊥BD,则∠ABD=∠OEB,得到tan∠CDA=tan∠OEB==,易证Rt△CDO∽Rt△CBE,得到===,求得CD,然后在Rt△CBE中,运用勾股定理可计算出BE的长.【详解】(1)证明:连OD,OE,如图,∵AB为直径,∴∠ADB=90°,即∠ADO+∠1=90°,又∵∠CDA=∠CBD,而∠CBD=∠1,∴∠1=∠CDA,∴∠CDA+∠ADO=90°,即∠CDO=90°,∴CD是⊙O的切线;(2)解:∵EB为⊙O的切线,∴ED=EB,OE⊥DB,∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°,∴∠ABD=∠OEB,∴∠CDA=∠OEB.而tan∠CDA=,∴tan∠OEB==,∵Rt△CDO∽Rt△CBE,∴===,∴CD=×6=4,在Rt△CBE中,设BE=x,∴(x+4)2=x2+62,解得x=.即BE的长为.【点评】本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线是圆的切线;也考查了圆周角定理的推论以及三角形相似的判定与性质.22.【解析】(1)由y=﹣x2+bx+c经过点A、B、C,A(﹣1,0),C(0,3),利用待定系数法即可求得此抛物线的解析式;(2)首先令﹣x2+2x+3=0,求得点B的坐标,然后设直线BC的解析式为y=kx+b′,由待定系数法即可求得直线BC的解析式,再设P(a,3﹣a),即可得D(a,﹣a2+2a+3),即可求得PD的长,由S△BDC=S△PDC+S△PDB,即可得S△BDC =﹣(a﹣)2+,利用二次函数的性质,即可求得当△BDC的面积最大时,求点P的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m=(n﹣)2﹣,然后根据n的取值得到最小值.【详解】解:(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)令﹣x2+2x+3=0,∴x1=﹣1,x2=3,即B(3,0),设直线BC的解析式为y=kx+b′,∴,解得:,∴直线BC的解析式为y=﹣x+3,设P(a,3﹣a),则D(a,﹣a2+2a+3),∴PD=(﹣a2+2a+3)﹣(3﹣a)=﹣a2+3a,∴S△BDC=S△PDC+S△PDB=PD•a+PD•(3﹣a)=PD•3=(﹣a2+3a)=﹣(a﹣)2+,∴当a=时,△BDC的面积最大,此时P(,);(3)由(1),y=﹣x2+2x+3=﹣(x﹣1)2+4,∴E(1,4),设N(1,n),则0≤n≤4,取CM的中点Q(,),∵∠MNC=90°,∴NQ=CM,∴4NQ2=CM2,∵NQ2=(1﹣)2+(n﹣)2,∴4[=(1﹣)2+(n﹣)2]=m2+9,整理得,m=n2﹣3n+1,即m=(n﹣)2﹣,∵0≤n≤4,当n=上,M最小值=﹣,n=4时,M最小值=5,综上,m的取值范围为:﹣≤m≤5.【点评】此题考查了待定系数法求函数的解析式、相似三角形的判定与性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.。
2023-2024学年全国初三下数学人教版模拟考卷(含答案解析)

20232024学年全国初三下数学人教版模拟考卷一、选择题(每题10分,共100分)1. 若一个三角形的两边分别为8cm和15cm,且这两边的夹角为90°,则这个三角形的周长是:A. 31cmB. 41cmC. 53cmD. 61cm2. 下列函数中,哪一个函数在其定义域内是增函数?A. y = 2x + 3B. y = x² 4x + 4C. y = 3/xD. y = √(x 2)3. 若一个正方形的对角线长为10cm,则其边长是:A. 5√2 cmB. 10√2 cmC. 5 cmD. 10 cm4. 下列哪一个数是无理数?A. √9B. √16C. √3D. √15. 若一组数据的平均数为10,且其中80%的数据小于或等于12,则这组数据的众数可能是:A. 8B. 10C. 12D. 146. 在直角坐标系中,点P(2, 3)关于y轴的对称点是:A. (2, 3)B. (2, 3)C. (2, 3)D. (3, 2)7. 若一元二次方程x² 5x + 6 = 0的解为x₁和x₂,则x₁ + x₂的值是:A. 5B. 5C. 6D. 68. 下列哪一个图形不是轴对称图形?A. 正方形B. 等边三角形C. 长方形D. 圆形9. 若一个圆锥的底面半径为4cm,高为3cm,则其体积是:A. 16π cm³B. 48π cm³C. 64π cm³D. 12π cm³10. 若sinθ = 1/2,且θ是锐角,则cosθ的值是:A. √3/2B. 1/2C. 1/√2D. √2/2二、判断题(每题10分,共50分)11. 若两个角互为补角,则这两个角的和为180°。
()12. 任何两个奇数之和都是偶数。
()13. 在同一平面内,不相交的两条直线叫做平行线。
()14. 若一组数据的方差为0,则这组数据中的所有数据都相等。
()15. 任何一个正整数都可以表示为2的n次幂的形式。
2022-2023学年全国初中中考专题数学新人教版中考模拟(含解析)

2022-2023学年全国中考专题数学中考模拟考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列图形中,是中心对称图形的有( )A.个B.个C.个D.个2. 下列计算正确的是 A.=B.=C. D.3. 据统计自开展精准扶贫工作五年以来,湖南省减贫人,贫困发生率由下降到,个贫困村出列,个贫困县摘帽.将用科学记数法表示为( )A.B.C.D.1234()−5−2−3−8−80551000013.43%3.86%26951455100000.551×1075.51×1065.51×107551×1044. 下列几何体中,从正面看和从上面看到的图形都为长方形的是( ) A. B. C. D.5. 如图,正六边形内接于,的半径为,则的长为( )A.B.C.D.6. 把不等式组的解集表示在数轴上,下列选项正确的是( )A.B.C.ABCDEF ⊙O ⊙O 1AB ^π6π3π2π{−x ≤1x +1>0D.7. 如图,直线,若,,则的度数为( )A.B.C.D.8. 如图,在中, , , 是的外接圆,是直径,交于点,连接,若,则的长为( )A.B.C.D.9. 已知:.求作:一点,使点到三个顶点的距离相等.小明的作法是:作的平分线;作边的垂直平分线;直线与射线交于.点即为所求的点(作图痕迹如图).小丽的作法是:作的平分线;作的平分线;射线与射线交于点.点即为所求的点(作图痕迹如图).对于两人的作法,下列说法正确的是( )AD //BC ∠1=42∘∠BAC =78∘∠250∘60∘68∘84∘△ABC AB =BC tan C =12⊙O △ABC AD ⊙O BD AC E CD CE =3AD 853–√45–√10△ABC O O △ABC (1)∠ABC BF (2)BC GH (3)GH BF O O 1(1)∠ABC BF (2)∠ACB CM (3)CM BF O O 2A.小明对,小丽不对B.小丽对,小明不对C.两人都对D.两人都不对10. 已知函数(其中)的图象如图所示,则一次函数与反比例函数的图象可能是( )A.B.C.D.卷II (非选择题)y =−(x −m)(x −n)m <ny =mx +n y =m +n x二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 若某个一元二次方程的两个实数根分别为、,则这个方程可以是________.12. 若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是 ,则另一个交点的坐标是________.13. 数据,,,,的方差是________.14. 某校组织开展了“吸烟有害健康”的知识竞赛,共有道题,答对一题得分,答错(或不答)一题扣分;小军参加本次竞赛得分要超过分,他至少要答对的题数为________道.15. 边长为的正方形,在边上取一动点,连接,作,交边于点,若的长为,则的长为________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 ) 16.计算: ;先化简,再求值: ,其中.17. 如图,在四边形中,、分别平分和 ,与交于点,探究与之间的数量关系.−21(2,3)1−21,−1−12201051004ABCD BC E AE EF ⊥AE CD F CF 34CE (1)−+2cos (−1)2–√0()12−160∘(2)÷(−x −2)2x −6x −25x −2x =−1ABCD AM CM ∠DAB ∠DCB AM CM M ∠AMC ∠B,∠D18. 开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了元和元分别采购了香蕉和橘子,采购的香蕉比橘子多千克,香蕉每千克的价格比橘子每千克的价格低,求橘子每千克的价格.19. 如图,一次函数与反比例函数的图象交于点和,与轴交于点.求一次函数和反比例函数的解析式;在轴上取一点,当的面积为时,求点的坐标;将直线向下平移个单位后得到直线,当函数值时,求的取值范围. 20. 如图,为了测量某校教学楼的高度,先在地面上用测角仪自处测得教学楼顶部的仰角是,然后在水平地面上向教学楼前进了,此时自处测得教学楼顶部的仰角是.已知测角仪的高度是,请你计算出该教学楼的高度.(结果精确到)(参考数据:)21. 