正激式变换器工作原理

合集下载

正激变换器磁复位原理

正激变换器磁复位原理

正激变换器磁复位原理正激变换器是一种常见的电力变换器,其工作原理是通过磁复位实现能量转换。

磁复位是指在变换器中通过周期性地改变磁场方向来实现能量传递和转换的过程。

在正激变换器中,主要有两个磁性元件:主磁感应线圈和辅助磁感应线圈。

主磁感应线圈是由一个绕组组成的,它与输入电源相连。

辅助磁感应线圈则是由另一个绕组组成的,它与输出负载相连。

这两个磁性元件之间通过一个铁芯连接起来。

在工作时,输入电源会给主磁感应线圈施加一定的电流,从而在铁芯中产生一个磁场。

由于铁芯的存在,磁场会集中在铁芯中,并进一步感应辅助磁感应线圈中的电流。

在正激变换器的工作周期中,输入电流会周期性地改变方向,从而使主磁感应线圈中的磁场方向也随之改变。

这样一来,磁场方向的变化会导致辅助磁感应线圈中的电流方向也发生变化。

通过这种方式,能量可以从输入电源传递到输出负载。

具体来说,当输入电流方向改变时,主磁感应线圈中的磁场也会随之改变。

这个变化的磁场会感应出一个反向的电动势,从而使辅助磁感应线圈中的电流方向发生变化。

这个变化的电流会通过输出负载,从而实现能量的传递。

通过周期性地改变磁场方向,正激变换器可以实现高效的能量转换。

这是因为在磁复位的过程中,能量可以在变换器的不同部分之间来回传递,从而最大限度地减少能量的损耗。

除了能量转换外,正激变换器还有一个重要的功能是实现电压和电流的调节。

通过改变输入电流的幅值和频率,可以调节输出负载上的电压和电流大小。

这使得正激变换器在不同的应用场景中具有很大的灵活性。

正激变换器通过磁复位实现能量的传递和转换。

通过周期性地改变磁场方向,能量可以在变换器的不同部分之间来回传递,从而实现高效的能量转换。

同时,正激变换器还可以实现电压和电流的调节,具有很大的灵活性。

这使得正激变换器成为了电力转换和调节的重要工具。

正激变换器工作原理

正激变换器工作原理

正激变换器实际应用中,由于电压等级变换、安全、系统串并联等原因,开DC-变关电源的输入输出往往需要电气隔离。

在基本的非隔离DCDC-变换换器中加入变压器,就可以派生出带隔离变压器的DC 器。

例如,单端正激变换器就是有BUCK变换器派生出来的。

一工作原理1 单管正激变换器单端正激变换器是由BUCK变换器派生而来的。

图(a1)为BUCK 变换器的原理图,将开关管右边插入一个隔离变压器,就可以得到图(a2)的单端正激变换器图(a1)BUCK变换器图(a2)单端正激变换器BUCK 变换器工作原理:电路进入平恒以后,由电感单个周期内充放电量相等,由电感周期内充放电平恒可以得到:⎰==T dt Lu T L U 001即:可得:单端正激变换器的工作原理和和BUCK 相似。

其工作状态如图如图(a3)所示:图(a3)单端正激变换器工作状态开关管Q 闭合。

如图所示,当开关管Q 闭合时的工作状态如图a4所示,⎰⎰=--O N O N t T t o o i dt U dt U U 00)(i i ON o o o i OFFo ON o i DU U Tt U TD U DT U U t U t U U ==-=-=-)1()()(图(a4)根据图中同名端所示,可以知道变压器副边也流过电流,D1导通,D2截止,电感电压为正,变压器副边的电流线性上升。

在此期间,电感电压为:O I L U U N N u -=12 开关管Q 截止。

开关管截止时,变压器副边没有电流流过,副边电流经反并联二极管D2续流,在此期间,电感电压为负,电流线性下降:O L U U -=在稳定时,和BUCK 电路一样,电感电压在一个周期内积分为零,因此:()S O S I T D U DT U U N N ⨯-⨯=⨯⎪⎭⎫ ⎝⎛-1120 得:I O DU N N U 12= 由此可见,单端正激变换器电压增益与开关导通占空比成正比,比BUCK电路只多了一个变压器的变化。

