三元一次方程组的解法举例(精选5篇)

合集下载

三元一次方程组解法举例

三元一次方程组解法举例

活动1 活动1
设1元、2元、5元的纸币分别是x张、 元的纸币分别是 张 y张、 z张,根据题意可以得到下列三个 张 张 方程: 方程: x+y+z=12, + + =12, x+2 +5 =22, +2y+5 +2 +5z=22, x=4y. =
活动1 活动1
把三个方程合在一起写成
x + y + z = 12, x + 2 y + 5 z = 22, x = 4 y.
消元
二元一次方程组
消元
一元一次方程
活动3 活动
问题1: 问题 :解三元一次方程组
3 x + 4z = 7 x + 3 y + z = 9 5 x 9 y + 7 z = 8
活动3 活动
问题2 问题 :在等式 y = ax + bx + c =-1时 = ; 中,当x=- 时,y=0;当x=2时, =- = 时 y=3;当x=5时,y=60 . 求a、b、c = ; = 时 = 、 、 的值.
活动1 活动1
三元一次方程组: 三元一次方程组:含有三个相同 的未知数, 的未知数,每个方程中含未知数的项 的次数都是1,并且一共有三个方程, 的次数都是 ,并且一共有三个方程, 像这样的方程组叫做三元一次方程 组.
活动2 活动
讨论:如何解三元一次方程组? 讨论 如何解三元一次方程组? 如何解三元一次方程组
活动2 活动
总结: 总结: 解三元一次方程组的基本思路是: 解三元一次方程组的基本思路是:通 代入” 加减”进行消元, 过“代入”或“加减”进行消元,把“三 转化为“二元” 元”转化为“二元”,使解三元一次方程 组转化为解二元一次方程组, 组转化为解二元一次方程组,进而再转化 为解一元一次方程

数学教案:三元一次方程组的解法举例

数学教案:三元一次方程组的解法举例

数学教案:三元一次方程组的解法举例引言三元一次方程组是高中数学中的重要内容,解三元一次方程组是求解多元线性方程组的基础。

本文将以举例的方式介绍解三元一次方程组的具体步骤与方法。

问题描述给定一个三元一次方程组:a₁x + b₁y + c₁z = d₁a₂x + b₂y + c₂z = d₂a₃x + b₃y + c₃z = d₃我们的任务是求解方程组的解(x, y, z)。

方法一:消元法步骤:1.通过行初等变换将方程组化为阶梯型方程组。

2.对阶梯型方程组进行回代,求解未知数的值。

举例考虑以下三元一次方程组:2x + 3y - z = -1x - y + 3z = 93x + 2y + 2z = 7Step 1:将方程组化为阶梯型方程组首先,我们可以通过多次行初等变换将方程组化为阶梯型方程组。

具体的步骤如下: 1. 将第二行乘以2,得:2x - 2y + 6z = 18 2. 将第三行减去3倍的第一行,得:-7y - z = 10 3. 将第三行减去5倍的第二行,得:-7y - 5z = -23现在,方程组变为:2x + 3y - z = -12x - 2y + 6z = 18-7y - 5z = -23Step 2:回代求解未知数的值从最后一行开始,一步一步回代求解未知数的值。

1. 从最后一行可得 -7y - 5z = -23,解得 y = -2 - z 2. 将 y 的值代入到第一行,得 2x + 3(-2 - z) - z = -1,整理得到 2x - 6 - 3z - z = -1 3. 继续整理可得 2x - 4z = 5现在,我们得到了两个含有未知量的方程:2x - 4z = 5y = -2 - z通过进一步的求解,可以求得 (x, y, z) 的具体值。

方法二:矩阵法步骤:1.将三元一次方程组表示成矩阵形式。

2.应用矩阵的行列式和逆矩阵的性质求解未知数的值。

举例我们继续使用上面的三元一次方程组作为例子:2x + 3y - z = -1x - y + 3z = 93x + 2y + 2z = 7Step 1:表示矩阵形式将方程组的系数矩阵记为A,未知数矩阵记为X,常数矩阵记为B,则方程组可表示为 AX = B。