随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选择一种),在全校随机调查了部分学生,将统计结果绘制成了如下两幅不完整的统计图,其中扇形统计图中,表示“钉钉”和“”的扇形圆心角相等,请结合图中所给信息解答下列问题:(1)这次统计共抽查了________名学生;在扇形统计图中,表示“钉钉”的扇形圆心角的度数为2800250015030%=kx +b (k ≠0)y 1=(m ≠0)y 2m x A (1,2)B (−2,a)y M (1)(2)y N △AMN 3N (3)y 12y 3>>y 1y 2y 3a CD A 30∘40m B 45∘1.2m 1m ≈1.732,≈1.4143–√2–√QQ________;(2)将条形统计图补充完整;(3)该校共有名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“钉钉”、“”、“电话”四种沟通方式中选择一种方式与对方联系,请用列表或树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.22. 如图,将平行四边形的边延长到点,使,连接,交于点,,连接,.求证:四边形是矩形.23. 如图,抛物线的图象过点.求抛物线的解析式:根据轴对称的性质知道在抛物线的对称轴上存在一点,使得的周长最小,此时,在直线上方的抛物线上是否存在点(不与点重合),使得?若存在,请直接写出点的坐标;若不存在,请说明理由.2000QQ ABCD DC E CE =DC AE BC F ∠AFC =2∠D AC BE ABEC y =a −bx +3x 2A(−1,0),B(3,0)(1)(2)P △PAC PA M C =S △PAM S △PAC M参考答案与试题解析2022-2023学年全国中考专题数学中考模拟一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】C【考点】中心对称图形【解析】此题暂无解析【解答】此题暂无解答2.【答案】C【考点】合并同类项同底数幂的乘法幂的乘方与积的乘方【解析】根据有理数的运算法则逐项计算即可求解.【解答】解:.,故不正确;.,故不正确;.,故正确;.,故不正确;故选.3.【答案】A −5−2=−7B −8−8=−16C −=−1642D =823CB【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是非负数;当原数的绝对值时,是负数.【解答】解:.故选.4.【答案】B【考点】简单几何体的三视图【解析】分别找出从物体正面看所得到的图形即可.【解答】解:、主视图是三角形,故此选项不合题意;、主视图是长方形,俯视图是长方形,故此选项符合题意;、主视图是长方形,俯视图是圆,故此选项不合题意;、主视图是梯形,俯视图是长方形,故此选项不合题意;故选.5.【答案】B【考点】正多边形和圆弧长的计算【解析】连接,,求出圆心角的度数,再利用弧长公式解答即可.a ×10n 1≤|a |<10n n a n ≥1n <1n 5510000=5.51×106B A B C D B OA OB ∠AOB【解答】连接,,∵多边形为正六边形,∴=,∴的长,6.【答案】A【考点】在数轴上表示不等式的解集解一元一次不等式组【解析】先求出各个不等式的解集,再把解集表示在数轴上即可.【解答】解:解得:则在数轴上表示为:故选.7.【答案】B【考点】平行线的性质【解析】根据平行线的性质,可以得到=,再根据题目中=,=,即可得到的度数.【解答】解:∵直线,∴,OA OB ABCDEF ∠AOB ×=360∘1660∘AB ^==60π×1180π3{−x ≤−1,x +1>0,{x ≥1,x >−1,A ∠1+∠2+∠BAC 180∘∠140∘∠BAC 80∘∠2AD //BC ∠DAC =∠1∠1+∠2+∠BAC =180∘∴,∵,,∴.故选.8.【答案】D【考点】勾股定理锐角三角函数的定义圆周角定理【解析】1【解答】解:∵ ,∴,∴,∴,∵,∴,在中,,,∴,设,,∴,在中,,故选.9.【答案】D【考点】作角的平分线作图—尺规作图的定义∠1+∠2+∠BAC =180∘∠1=42∘∠BAC =78∘∠2=60∘B AB =BC ∠BAC =∠BCA ∠BDC =∠ACB tan ∠BDC ==CE CD 12CE =3CD =6Rt △ECD DE =35–√tan ∠CAB ==BE AB 12AB =2BE BE =x tan ∠ADB ===AB BD 122xx +35–√x =5–√Rt △ABD AD =10D线段垂直平分线的性质角平分线的性质【解析】分别判断小明和小丽作法表示的几何意义,即可判断.【解答】解:点到三个顶点的距离相等,即是的外心,即为各边垂直平分线的交点.小明:的平分线,上的点到两边距离相等;边的垂直平分线,上的点到点距离相等,故与的交点,无法确定与点距离的关系,故小明作法错误;小丽:角平分线的交点为的内心,即到各边距离相等,也无法确定到各顶点距离的关系,故小丽作法也错误.故选.10.【答案】C【考点】二次函数的图象一次函数的图象反比例函数的图象【解析】根据二次函数图象判断出,,然后求出,再根据一次函数与反比例函数图象的性质判断即可.【解答】解:由图可知,,,∴,∴一次函数经过第一、二、四象限,且与轴相交于点,反比例函数的图象位于第二、四象限;故选:.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】=(答案不唯一)【考点】O △ABC O △ABC O ∠ABC BF BF BC GH GH B,C BF GH O A △ABC D m <−1n =1m +n <0m <−1n =1m +n <0y =mx +n y (0,1)y =m +n xC +x −2x 20根与系数的关系【解析】此题是一道开放型的题目,答案不唯一,只要写出一个符合的方程即可.【解答】=,=,所以这个一元二次方程可以是=,12.【答案】【考点】反比例函数的应用【解析】此题暂无解析【解答】此题暂无解答13.【答案】【考点】方差【解析】此题暂无解析【解答】解:这组数据的平均数为:,∴方差.故答案为:.14.【答案】−2+1−1−2×1−2+x −2x 202×(1−2+1−1−1+2)=016=×[(1−0+(−2−0+(1−0+(−1−0+(−1−0+(2−0]=2s 216)2)2)2)2)2)2214【考点】一元一次不等式的实际应用【解析】先设小军答对了道题,根据二等奖在分或分以上,列出不等式,求出的取值范围,再根据只能取正整数,即可得出答案.【解答】解:设小军答对了道题,依题意得:解得:,∵是正整数,∴最小为.故答案为:.15.【答案】或【考点】正方形的性质相似三角形的判定与性质【解析】由正方形的性质结合三角形内角和定理可得出,结合可得出,由C , ’可证出,再利用相似三角形的性质可求出的长.【解答】解:四边形为正方形,.,.,,,,,即, 或.故答案为:或.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )y 100100y y y 10y −5(20−y)≥100y ≥403y y 141413∠BAE +∠AEB =90∘∠AEB +∠CEF =90∘∠BAE =∠CEF ∠B =∠∠BAE =∠CEF △ABE ∼△ECF CE ∵ABCD ∴∠B =∠C =90∘∵EF ⊥AE ∴∠AEF =90∘∵∠BAE +∠AEB =90∘∴∠AEB +∠CEF =90∘∴∠BAE =∠CEF ∴△ABE ∼△ECF ∴=CE BA CF BE =CE 4344−CE ∴CE =1CE =31316.【答案】解: ;,当时,原式.【考点】特殊角的三角函数值零指数幂、负整数指数幂分式的化简求值【解析】利用零指数幂,负指数幂和特殊角的三角函数求值即可;利用分式的运算求解即可.【解答】解: ;(1)−+2cos (−1)2–√0()12−160∘=1−2+2×12=−1+1=0(2)÷(−x −2)2x −6x −25x −2=÷2(x −3)x −25−(x −2)(x +2)x −2=÷2(x −3)x −29−x 2x −2=⋅2(x −3)x −2x −2−(x +3)(x −3)=−2x +3x =−1=−=−12−1+3(1)(2)(1)−+2cos (−1)2–√0()12−160∘=1−2+2×12=−1+1=0(2)÷(−x −2)2x −6x −25x −2=÷2(x −3)x −25−(x −2)(x +2)x −2=÷2(x −3)x −29−x 2x −2=⋅2(x −3)x −2x −2−(x +3)(x −3)−2,当时,原式.17.【答案】证明:如图,连接并延长.∵ 是 的外角,∴,∵是的外角,∴,∵,∴,∵、分别平分,∴,∴,∴ .【考点】三角形中位线定理【解析】此题暂无解析【解答】证明:如图,连接并延长.∵ 是 的外角,∴,∵是的外角,∴,∵,∴,∵、分别平分,∴,=−2x +3x =−1=−=−12−1+3DM ∠3△AMD ∠3=∠1+∠ADM ∠4△CMD ∠4=∠2+∠CDM ∠AMC =∠3+∠4∠AMC =∠1+∠ADM +∠CDM +∠2=∠1+∠2+∠ADC AM CM ∠DAB,∠DCB ∠1=∠BAD.12∠2=∠BCD 12∠AMC =∠BAD +∠BCB +∠ABC =(−∠B −∠ADC)+ADC 121212360∘=(−∠B −∠ADC)12360∘2∠AMC +∠B =∠ADC =360∘DM ∠3△AMD ∠3=∠1+∠ADM ∠4△CMD ∠4=∠2+∠CDM ∠AMC =∠3+∠4∠AMC =∠1+∠ADM +∠CDM +∠2=∠1+∠2+∠ADC AM CM ∠DAB,∠DCB ∠1=∠BAD.12∠2=∠BCD 12AMC =∠BAD +∠BCB +∠ABC =(−∠B −∠ADC)+ADC111∴,∴ .18.