正激式变换器的原理

正激式变换器的原理

正激式变换器的原理
正激式变换器是一种电力变换装置,其原理基于断续开关电路的操作方式。

其核心组成部分包括输入电压源、开关器件、功率变压器、输出电路等。

正激式变换器的原理是通过开关器件(通常是晶体管或MOSFET)以高频率进行开关操作,将输入电压源的直流电压通过功率变压器进行翻倍、降压或升压等电压变换,从而实现电力的转换。

开关器件的开关操作是控制性能的关键,通过控制开关器件的导通和关断时间,可以调节输出电压的大小。

正激式变换器的工作周期分为导通和关断两个阶段。

在导通阶段,开关器件处于导通状态,输入电源的电压通过功率变压器传输到输出电路,从而实现能量的传输。

而在关断阶段,开关器件被关闭,并且输出电路中的能量被释放,从而实现能量的转换和控制。

正激式变换器的优点是效率高、功率密度大,并且可以实现较高的电压和电流的变换。

它在电力变换和电力传输领域得到广泛应用,如电力逆变器、电源变换器、电动机驱动器等。

反激式和正激式变换器的工作原理

反激式和正激式变换器的工作原理

反激式和正激式变换器的工作原理反激式变换器和正激式变换器是电力电子领域中常见的两种变换器结构,它们在不同的应用场景下具有不同的工作原理。

一、反激式变换器的工作原理反激式变换器是一种常用的开关电源变换器,它通过开关管的开关动作来实现输入电压的变换。

反激式变换器一般由一个开关管、一个变压器、一个滤波电容和一个负载组成。

1. 工作原理反激式变换器的工作原理主要分为两个阶段:导通阶段和关断阶段。

导通阶段:当开关管导通时,变压器的一侧与输入电源相连,另一侧与负载相连。

此时,输入电流通过变压器的一侧流入,变压器的另一侧产生电磁感应,使得负载得到相应的电压。

关断阶段:当开关管关断时,变压器的一侧与负载相连,另一侧与滤波电容相连。

此时,由于变压器一侧的电流无法立即变为零,电流会通过滤波电容继续流向负载,从而使得负载得到稳定的电压。

2. 特点与应用反激式变换器具有体积小、成本低、效率高等优点,广泛应用于电力电子产品中。

例如,电视机、计算机、手机充电器等都采用了反激式变换器作为其电源模块,提供稳定的直流电压。

二、正激式变换器的工作原理正激式变换器是一种将输入电压转换为输出电压的变换器,它通过不断开关的方式来实现电压的变换。

正激式变换器一般由一个开关管、一个变压器、一个整流电路和一个滤波电容组成。

1. 工作原理正激式变换器的工作原理主要分为两个阶段:导通阶段和关断阶段。

导通阶段:当开关管导通时,输入电流通过变压器的一侧流入,变压器的另一侧产生电磁感应,使得负载得到相应的电压。

关断阶段:当开关管关断时,变压器的一侧与整流电路相连,另一侧与滤波电容相连。

此时,由于变压器一侧的电流无法立即变为零,电流会通过整流电路继续流向负载,从而使得负载得到稳定的电压。

2. 特点与应用正激式变换器具有输出电压稳定、抗干扰能力强等优点,广泛应用于电力电子领域中。

例如,直流电源、变频器等都采用了正激式变换器作为其电源模块,提供稳定的输出电压。

正激式变换器工作原理

正激式变换器工作原理

正激式变换器工作原理
正激式变换器的典型电路如下图所示。

当开关K闭合时,变压器的初级线圈N1被直流电压激励,线圈N1电压为上正下负;次级线圈N2感应的电压也为上正下负,二极管D1导通,通过电感L给负载R供电和给电容C充电。

当开关K断开时,变压器的初级线圈N1产生很大的反电动势电压,为了防止变压器初级线圈产生的反电动势把开关管击穿,正激式变压器开关电源的变压器增加一个反电动势吸收绕组;同时,次级二极管也截止,由于次级电感L电流不能突变,通过二极管D2继续给负载供电;同时电容C也为负载供电。