【答案】解:设橘子每千克的价格为元,则香蕉每千克的价格为元.根据题意,得.解得.经检验, 是原分式方程的解,且符合题意.答:橘子每千克的价格为元.【考点】分式方程的应用【解析】此题暂无解析【解答】解:设橘子每千克的价格为元,则香蕉每千克的价格为元.根据题意,得.解得.经检验, 是原分式方程的解,且符合题意.答:橘子每千克的价格为元.19.【答案】解:∵过点,∴,即反比例函数:,当时,,即,过和,代入得 ,解得,∴一次函数解析式为;当时,代入中得,,即,∵,∴,∴或;如图,设与的图像交于,两点,∵向下平移两个单位得且∴,22∠AMC =∠BAD +∠BCB +∠ABC =(−∠B −∠ADC)+ADC 121212360∘=(−∠B −∠ADC)12360∘2∠AMC +∠B =∠ADC =360∘x 70%x −=150280070%2500x x =10x =1010x 70%x −=150280070%2500x x =10x =1010(1)=y 2m x A(1,2)m =1×2=2=y 22x x =−2a =−1B (−2,−1)=kx +b y 1A(1,2)B (−2,−1){k +b =2−2k +b =−1,{k =1b =1=x +1y 1(2)x =0y =x +1y =1M (0,1)=⋅MN ⋅||=3,=1S △AMN 12x A x A MN =6N (0,7)(0,−5)(3)y 2y 3C D y 1y 3=x +1y 1=x −1y 3 =2联立得.解得或∴,,在、两点之间或、两点之间时,,∴或.【考点】反比例函数与一次函数的综合待定系数法求反比例函数解析式【解析】此题暂无解析【解答】解:∵过点,∴,即反比例函数:,当时,,即,过和,代入得 ,解得,∴一次函数解析式为;当时,代入中得,,即,∵,∴,∴或;如图,设与的图像交于,两点,向下平移两个单位得且∴,联立得.解得或∴,,在、两点之间或、两点之间时,,∴或. y =2x y =2x {x =−1y =−2{x =2y =1C (−1,−2)D (2,1)A D B C >>y 1y 2y 3−2<x <−11<x <2(1)=y 2m x A(1,2)m =1×2=2=y 22x x =−2a =−1B (−2,−1)=kx +b y 1A(1,2)B (−2,−1){k +b =2−2k +b =−1,{k =1b =1=x +1y 1(2)x =0y =x +1y =1M (0,1)=⋅MN ⋅||=3,=1S △AMN 12x A x A MN =6N (0,7)(0,−5)(3)y 2y 3C D y 1y 3=x +1y 1=x −1y 3 y =2x y =2x {x =−1y =−2{x =2y =1C (−1,−2)D (2,1)A D B C >>y 1y 2y 3−2<x <−11<x <220.【答案】解:设,根据题意得,,∵,∴,.在直角中,,解得,,即,∴.即教学楼的高度约为.【考点】解直角三角形的应用-仰角俯角问题【解析】设,根据锐角三角函数的定义列出关于的方程,解出即可.【解答】解:设,根据题意得,,∵,∴,.在直角中,,解得,,即,∴.即教学楼的高度约为.21.【答案】,∵抽查的名学生中,喜欢用“短信”沟通的人数为:=(人),CE =xm AB =40m ∠CBE =45∘BE =CE =xm ∴AE =AB +BE =(40+x)m △ACD tan ===30∘CE AE x 40+x 3–√3x =(20+20)m 3–√CE =(20+20)m 3–√CD =CE +DE =20+20+1.2≈20×1.732+20+1.2≈56m3–√56m CE =xm x CE =xm AB =40m ∠CBE =45∘BE =CE =xm ∴AE =AB +BE =(40+x)m △ACD tan ===30∘CE AE x 40+x 3–√3x =(20+20)m 3–√CE =(20+20)m 3–√CD =CE +DE =20+20+1.2≈20×1.732+20+1.2≈56m3–√56m 10054∘100100×5%5∴喜欢用“微信”进行沟通的学生有:=(人),将条形统计图补充完整如图:=(名),即该校共有名学生,估计该校最喜欢用“微信”进行沟通的学生有名;画出树状图,如图所示:所有情况共有种情况,其中甲、乙两名同学恰好选择同一种沟通方式的共有种情况,故甲、乙两名同学恰好选中同一种沟通方式的概率为:=.【考点】条形统计图用样本估计总体列表法与树状图法扇形统计图【解析】(1)根据喜欢电话沟通的人数与百分比即可求出共抽查人数,求出喜欢用“钉钉”沟通的人数即可求出表示“钉钉”的扇形圆心角度数;(2)计算出喜欢用短信与微信的人数即可补全统计图;(3)用样本中喜欢用微信进行沟通的百分比来估计名学生中喜欢用微信进行沟通的人数即可求出答案;(4)列出树状图分别求出所有情况以及甲、乙两名同学恰好选中同一种沟通方式的情况后,利用概率公式即可求出甲、乙两名同学恰好选中同一种沟通方式的概率.【解答】喜欢用电话沟通的人数为,所占百分比为,∴此次共抽查了:=(人),100−20−5−15−15−5402000×800200080016425002020%20÷20%100QQ∵表示“钉钉”和“”的扇形圆心角相等,∴喜欢用“钉钉”和“”沟通的人数相等,∴喜欢用“钉钉”沟通的人数为人,∴表示“钉钉”的扇形圆心角的度数为=;故答案为:;;∵抽查的名学生中,喜欢用“短信”沟通的人数为:=(人),∴喜欢用“微信”进行沟通的学生有:=(人),将条形统计图补充完整如图:=(名),即该校共有名学生,估计该校最喜欢用“微信”进行沟通的学生有名;画出树状图,如图所示:所有情况共有种情况,其中甲、乙两名同学恰好选择同一种沟通方式的共有种情况,故甲、乙两名同学恰好选中同一种沟通方式的概率为:=.22.【答案】证明:∵四边形是平行四边形,∴,.∵,∴,,∴四边形是平行四边形,∴,.∵四边形是平行四边形,∴.又∵,∴.∵,∴,∴,∴,QQ QQ 15×360∘54∘10054∘100100×5%5100−20−5−15−15−5402000×8002000800164ABCD AB //CD AB =CD CE =DC AB =EC AB //EC ABEC FA =FE FB =FC ABCD ∠ABC =∠D ∠AFC =2∠D ∠AFC =2∠ABC ∠AFC =∠ABC +∠BAF ∠ABC =∠BAF FA =FB FA =FE =FB =FC∴,∴四边形是矩形.【考点】矩形的判定平行四边形的性质【解析】(2)由(1)得的结论先证得四边形是平行四边形,通过角的关系得出,,得证.【解答】证明:∵四边形是平行四边形,∴,.∵,∴,,∴四边形是平行四边形,∴,.∵四边形是平行四边形,∴.又∵,∴.∵,∴,∴,∴,∴,∴四边形是矩形.23.【答案】解:()把点 分别代入,得解得,∴抛物线的解析式为 .存在满足条件的带你,使得,如图:∵,∴当以为底时,两三角形等高,∴点和点到直线的距离相等,∵在轴上方,AE =BC ABEC ABEC FA =FE =FB =FC AE =BC ABCD AB //CD AB =CD CE =DC AB =EC AB //EC ABEC FA =FE FB =FC ABCD ∠ABC =∠D ∠AFC =2∠D ∠AFC =2∠ABC ∠AFC =∠ABC +∠BAF ∠ABC =∠BAF FA =FB FA =FE =FB =FC AE =BC ABEC 1A (−1,0),B (3,0)y =a +bx +3x 2{0=a −b +3,0=9a +3b +3{a =−1b =2.y =−+2x +3x 2(2)M =S △PAM S △PAC =S △PAM S △PAC PA C M PA M x∴,∵,,设直线的解析式为,∴,解得,∴直线的解析式为,∴直线的解析式为,联立得,解得(即点),,∴点的坐标为.【考点】待定系数法求一次函数解析式二次函数综合题待定系数法求二次函数解析式二次函数图象上点的坐标特征【解析】此题暂无解析【解答】解:()把点 分别代入,得解得,∴抛物线的解析式为 .存在满足条件的带你,使得,如图:∵,∴当以为底时,两三角形等高,∴点和点到直线的距离相等,∵在轴上方,∴,∵,,设直线的解析式为,∴,解得,∴直线的解析式为,CM//CA A(−1,0)P(1,2)AP y =px +d {−p +d =0p +d =2{p =1d =1AP y =x +1CM y =x +3{y =x +3y =−+2x +3x 2{=0x 1=3y 1C {=1x 2=4y 2M (1,4)1A (−1,0),B (3,0)y =a +bx +3x 2{0=a −b +3,0=9a +3b +3{a =−1b =2.y =−+2x +3x 2(2)M =S △PAM S △PAC =S △PAM S △PAC PA C M PA M x CM//CA A(−1,0)P(1,2)AP y =px +d {−p +d =0p +d =2{p =1d =1AP y =x +1∴直线的解析式为,联立得,解得(即点),,∴点的坐标为.CM y =x +3{y =x +3y =−+2x +3x 2{=0x 1=3y 1C {=1x 2=4y 2M (1,4)。
(最新)部编人教版数学《中考仿真模拟检测试题》 (含答案解析)

-1-2-3-4abc121212x/g/元频数/中考数学第二次模拟测试题一、选择题:(共8个小题,每小题2分,共16分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列图形中,是轴对称图形但不是..中心对称图形的是2.北京市将在2019年北京世园会园区、北京新机场、2022年冬奥会场馆等地,率先开 展5G 网络的商用示范.目前,北京市已经在怀柔试验场对5G 进行相应的试验工作. 现在4G 网络在理想状态下,峰值速率约是100Mbps ,未来5G 网络峰值速率是4G 网 络的204.8倍,那么未来5G 网络峰值速率约为A .2110⨯ MbpsB .22.04810⨯ MbpsC .32.04810⨯ MbpsD .42.04810⨯ Mbps 3.下列图形中,21∠>∠的是4.一个几何体的三视图如右图所示,则这个几何体是5.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是A .0a b ⋅>B .0a c +>C .b c >D .1b -> 6.周末,小明带200元去图书大厦,下表记录了他全天的所有支出,其中小零食支出的 金额不小心被涂黑了,如果每包小零食的售价为15元,那么小明可能剩下多少元? 交车票A .5 B .10 C .15 D .307.为了了解2018年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图.根据图中信息,下 面3个推断中,合理的是 .①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中至少有一半以上 的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的范围是60~120元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣. A .①② B .①③ C .②③ D .①②③ 8.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:则下列图象中,能表示y 与x 的函数关系的图象大致是二、填空题(共8个小题,每小题2分,共16分) 9.若代数式2xx -有意义,则实数x 10.如图,∠1,∠2,∠3AE 的延长线交于点F ,如果∠1+∠2+∠3=225那么∠DFE 的度数是 .11.命题“关于x 的一元二次方程210x mx -+=,必有两个不相等的实数根”是假命题..., 则m 的值可以是 .(写一个即可)A .B .C .D .A .B .C .D .A .B .C .D .A .B .C .D .AEO DCBAabBFEDCB A12.如果20a a -=,那么代数式23211(1)a a a a---÷的值是 .13.如图,在菱形ABCD 中,点E 是AD 的中点,对角线AC ,BD 交于点F ,若菱形ABCD 的周长是24,则EF = .14.某校要组织体育活动,体育委员小明带x 元去买体育用品.若全买羽毛球拍刚好可以买20副,若全买乒乓球拍刚好可以买30个,已知每个乒乓球拍比每副羽毛球拍 便宜5元,依题意,可列方程为____________. 15.如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,已知22.5A ∠=︒,2OC =,则CD 的长为 .16.小明调查了他所在年级三个班学生的身高,并进行了统计,列出如下频数分布表:在调查过程中,随机抽取某班学生,抽到 (填“1班”,“2班”或“3班”)的“身高不低于155cm ”可能性最大.三、解答题(本题共68分,第17题-23题,每小题5分;第24-26题,每小题6分;第27题8分,第28题7分)解答应写出文字说明、证明过程或演算步骤. 17.下面是小东设计的“已知两线段,求作直角三角形”的尺规作图过程. 已知:线段a 及线段b (a b <).求作:Rt △ABC ,使得a ,b 分别为它的直角边和斜边. 作法:如图,①作射线CM ,在CM 上顺次截取CB BD a ==;②分别以点C ,D 为圆心,以b 的长为半径画弧,两弧交于点A ; ③连接AB ,AC .则△ABC 就是所求作的直角三角形. 根据小东设计的尺规作图过程, (1)补全图形,保留作图痕迹;(2)完成下面的证明. 证明:连接AD∵ =AD ,CB = ,∴90ABC ∠=︒( )(填推理的依据).18.计算:10122cos 45(3)2--︒+π-+-. 19.解不等式组:3(1)21742x x x x +>+⎧⎪⎨+>⎪⎩ ,并写出它的所有整数解.20.如图,平行四边形ABCD 中,对角线AC ,BD 交于点O ,且AC ⊥BC ,点E 是BC 延长线上一点,12AD BE =,连接DE .(1)求证:四边形ACED 为矩形; (2)连接OE ,如果BD=10,求OE 的长.21.已知,关于x 的一元二次方程2(1)0x a x a +--=. (1)求证:方程总有两个实数根;(2)若该方程有一个根是负数,求a 的取值范围.22.在平面直角坐标系xOy 中,函数ky x=(0x >)的图象经过边长为2的正方形OABC 的顶点B ,如图,直线1y mx m =++与ky x=(0x >)的图象交于点D (点D 在直线BC 的上方),与x 轴交于点E .(1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.记ky x=(0x >)的图象在点B ,D 之间 的部分与线段AB ,AE ,DE 围成的区域 (不含边界)为W .①当12m =时,直接写出区域W 内的整 点个数;②若区域W 内恰有3个整点,结合函数 图象,求m 的取值范围.23.如图,正方形ABCD 的对角线相交于点O ,点E ,F 分别是边BC 上两点,且45EOF ∠=︒.将EOF ∠绕点O 逆时针旋转,当点F 与点C 重合时,停止旋转.已知,BC =6,设BE =x ,EF =y .小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,得到了y 与x 的几组对应值;H O DBA/分43tan CPB ∠=CQ CP ⊥EFCBOA D(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合函数图象,解决问题:当EF =2BE 时,BE 的长度约为 .24.如图,AB 是⊙O 的直径,点C 在⊙O 上,点P 是AB 上一动点,且与点C 分别位于直径AB 的两侧, ,过点C 作 交PB 的延长线于点Q ;(1)当点P 运动到什么位置时,CQ 恰好是⊙O 的切线? (2)若点P 与点C 关于直径AB 对称,且AB =5,求此时CQ的长.25.某校九年级共有400名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全. 收集数据:调查小组选取40名学生的体质健康测试成绩作为样本,数据如下: 77 83 80 64 86 90 75 92 83 81 85 86 88 62 65 86 97 96 82 73 86 84 89 86 92 73 57 77 87 82 91 81 86 71 53 72 90 76 68 78 整理、描述数据:2018年九年级40名学生的体质健康测试成绩统计表2017年九年级40名学生的体质健康测试成绩统计图分析数据:(1)写出表中的a ,b 的值;(2)分析上面的统计图、表,你认为学生的体质健康测试成绩是2017年还是2018年的好?说明你的理由.(至少写出两条)(3)体育老师根据2018年的统计数据,安排80分以下的学生进行体育锻炼,那么全年级大约有多少人参加?26.在平面直角坐标系xOy 中,抛物线2432y ax ax a =-+-(0a ≠)的对称轴与x轴交于点A ,将点A 向右平移3个单位长度,向上平移2个单位长度,得到点B .(1)求抛物线的对称轴及点B 的坐标;(2)若抛物线与线段AB 有公共点,结合函数图象,求a 的取值范围.27.已知:四边形ABCD 中,120ABC ∠=︒,60ADC ∠=︒,AD =CD ,对角线AC ,BD相交于点O ,且BD 平分∠ABC ,过点A 作AH BD ⊥,垂足为H . (1)求证:ADB ACB ∠=∠;(2)判断线段BH ,DH ,BC 之间的数量关系;并证明.28.对于图形M ,N ,给出如下定义:在图形M 中任取一点A ,在图形N 中任取两点B ,C (A ,B ,C 不共线),将∠BAC 的最大值α(0°<α<180°)叫做图形M 对图形N 的视角.备用图问题解决:在平面直角坐标系xOy 中,已知T (t ,0), ⊙T 的半径为1; (1)当t =0时,①求点D (0,2)对⊙O 的视角α; ②直线1l 的表达式为2y x =+,且直线1l对⊙O 的视角为α,求2sinα;(2)直线2l 的表达式为y x t =+,若直线2l 对⊙T 的视角为α,且60°≤α≤90°,直接写出t 的取值范围.参考答案一、选择题:(共8个小题,每小题2分,共16分)ADCC DADB二、填空题 (共8个小题,每小题2分,共16分)9.x ≠2 10.45° 11.0(答案不唯一) 1213.314.52030x x-= 15. 16.1班三、解答题(共12个小题,共68分)17.画图 ……2分 AC ,DB , ……4分 等腰三角形底边上的中线与底边上的高互相重合 ……5分 (或:到线段两个端点距离相等的点在这条线段的处置平分线上) 18.1122cos 45(3)2--︒+π-+-=1121222-⨯++ ……4分=2- ……5分19.