正激式变换器只有传输能量的功能,储存能量是通过次级的电感L 和电容C来完成的。

电源拓扑结构介绍----正激和反激

电源拓扑结构介绍----正激和反激

TX2
* ***
36 V2 IRF530 R2 C2
TX1
D1N4148
* ***
36 V1 R1 C1
R1 C1
***
***
Q2
(a)Q导通
2012-10-31
(b) Q关断
(C) Q关断,电 20 流断续
3. 反激变换器的工作原理分析
下面讨论flyback工作在电流连续模式下的工作原理:
2012-10-31
5
2012-10-31
2. 带复位绕组的正激变换器的工作原理分析
正激变换器的主要理论波形
2012-10-31 6
下面讨论电感电流连续时forward变换器的工作原理:
1. 模态1 [对应于图 (a)] 在t=0时,Q1导通,Vin通过Q1 加 在原边绕组W1上,因此铁芯磁化,铁芯磁通Ø增加:
在t=Ton时,铁芯磁通Ø的增加量为Vin/W1*D*Ts。 那么副边绕组W2上的电压为:Vw2=W2/W1*Vin=Vin/K12。 式中,K12=W1/W2是原边与副边绕组的匝比。
此时,整流二极管D1 导通,续流二极管D2截止,滤波电
感电流iL1线性增加,这与buck变换器中开关管Q1导通时一样, 只是电压为Vin/K12。
2. 模态2 [对应于图 (b)] 在Ton时刻,关断Q1, 原边绕组和副边绕组中没有电流流过,此时变压器 通过复位绕组进行磁复位,励磁电流iM从复位绕组 W3经过二极管D3回馈到输入电源中去。那么复位 绕组上的电压为:Vw3=-Vin;原边绕组上的电压为: Vw1=-K13*Vin;副边绕组上的电压为:Vw2=-K23*Vin。
D2 D1N4148 C1
R1
Q1
W3

单端正激变换器电路解说

单端正激变换器电路解说

单端正激变换器電路解說★电路拓扑图2、电路原理其变压器T1起隔离和变压的作用,在输出端要加一个电感器Lo(续流电感)起能量的储存及传递作用,变压器初级需有复位绕组Nr(此点上我对一些参考书籍存疑,当然有是最好,实际应用中考虑到变压器脚位的问题)。

在实际使用中,我也发现此绕组也用RCD吸收电路取代亦可,如果芯片的辅助电源用反激供给则也可削去调整管的部分峰值电压(相当一部份复位绕组)。

输出回路需有一个整流二极管D1和一个续流二极管D2。

由于其变压器使用无气隙的磁芯,故其铜损较小,变压器温升较低。

并且其输出的纹波电压较小。

3、变压器计算一般来说高频变压器的设计可划分为以下六个步骤:a、选择磁芯材料和磁芯结构形式。

b、确定工作频率,工作最大磁感应强度Bm。

c、计算并初选磁芯型号。

d、计算并调整原、副边匝数。

e、计算并确定导线线径。

f、校核窗口面积和最大磁感应强度Bm。

现就这六个步骤来讨论单端正激式变压器的设计:★ 选择磁芯材料和磁芯结构形式高频变压器磁性材料选择的标准为高初始磁导率μi、低矫顽力Hc、高饱和磁感应强度Bs、低剩磁Br、高电阻率ρ和高居里温度点。

磁导率高,变压器工作时励磁电流就小;矫顽力低则磁滞损耗比较小;高饱和磁感应,低剩磁,变压器工作时磁通变化范围 B可以较大,相应减小了变压器体积;高电阻率,高频工作时涡流损耗比较小;高居里温度点,变压器工作温度可以相应提高,但以上各项要求不可能同时得到满足,不同的磁性材料存在其长处也必然存在不足,需视具体应用条件加以选择。

一次电源工作频率一般选择在60KHz~150KHz 之间,二次电源产品工作频率一般选择在100KHz~400KHz之间,在这个频率范围,宜选用Mn-Zn铁氧体材料,目前二次电源常用的铁氧体材料包括TDK的PC30-PC40,Magnetics的P 材料,PHILIP的3F3及899厂的R2KB2等。

磁芯结构形式的选择一是考虑能量传递,二是考虑几何尺寸的限制,三是考虑磁芯截面积和窗口面积的比例,多路输出变压器一般要求有较大的窗口面积,选择EE型、EI型或PQ 型磁芯,可具有较大的窗口和良好的散热性,DC/DC模块电源可选用FEY型、FEE型、EUI型等,铃流变压器要求磁芯截面积比较大,可选用GU形磁芯;此外还应考虑变压器的安装,加工方便性,成本等,目前中、大功率通常选用GU形磁芯,这种磁芯特点是有较大的截面积,漏磁很小,采用国产材料,成本低,但出线需手焊。

正激变换器的工作原理

正激变换器的工作原理

第1章Flyback正激变换器的工作原理1.1 引言有隔离变换器的DC/DC变换器按照铁芯磁化方式,可分为双端变换器(全桥、半桥、推挽等)和单端变换器(正激式、反激式等)。