解:由①得,x >-2. ……1分由②得,x <1 . ……3分∴ 原不等式组的解集为-2<x <1. ……4分 ∴ 原不等式组的所有整数解为-1,0. ……5分20.(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC , ……1分 ∵12AD BE =, ∴AD =CE ,∴四边形ACED 是平行四边形. ……2分∵AC ⊥BC , ∴∠ACE=90°.∴四边形ACED 是矩形. ……3分(2)∵对角线AC ,BD 交于点O∴点O 是BD 的中点. ……4分 ∵四边形ACED 是矩形,∴∠BED=90°. ∴12OE BD =. ∵AC =10,∴OE=5. ……5分21.(1)证明:(略) ……3分 (2)x 1=1,x 2=-a ,∵方程有一个根是负数, ∴-a <0.∴a > 0. ……5分22.(1)由题意可知:边长为2的正方形OABC 的顶点B 的坐标为(2,2)∵函数ky x=(0x >)的图象经过B (2,2) ∴ 4k =. ……2分 (2)①2个 . ……3分 ②112m <≤. ……5分23.(1) 2.6, 3. ……2分 (2)……4分32(3)约为1.26 ……5分 24.(1)当点P 运动到直线OC 与的交点处. ……2分 (说明:用语言描述或是画出图形说明均可) (2)连接CB ,∵AB 是直径, ∴∠ACB=90°.∵∠P=∠A , 43tan CPB tan A ∴∠== ∵AB=5,∴AC=3,BC=4.∵点P 与点C 关于直径AB 对称 ∴CP ⊥AB .在Rt △ABC 中,∴CP=4.8, 在Rt △PCQ 中,43CQtan CPB tan A CP∠===∴CQ=6.4. ……6分25.(1)a =8,b =10; ……2分 (2)略 ……5分 (3)150人. ……6分26.(1)对称轴:x =2 ……1分 B (5,2) ……3分 (2)12a ≥或2a ≤- ……6分 (过程略) 27.(1)证明:∵∠ADC =60°,DA=DC∴△ADC 是等边三角形. ……1分 ∴∠DAC =60°,AD=AC . ∵∠ABC =120°,BD 平分∠ABC∴∠ABD=∠DBC =60°.∴∠DAC =∠DBC =60° ∵∠AOD =∠BOC∠ADB=180°- ∠DAC -∠AOD∠ACB=180°- ∠DBC-∠BOC∴∠ADB=∠ACB ……3分(2)结论:DH=BH+BC ……4分 证明:在HD 上截取HE=HB ……5分∵AH ⊥BD∴∠AHB=∠AHE =90° ∵AH =AH∴△ABH ≌△AEH ∴AB=AE, ∠AEH=∠ABH =60° ……6分 ∴∠AED=180°-∠AEH=120° ∴∠ABC=∠AED=120°∵AD=AC, ∠ADB=∠ACB ∴△ABC ≌△AED∴DE=BC ……7分 ∵DH=HE+ED∴DH=BH+BC ……8分28.(1)①60° . ……1分……3分 (2)t≤-1 或 1≤……7分。
(最新)部编人教版数学《中考仿真模拟检测试题》 (含答案解析)

中考数学模拟试卷(4月份)一.选择题(共12小题,满分36分,每小题3分)1.已知∠A为锐角,且sin A=,那么∠A等于()A.15°B.30°C.45°D.60°2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.3.如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.4.如图是12个大小相同的小正方形,其中5个小正方形已涂上阴影,现随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是()A.B.C.D.5.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1086.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC,若AD=2,DB=1,△ADE、△ABC的面积分别为S1、S2,则的值为()A.B.C.D.27.在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE:S四边形ABCE为()A.3:4 B.4:3 C.7:9 D.9:78.若正方形的边长为6,则其外接圆的半径为()A.3 B.3C.6 D.69.如图,AB是⊙O直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠A=25°,则∠C的度数是()A.40°B.50°C.65°D.25°10.已知一次函数y1=kx+b与反比例函数y2=在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或x>3C.﹣1<x<0 D.x>311.如图,△ABC为等边三角形,以AB为边向△ABC外侧作△ABD,使得∠ADB=120°,再以点C为旋转中心把△CBD沿着顺时针旋转至△CAE,则下列结论:①D、A、E三点共线;②△CDE为等边三角形;③DC平分∠BDA;④DC=DB+DA,其中正确的有()A.4个B.3个C.2个D.1个12.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,抛物线的对称轴是直线x=1,与x轴的一个交点坐标为(4,0).下列结论中:①c>a;②2a﹣b=0;③方程ax2+bx+c=1(a ≠0)有两个不相等的实数根;④抛物线与x轴的另一个交点坐标为(﹣1,0);⑤若点A (m,n)在该抛物线上,则am2+bm≤a+b.其中正确的有()A.①③④B.②③④C.①③⑤D.①④⑤二.填空题(共6小题,满分18分,每小题3分)13.点P(﹣1,3)在反比例函数y=的图象上,则k的值是.14.如图,在矩形ABCD中,AB=8,BC=6,E为AD上一点,将△BAE绕点B顺时针旋转得到△BA′E′,当点A′,E′分别落在BD,CD上时,则DE的长为.15.李老师想从小明、小红、小丽和小亮四个人中用抽签的方式抽取两个人做流动值周生,则小红和小丽同时被抽中的概率是.16.正比例函数y=kx的图象与直线y=﹣x+1交于点P(a,2),则k的值是.17.已知等边三角形ABC的边长为2,那么这个三角形的内切圆的半径为.18.在△ABC中,AB=AC=5,BC=6,若点P在边AB上移动,则CP的最小值是.三.解析题(共7小题,满分66分)19.(8分)(1)解方程(x﹣2)(x+3)=0.(2)若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,求k的取值范围.20.(8分)已知抛物线的顶点为(1,4),与y轴交点为(0,3),求该抛物线的解析式.21.(10分)如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,BC,点E在AB上,且AE=CE.(1)求证:∠ABC=∠ACE;(2)过点B作⊙O的切线交EC的延长线于点P,证明PB=PE;(3)在第(2)问的基础上,设⊙O半径为2,若点N为OC中点,点Q在⊙O上,求线段PQ的最大值.22.(10分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)23.(10分)某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A,B两种笔记本作为奖品,已知A,B两种每本分别为12元和20元,设购入A种x本,B种y本.(1)求y关于x的函数表达式.(2)若购进A种的数量不少于B种的数量.①求至少购进A种多少本?②根据①的购买,发现B种太多,在费用不变的情况下把一部分B种调换成另一种C,调换后C种的数量多于B种的数量,已知C种每本8元,则调换后C种至少有本(直接写出答案)24.(10分)长方形ABCD位于平面直角坐标系中平行移动.(1)如图1,若AB⊥x轴且点A的坐标(﹣4,4),点C的坐标为(﹣1,﹣2),在边AB 上有动点P,过点P作直线PQ交BC边于点Q,并使得BP=2BQ.①当S△BPQ=S长方形ABCD时,求P点的坐标.②在直线CD上是否存在一点M,使得△MPQ是以PQ为直角边的等腰直角三角形?若存在,求出M点坐标:若不存在,请说明理由.(2)如图2,若AB⊥x轴且A、B关于x轴对称,连接BD、OB、OD,且OB平分∠CBD,求证:BO⊥DO.25.(10分)如图,抛物线y =与x轴交于A,B(点A在点B的左侧)与y轴交于点C,连接AC、BC.过点A作AD∥BC交抛物线于点D(8,10),点P为线段BC下方抛物线上的任意一点,过点P作PE∥y轴交线段AD于点E.(1)如图1.当PE+AE最大时,分别取线段AE,AC上动点G,H,使GH=5,若点M为GH 的中点,点N为线段CB上一动点,连接EN、MN,求EN+MN的最小值;(2)如图2,点F在线段AD上,且AF:DF=7:3,连接CF,点Q,R分别是PE与线段CF,BC的交点,以RQ为边,在RQ的右侧作矩形RQTS,其中RS=2,作∠ACB的角平分线CK交AD于点K,将△ACK绕点C顺时针旋转75°得到△A′CK′,当矩形RQTS与△A′CK′重叠部分(面积不为0)为轴对称图形时,请直接写出点P横坐标的取值范围.答案解析一.选择题(共12小题,满分36分,每小题3分)1.【详解】根据特殊角的三角函数值求解.【解析】解:∵sin A=,∠A为锐角,∴∠A=30°.故选:B.【点评】本题考查了特殊角的三角函数值,解析本题的关键是掌握几个特殊角的三角函数值.2.【详解】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【详解】根据圆柱从正面看的平面图形是矩形进行解析即可.【解析】解:一个直立在水平面上的圆柱体,从正面看是一个矩形,故选:B.【点评】本题考查了简单几何体的三视图,关键是掌握所看的位置,以及注意所有的看到的棱都应表现在三视图中.4.【详解】用涂上阴影的小正方形的个数除以所有小正方形的个数即可求得概率.【解析】解:如图所示:12个大小相同的小正方形,其中5个小正方形已涂上阴影,则随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是:.故选:B.【点评】此题主要考查了几何概率问题,了解几何概率的求法是解析本题的关键.5.【详解】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是168(1﹣x),第二次后的价格是168(1﹣x)2,据此即可列方程求解.【解析】解:设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:A.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.6.【详解】根据相似三角形的判定定理得到△ADE∽△ABC,根据相似三角形的性质计算即可.【解析】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=,故选:C.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.7.【详解】利用平行四边形的性质得出△FAE∽△FBC,进而利用相似三角形的性质得出=,进而得出答案.【解析】解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE:S四边形ABCE=9:7.故选:D.【点评】此题主要考查了平行四边形的性质和相似三角形的判定与性质,得出=是解题关键.8.【详解】作OE⊥AD于E,连接OD,在Rt△ADE中,根据垂径定理和勾股定理即可求解.【解析】解:作OE⊥AD于E,连接OD,则AE=DE=3,OE=3.在Rt△ADE中,OD==3.故选:B.【点评】此题主要考查了正多边形和圆,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9.【详解】由OA=OD可得∠A=∠ODA=25°,根据三角形外角性质可得∠COD=50°,由切线的性质可得∠COD=90°,即可求∠C的度数.【解析】解:连接OD,∵AO=OD,∴∠A=∠ODA=25°,∵∠COD=∠A+∠ADO,∴∠COD=50°,∵CD与⊙O相切于点D,∴∠ODC=90°,∵∠C+∠COD=90°,∴∠C=40°,故选:A.【点评】本题考查了切线的性质,圆周角定理,熟练掌握圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.10.【详解】根据图象知,两个函数的图象的交点是(﹣1,3),(3,﹣1).由图象可以直接写出当y1<y2时所对应的x的取值范围.【解析】解:根据图象知,一次函数y1=kx+b与反比例函数y2=的交点是(﹣1,3),(3,﹣1),∴当y1<y2时,﹣1<x<0或x>3;故选:B.【点评】本题主要考查了反比例函数与一次函数的交点问题.解析此题时,采用了“数形结合”的数学思想.11.【详解】由△ABC为等边三角形得到∠ABC=∠BAC=∠ACB=60°,由∠ADB=120°得到∠1+∠2=60°,再根据旋转的性质得∠ACB=60°,即旋转角等于60°,CD=CE,∠CAE =∠CBD=∠1+60°,于是可计算出∠DAE=180°,则可对①进行判断;由∠DCE=∠ACB=60°,CD=CE,根据等边三角形的判定可对②进行判断;由△CDE为等边三角形得∠4=60°,于是可得∠3=60°,则可对③进行判断;根据旋转的性质得AE=DB,根据等边三角形的性质得CD=DE,所以CD=DE=DA+AE=DA+BD,则可对④进行判断.【解析】解:∵△ABC为等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADB=120°,∴∠1+∠2=60°,∵点C为旋转中心把△CBD沿着顺时针旋转至△CAE,∴∠ACB=60°,即旋转角等于60°,CD=CE,∠CAE=∠CBD=∠1+∠CBA=∠1+60°,∵∠CAE+∠BAC+∠2=∠1+60°+60°+∠2=180°,即∠DAE=180°,∴D、A、E三点共线,所以①正确;∵∠DCE=∠ACB=60°,CD=CE,∴△CDE为等边三角形,所以②正确;∵△CDE为等边三角形,∴∠4=60°,∴∠3=60°,∴DC平分∠BDA,所以③正确;∵△CDE为等边三角形,∴CD=DE,而点C为旋转中心把△CBD沿着顺时针旋转至△CAE,∴AE=DB,∴DE=DA+AE=DA+BD,∴DC=DB+DA,所以④正确.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质.12.【详解】根据二次函数的图象与性质一一判断即可.【解析】解:∵抛物线开口向下,交y轴于正半轴,∴a<0,c>0,∴c>a,故①正确;∵﹣=1,∴b=﹣2a,∴2a+b=0,故②错误;观察图象可知,抛物线与直线y=1有两个交点,∴方程ax2+bx+c=1有两个不相等的实数根,故③正确;∵抛物线的对称轴x=1,与x轴交于(4,0),∴另一个交点坐标(﹣2,0),故④错误;∵x=1时,函数有最大值,∴点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c,∴am2+bm≤a+b,故⑤正确.故选:C.【点评】本题考查二次函数的图象与性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想思考问题,属于中考常考题型.二.填空题(共6小题,满分18分,每小题3分)13.【详解】把P点坐标代入y=中即可得到k的值.【解析】解:把P(﹣1,3)代入y=中得k=﹣1×3=﹣3.故答案为﹣3.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y =(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.【详解】根据勾股定理可求BD=10,由旋转的性质可得AE=A'E,AB=A'B=8,∠BA'E'=90°,由△BCD∽△E'A'D,可得,可得A'E'=AE=,即可求DE的长.【解析】解:∵四边形ABCD是矩形∴∠DAB=∠C=90°,AD=BC=6,AB=CD=8,∴BD==10,∵将△BAE绕点B顺时针旋转得到△BA′E′,∴AE=A'E,AB=A'B=8,∠BA'E'=90°∴A'D=BD﹣BA'=2,∵∠BDC=∠BDC,∠DA'E'=∠C=90°,∴△BCD∽△E'A'D∴即∴A'E'==AE∴DE=AD﹣AE=故答案为【点评】本题考查了旋转的性质,矩形的性质,勾股定理,相似三角形的判定和性质,灵活运用相关的性质定理、综合运用知识是解题的关键15.【详解】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小红和小丽同时被抽中的情况,再利用概率公式即可求得答案.【解析】解:画树状图得:∵共有12种等可能的结果,小红和小丽同时被抽中的有2种情况,∴小红和小丽同时被抽中的概率是:=.故答案为:.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.16.【详解】将点P的坐标代入两个函数表达式即可求解.【解析】解:将点P的坐标代入两个函数表达式得:,解得:k=﹣2.故答案为:﹣2.【点评】本题考查的是直线相交的问题,只需要把交点坐标代入函数表达式即可求解.17.【详解】由等边三角形ABC的边长为2,根据等边三角形的性质与三角形内切圆的性质,即可求得答案.【解析】解:过O点作OD⊥AB,∵O是等边△ABC的内心,∴∠OAD=30°,∵等边三角形ABC的边长为2,∴OA=OB,∴AD=AB=1,∴OD=AD•tan30°=.即这个三角形的内切圆的半径为:.故答案为:.【点评】此题考查了三角形内切圆的性质以及等边三角形的性质.此题难度不大,注意掌握数形结合思想的应用.18.【详解】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【解析】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,∴S△ABC=AB•PC=BC•AF =×5CP=×6×4得:CE=4.8故答案为4.8.【点评】本题考查了等腰三角形、勾股定理及三角形的面积的知识,特别是利用面积相等的方法求一边上的高的方法一定要掌握.三.解析题(共7小题,满分66分)19.【详解】(1)利用因式分解法解一元二次方程,即可求出结论;(2)根据方程的系数结合根的判别式△=9+4k>0,解之即可得出结论.【解析】解:(1)∵(x﹣2)(x+3)=0,∴x﹣2=0或x+3=0,∴x1=2,x2=﹣3.(2)∵关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,∴△=32﹣4×1×(﹣k)=9+4k>0,解得:k>﹣,∴k的取值范围是k>﹣.