和双端变换器比较,单端变换器线路简单、无功率管共导通问题、也不存在高频变换器单向偏磁和瞬间饱和问题,但由于高频变换器只工作在磁滞回线一侧,利用率低。

因此,它只适用于中小功率输出场合。

单端正激变换器是一个隔离开关变换器,隔离型变换器的一个根本特点是有一个用于隔离的高频变压器,所以可以用于高电压的场合。

由于引入了高频变压器极大的增加了变换器的种类,丰富了变换器的功能,也有效的扩大了变换器的使用范围。

单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。

在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。

当今,节能和环保已成为全球对耗能设备的基本要求。

所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。

而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大;dv/dt和di/dt大等。

为了克服这些缺陷,提出了有源钳位正激变换器拓扑,从根本上改变了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而大量地减少了开关器件和变压器的功耗,降低了dv /dt和di/dt,改善了电磁兼容性。

因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。

本章主要介绍Flyback型有源箝位正激变换器的稳态工作原理与电路设计。

1.2 Flyback 型有源箝位正激变换器稳态工作原理有源箝位正激变换器由有源箝位支路和功率输出电路组成。

有源箝位支路由箝位开关和箝位电容串联组成,并联在主开关或变压器原边绕组两端。

利用箝位电容及开关管的输出电容与变压器绕组的激磁电感谐振,创造主开关和箝位开关的ZVS 工作条件,并在主开关关断期间,利用箝位电容的电压限制主开关两端的电压基本保持不变,从而避免了主开关过大的电压应力;另一方面,在正激变换器中采用有源箝位技术还可实现变压器铁芯的自动磁复位,并可以使激磁电流沿正负两个方向流动,使其工作在双向对称磁化状态,提高了铁芯的利用率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正激式变换器工作原理
正激式变换器(Forward Converter)是一种常用的开关电源拓扑结构,可以将直流电压转换为需要的直流电压输出。

它通过周期性地开关和关闭电路中的开关管,实现对电能的传输和转换。

本文将详细介绍正激式变换器的工作原理。

正激式变换器由输入电源、变压器、开关管、输出电路以及控制电路等组成。

其中,变压器是正激式变换器的核心部件,通过变压器的变换作用,实现电能的传输和转换。

正激式变换器的工作原理可以分为两个阶段:导通阶段和关断阶段。

在导通阶段,开关管S导通,输入电压Vin通过变压器的主绕组L1传输给负载。

同时,变压器的副绕组L2和电感器Lm储存能量。

开关管导通后,磁场能量积累在变压器的磁芯中,同时电感器Lm充电。

在此期间,输出电路的电容器C存储能量,以供负载使用。

导通阶段结束后,进入关断阶段。

在关断阶段,开关管S关闭,磁场能量被释放,通过变压器的副绕组L2传输给输出电路。

同时,电感器Lm中的能量继续通过二极管D传输给负载。

在此期间,输出电容器C会释放能量,保持输出电压的稳定。

关断阶段结束后,回到导通阶段,循环工作。

正激式变换器的工作原理可以用以下几个步骤来描述:
1. 开关管S导通:当控制信号使开关管导通时,输入电压Vin通过变压器的主绕组L1传输给负载。

同时,变压器的副绕组L2和电感器Lm储存能量。

2. 磁场能量积累:开关管导通后,磁场能量积累在变压器的磁芯中,同时电感器Lm充电。

此时,输出电路的电容器C存储能量,以供负载使用。

3. 开关管S关闭:当控制信号使开关管关闭时,磁场能量被释放,通过变压器的副绕组L2传输给输出电路。

同时,电感器Lm中的能量继续通过二极管D传输给负载。

4. 输出电容器释放能量:在关断阶段,输出电容器C会释放能量,保持输出电压的稳定。

然后,回到导通阶段,循环工作。

正激式变换器的工作原理可以通过控制信号的调节来实现对输出电压的调节。

通过改变开关管的导通时间和关断时间,可以控制变压器的磁场积累和释放过程,从而调节输出电压的大小。

总结起来,正激式变换器是一种将直流电压转换为需要的直流电压输出的开关电源拓扑结构。

通过周期性地开关和关闭电路中的开关管,实现电能的传输和转换。

通过控制信号的调节,可以实现对输出电压的调节。

正激式变换器具有结构简单、效率高、稳定性好等优点,在电子设备中得到广泛应用。

相关文档
最新文档