【点评】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)熟练掌握因式分解法解一元二次方程的步骤及方法;(2)牢记“当△>0时,方程有两个不相等的实数根”.20.【详解】设顶点式y=a(x﹣1)2+4,然后把(0,3)代入求出a即可.【解析】解:设抛物线解析式为y=a(x﹣1)2+4,把(0,3)代入得a+4=3,解得a=﹣1,所以抛物线解析式为y=﹣(x﹣1)2+4.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.21.【详解】(1)因为直径CD垂直于不过圆心O的弦AB,垂足为点N,所以,所以∠CAE=∠ABC,因为AE=CE,所以∠CAE=∠ACE,所以∠ABC=∠ACE;(2)连接OB,设∠CAE=∠ACE=∠ABC=x,通过计算可得∠PEB=∠PBE=2x,所以PB=PE;(3)连接OP,证明△OBC和△PBE为等边三角形,因为⊙O半径为2,可得BN=3,NE=1,即PB=BE=4,在Rt△PBO中求得PO的长,即可得出PQ的最大值.【解析】解:(1)证明:∵直径CD垂直于不过圆心O的弦AB,垂足为点N,∴,∴∠CAE=∠ABC,∵AE=CE,∴∠CAE=∠ACE,∴∠ABC=∠ACE;(2)如图,连接OB,∵过点B作⊙O的切线交EC的延长线于点P,∴∠OBP=90°,设∠CAE=∠ACE=∠ABC=x,则∠PEB=2x,∵OB=OC,AB⊥CD,∴∠OBC=∠OCB=90°﹣x,∴∠BOC=180°﹣2(90°﹣x)=2x,∴∠OBE=90°﹣2x,∴∠PBE=90°﹣(90°﹣2x)=2x,∴∠PEB=∠PBE,∴PB=PE;(3)如图,连接OP,∵点N为OC中点,AB⊥CD,∴AB是CD的垂直平分线,∴BC=OB=OC,∴△OBC为等边三角形,∵⊙O半径为2,∴CN=,∵∠CAE=∠ACE=∠BOC=30°,∴∠CEN=60°,∠PBE=2∠CAB=60°,∴△PBE为等边三角形,BN=3,NE=1,∴PB=BE=BN+NE=3+1=4,∴PO=,∴PQ的最大值为PO+=.【点评】本题考查圆的切线的性质,等边三角形的判定和性质,圆周角定理,勾股定理.解题的关键是掌握圆的切线的性质.22.【详解】过点D作DF⊥AB于点F,过点C作CH⊥DF于点H,则DE=BF=CH=10m,根据直角三角形的性质得出DF的长,在Rt△CDE中,利用锐角三角函数的定义得出CE的长,根据BC=BE﹣CE即可得出结论.【解析】解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解析此题的关键.23.【详解】(1)根据A种的费用+B种的费用=1200元,可求y关于x的函数表达式;(2)①根据购进A种的数量不少于B种的数量,列出不等式,可求解;②设B种的数量m本,C种的数量n本,根据题意找出m,n的关系式,再根据调换后C种的数量多于B种的数量,列出不等式,可求解.【解析】解:(1)∵12x+20y=1200,∴y=,(2)①∵购进A种的数量不少于B种的数量,∴x≥y,∴x≥,∴x≥,∵x,y为正整数,∴至少购进A种40本,②设A种的数量为x本,B种的数量y本,C种的数量c本,根据题意得:12x+20y+8c=1200∴y=∵C种的数量多于B种的数量∴c>y∴c>∴c>,∵购进A种的数量不少于B种的数量,∴x≥y∴x≥∴c≥150﹣4x∴c>,且x,y,c为正整数,∴C种至少有30本故答案为30本.【点评】本题考查一次函数的应用,不等式组等知识,解题的关键是学会构建一次函数解决实际问题,属于中考常考题型.24.【详解】(1)①根据题意可求点B的坐标(﹣4,﹣2),点D(﹣1,4),AD=3=BC,AB=CD=6,由S△BPQ=S长方形ABCD,可求BP的长,即可求点P的坐标;②分∠MPQ=90°和∠PQM=90°两种情况讨论,根据全等三角形的性质,可求点M的坐标;(2)设BD与x轴的交点为E,连接AE,根据轴对称的性质可证AE=BE,根据直角三角形的性质可得AE=BE=DE,根据角平分线的性质可证DE=OE=BE,由三角形内角和定理可得∠BOE+∠DOE=90°,即∠BOD=90°,则BO⊥DO.【解析】解:(1)①∵四边形ABCD是矩形,且AB⊥x轴,点A的坐标(﹣4,4),点C 的坐标为(﹣1,﹣2),∴点B的坐标(﹣4,﹣2),点D(﹣1,4),∴AD=3=BC,AB=CD=6,∵S△BPQ=S长方形ABCD,∴×BP×BQ=×AB×BC=,且BP=2BQ,∴BQ=,BP=3,∴点P(﹣4,1)②如图,若∠MPQ=90°,过点M作MN⊥AB于点N,∵MN⊥AB,∠ABC=∠BCD=90°∴四边形BCMN是矩形∴MN=BC=3,BN=CM,∵MN⊥AB,∠MPQ=90°,∴∠BPQ+∠BQP=90°,∠NPM+∠BPQ=90°,∴∠BQP=∠MPN,且PQ=PM,∠ABC=∠PNM=90°,∴△PMN≌△QPB(AAS)∴PB=MN=3,BQ=PN,∵PB=2BQ∴BQ==PN∴MC=BN=BP+PN=∴点M坐标(﹣1,)如图,若∠PQM=90°,∵∠PQM=90°,∠ABC=90°,∴∠PQB+∠MQC=90°,∠BPQ+∠PQB=90°,∴∠BPQ=∠MQC,且PQ=QM,∠ABC=∠BCD=90°,∴△BPQ≌△CQM(AAS)∴BQ=CM,QC=BP,∵BQ+QC=BQ+BP=BC=3,且BP=2BQ,∴BQ=MC=1,∴点M坐标(﹣1,﹣1)综上所述:点M坐标为(﹣1,)或(﹣1,﹣1)(2)设BD与x轴的交点为E,连接AE,∵A、B关于x轴对称,∴AE=BE,∴∠ABE=∠BAE,∵∠BAD=90°,∴∠ABE+∠ADB=90°,∠BAE+∠EAD=90°,∴∠ADB=∠EAD,∴AE=DE,∴AE=DE=BE,∵AB⊥x轴,AB⊥BC,∴BC∥x轴,∴∠EOB=∠OBC,∵BO平分∠CBD,∴∠DBO=∠CBO,∴∠DBO=∠EOB,∴BE=EO,∴BE=EO=DE,∴∠EDO=∠EOD,∵∠DBO+∠EOB+∠EDO+∠EOD=180°,∴∠BOE+∠DOE=90°,∴∠BOD=90°,即BO⊥DO.【点评】本题四边形综合题,考查了矩形的性质,等腰直角三角形的性质,全等三角形的判定和性质,轴对称图形的性质,用分类讨论思想解决问题是本题的关键.25.【详解】(1)先通过二次函数解析式求出点A,B的坐标,再求出AC,AB,CB的长度,用勾股定理逆定理证直角三角形,求出直线AD的解析式,用含相同字母的代数式分别表示E,Q,P的坐标,并表示出EP长度,求出AE长度,根据二次函数的性质求出EA+EP最大值时点E的坐标.最后作出点E关于CB的对称点,利用两点之间线段最短可求出结果;(2)由旋转的性质得到三角形CA′K与三角形CAK全等,且为等腰直角三角形,求出A′,K′的坐标,求出直线A′K′及CB的解析式,求出交点坐标,通过图象观察出P的横坐标的取值范围.【解析】解:(1)在抛物线y=x2﹣x﹣6中,当y=0时,x1=﹣2,x2=6,当x=0时,y=﹣6,∵抛物线y=x2﹣x﹣6与x轴交于A,B(点A在点B左侧),与y轴交于点C,∴A(﹣2,0),B(6,0),C(0,﹣6),∴AB=8,AC=,BC=,在△ABC中,AC2+BC2=192,AB2=192,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∵AD∥BC,∴∠CAD=90°,过点D作DL⊥x轴于点L,在Rt△ADL中,DL=10,AL=10,tan∠DAL==,∴∠DAB=30°,把点A(﹣2,0),D(8,10)代入直线解析式,得,解得k=,b=2,∴y AD=x+2,设点E的横坐标为a,EP⊥y轴于点Q,则E(a, a+2),Q(a,0),P(a, a2﹣a﹣6),∴EQ=a+2,EP=a+2﹣(a2﹣a﹣6)=a2+a+8,∴在Rt△AEB中,AE=2EQ=a+4,∴PE+AE=a+4+(a2+a+8)=a2a+12=(a﹣5)2+∴根据函数的性质可知,当a=5时,PE+AE有最大值,∴此时E(5,7),过点E作EF⊥CB交CB的延长线于点F,则∠EAC=∠ACB=∠ACF=90°,∴四边形ACFE是矩形,作点E关于CB的对称点E',在矩形ACFE中,由矩形的性质及平移规律知,xF﹣x E=x C﹣x A,y E﹣y F=y A﹣y C,∵A(﹣2,0),C(0,﹣6),E(5,7),∴x F﹣5=0﹣(﹣2),7﹣y F=0﹣(﹣6),∴x F=7,y F=1,∴F(7,1),∵F是EE′的中点,∴,,∴x E′=9,y E′=﹣5,∴E'(9,﹣5),连接AE',交BC于点N,则当GH的中点M在E′A上时,EN+MN有最小值,∴AE′==2,∵M是Rt△AGH斜边中点,∴AM=GH=,∴EN+MN=E′M=2﹣,∴EN+MN的最小值是2﹣.(2)在Rt△AOC中,∵tan∠ACO==,∴∠AOC=30°,∵KE平分∠ACB,∴∠ACK=∠BCK=45°,由旋转知,△CA′K′≌△CAK,∠AC′A′=75°,∴∠OCA′=75°﹣∠ACO=45°,∠AC′K′=45°,∴OCK′=90°,∴K′C⊥y轴,△CAK′是等腰直角三角形,∴A′C=AC=4,∴x A′==2,y A′=2﹣6,∴A′(2,2﹣6),∴K′(4,﹣6),将A′(2,2﹣6),K′(4,﹣6),代入一次函数解析式,得,解得k=﹣1,b=4﹣6,∴y A′K′=﹣x+4﹣6,∵CB∥AD,∴将点C(0,﹣6),B(6,0)代入一次函数解析式,得,解得k=,b=﹣6,∴y CB=x﹣6,联立y A′K′=﹣x+4﹣6和y CB=x﹣6,得﹣x+4﹣6=x﹣6,∴x=6﹣6,∴直线CB与A′K′的交点横坐标是6﹣6,∵当EP经过A′时,点P的横坐标是2,∴如图2,当2<x P<6﹣6时,重叠部分是轴对称图形;如图3,由于RS的长度为2,由图可看出当x P=2﹣1时,重叠部分同样为轴对称图形;综上,当x P=2﹣1或2<x P<6﹣6时,矩形RQRS和△A′CK′重叠部分为轴对称图形.【点评】本题考查了勾股定理的逆定理,三角函数,二次函数的性质,旋转的性质,两点之间线段最短等众多知识点,综合性非常强,解此题的关键是对初中阶段各知识点都要掌握熟练.。
最新人教版中考数学仿真模拟考试卷含答案

最新人教版中考数学仿真模拟考试卷含答案一、单选题1.2的相反数是()A.2B.C.﹣2D.﹣2.下列运算正确的是()A.a6÷a2=a3B.3a2b﹣a2b=2C.(﹣2a3)2=4a6D.(a+b)2=a2+b23.设直线是函数(,,是实数,且)图象的对称轴,则正确的结论是().A.若,则B.若,则C.若,则D.若,则4.如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上,如果∠2=25°,那么∠1的度数是()A.30°B.25°C.20°D.15°5.数据70、71、72、73的标准差是()A.B.2C.D.6.已知两个不同的一元二次方程的判别式互为相反数,下列判断正确的是()A.两个方程一定都有解B.两个方程一定没有解C.两个方程一定有公共解D.两个方程至少一个方程有解.7.将一个直角三角形三边扩大3倍,得到的三角形一定是( )A.直角三角形B.锐角三角形C.钝角三角形D.以上三种情况都有可能8.下图是由7个相同的小正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.9.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当AB=2,∠B=60时,AC的长是()A.B.C.D.10.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.二、填空题11.已知直线:和直线:,其中k为不小于2的自然数.当、3、4,,2018时,设直线、与x轴围成的三角形的面积分别为,,,,,则__________.12.如图,AD是△ABC的中线,△ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,那么BC′的长为.13.在一个不透明的盒子中装有个除颜色外完全相同的球,这个球只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在左右,则的值大约为___.14.分解因式:2x2-12xy+18y2=__________.15.不等式组的解集是_________.16.数据70700用科学计数法可表示为___________________.用四舍五入法,50.2462≈__________(精确到0.01).三、解答题17.已知抛物线,L:y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,与y轴交于点C,且抛物线L的对称轴为直线x=1.(1)抛物线的表达式;(2)若抛物线L′与抛物线L关于直线x=m对称,抛物线L′与x轴交于点A′,B′两点(点A′在点B′左侧),要使S△ABC =2S△A′BC,求所有满足条件的抛物线L′的表达式.18.张老师为了解学生课前预习的情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)张老师一共调查了名同学?(2)C类女生有名,D类男生有名;(3)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选两位同学恰好都是男同学的概率.19.无锡火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物往徐州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B 型货厢的运费是0.8万元.(1)设运输这批货物的总运费为y (万元),用A型货箱的节数为x (节),试写出y与x之间的函数关系式;(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35。
2023-2024学年全国初三下数学人教版模拟考试试卷(含答案解析)

20232024学年全国初三下数学人教版模拟考试试卷(含答案解析)一、选择题(每题1分,共5分)1. 下列哪个选项不属于勾股定理的应用范围?A. 计算直角三角形的斜边长度B. 计算直角三角形的任意一边长度C. 计算锐角三角形的斜边长度D. 计算钝角三角形的斜边长度答案:C2. 在平面直角坐标系中,点P的坐标为(3,2),则点P关于x 轴的对称点坐标是?A. (3,2)B. (3,2)C. (3,2)D. (3,2)答案:A3. 下列哪个选项是等差数列的定义?A. 一个数列中,从第二项起,每一项与它前一项的差都等于同一个常数B. 一个数列中,从第一项起,每一项与它前一项的差都等于同一个常数C. 一个数列中,从第二项起,每一项与它后一项的差都等于同一个常数D. 一个数列中,从第一项起,每一项与它后一项的差都等于同一个常数答案:A4. 在一次数学竞赛中,A、B、C三个同学的成绩分别为90分、85分和80分,他们的平均成绩是?A. 85分B. 分C. 87分D. 88分答案:B5. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cC. y = ax + bD. y = ax^2 + bx答案:A二、判断题(每题1分,共5分)1. 一个数列中,如果每一项与它前一项的差都相等,那么这个数列一定是等差数列。
()答案:√2. 在平面直角坐标系中,点P(3,2)关于y轴的对称点坐标是(3,2)。
()答案:×(正确答案是(3,2))3. 两个数的和等于它们的平均数。
()答案:√4. 一个数的平方根只有一个。
()答案:×(一个正数的平方根有两个,一个是正数,一个是负数)5. 在一次数学竞赛中,A、B、C三个同学的成绩分别为90分、85分和80分,他们的平均成绩是分。
()答案:√三、填空题(每题1分,共5分)1. 在平面直角坐标系中,点P的坐标为(3,2),则点P关于y轴的对称点坐标是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新人教版中考数学仿真模拟考试题
考生注意:本学科试卷共三道大题,总分120分,时量90分钟,答案填写在答题卡上。
一、选择题(本大题共8小题,每小题3分,共24分.)
1.-7的相反数是
A. 7
B.
1
7
- C.
1
7
D. -7
.在下面的四个几何体中,左视图与主视图不相同的几何体是
正方体
长方体
球
圆锥
4.不等式组的解集是
A. x>﹣2 B. x<﹣2 C. x>3 D. x<3
A B C D
7.我市某中学为举办校园读书节,今年5月份购买了一批图书,其中科普书的单价比文学书的单
价多6元,用1200元购买的科普书与用800元购买的文学书数量相等.设文学书的单价为每本书
x
x6
+6
+
x
x x
x6
-6
-
x
x
8.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点
B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;
④△PBF是等边三角形,其中正确的是
A.①②B.②③C.①③D.①④
二、填空题:(本大题共8小题,每小题4分,共32分.把答案填在答题卡
...中对应题号里)
9.因式分解a
a4
3-=_______
10.世界文化遗产长城总长约6700 000m,用科学记数法可表示为__________m
11.一元二次方程0
3
22=
+
-k
x
x有两个不相等的实数根,则k的取值范围是_____
12.x=____时,单项式与2
1
3
4b
a x-
-是同类项.
13.袋子里有3个红球,2个黄球,任意从中摸出一个球是红球的概率是___
14.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边
重合,则∠1的度数为________度.
第14题图第16题图
15.已知==3,==10,==15,…观察以上计算过程,寻找规
律计算=____
16.如图,正比例函数x
k
y
1
1
=和反比例函数
x
k
y2
2
=的图象交于A(1,2),B两点,给出下列
结论:①
1
k<
2
k;②当x<﹣1时,
1
y<
2
y;③当
1
y>
2
y时,x>1;④当x<0时,
2
y随x
的增大而减小.其中正确的有_______(填序列号)
三.解答题(本题共8小题,满分64分)
17.(本小题6分)计算:4
3
)2
3
(
)
2
1
(0
1+
-
-
-
-
-
18. (本小题6分)先化简,再求值:
2
12
-
121
a
a a a
-
÷
--+
(1),其中a是2
1≤
<
-a的整数。
19.(本小题8分)如图,函数1y x4
=-+的图象与函数2
2
k
y
x
=(x>0)的图象交于A(a,1)、
B(1,b)两点.
(1)求a,b的值;
(2)求函数
2
y的表达式;
(3)观察图象,直接写出2
1
y
y>时x的取值范围。
20.(本小题8分)岳阳的5月绿树成荫,周末小明约了几个同到户外活动.当他们来到一座小亭
第1 页共1 页。