三元一次方程组解法举例

三元一次方程组解法举例
5. 将已得到的两个未知数的值代入原方程组中的任意一个方 程,求解出第三个未知数的值。
6. 写出方程组的解,并检验解的正确性。
代入法应用举例
例如,对于三元一次方程组
$\left\{ \begin{array}{l} x + y + z = 6 \ x - y + 2z = 3 \ 3x + 2y - z = 8 \end{array} \right.$可以使用代入法求解
解法选择策略与注意事项
选择策略
在面对三元一次方程组时,首先观察方程组 的系数特点,如果系数简单且易于代入,可 以选择代入法;如果存在明显可消元的变量 ,可以尝试消元法;对于复杂方程组,建议 采用矩阵法进行求解。
注意事项
在使用代入法和消元法时,要注意选择合适 的变量进行代入或消元,避免计算过于复杂 ;在使用矩阵法时,需要确保理解矩阵运算 的基本原理,正确构建系数矩阵和常数矩阵 ,以保证求解的准确性。
三元一次方程组解法 举例
汇报人: 日期:
目录
• 三元一次方程组概述 • 三元一次方程组解法——代入法 • 三元一次方程组解法——消元法 • 三元一次方程组解法——矩阵法 • 三种解法的比较与总结
01
三元一次方程组概述
三元一次方程组的定义
定义
三元一次方程组是指包含三个未知数的一次方程所组成的方程组。
杂的方程组,可以通过计算机进行高效求解。
• 缺点:需要一定的线性代数基础知识,对于初学者可能难以
03
理解。
适用范围的讨论
代入法
适用于变量系数较为简单 ,易于进行代入计算的情 况。
消元法
适用于方程组中存在较为 明显的可消元变量的情况 。
矩阵法

三元一次方程组的解

三元一次方程组的解

三元一次方程组的解三元一次方程组是指含有三个未知数的一次方程组,我们可以通过一定的方法来求解这些方程的解。

下面就让我来为大家详细介绍一下三元一次方程组的解法。

一、初等变换法初等变换法是指通过对方程组进行加法、减法、乘法等基本运算,来得到方程组的解。

这种方法相对简单,适用于一些比较简单的方程组。

下面是一个使用初等变换法解三元一次方程组的例子:$x + y + z = 10$$2x - y + 3z = 5$$3x + 4y - 2z = 7$先将第2个式子加到第3个式子上,得到:$x + y + z = 10$$2x - y + 3z = 5$$5x + 3y + z = 12$再将第1个式子乘以2,得到:$2x + 2y + 2z = 20$$2x - y + 3z = 5$$5x + 3y + z = 12$将第1个式子减去第2个式子,得到:$x + 3y - z = 15$$2x - y + 3z = 5$$5x + 3y + z = 12$将第2个式子乘以3,得到:$x + 3y - z = 15$$6x - 3y + 9z = 15$$5x + 3y + z = 12$将第2个式子乘以2,得到:$x + 3y - z = 15$$12x - 6y + 18z = 30$$5x + 3y + z = 12$将第2个式子减去第1个式子的3倍,得到:$x + 3y - z = 15$$3x - 15z = 3$$5x + 3y + z = 12$再将第3个式子减去第1个式子的5倍,得到:$x + 3y - z = 15$$3x - 15z = 3$$4y - 4z = -63$由第2个式子得:$x = 5z + 1$将上面的式子带入第1个和第3个式子中,得到:$20z + 16y = 79$$25z + 14y = 47$解得 $y=-\dfrac{1}{2}$,$z=\dfrac{9}{5}$,最终得到:$x=3$,$y=-\dfrac{1}{2}$,$z=\dfrac{9}{5}$二、高斯消元法高斯消元法是求解三元一次方程组的一种比较常用的方法,它的主要思想是通过消元的方式,将方程组化成为一个上三角矩阵,然后就可以通过回带的方法来解方程组。

三元一次方程例题及解法

三元一次方程例题及解法

下面是一个三元一次方程的例题及解法:例题:解方程组{2x+3y+z=10,x-3y+2z=4,3x-y-z=5}解法:1.我们可以使用消元法或代入法来解这个方程组。

在这里,我们将使用代入法。

2.首先,从任意两个方程中选择一个变量,将其表示为其他变量的函数。

在这里,让我们选择第一个方程和第三个方程,将变量"x"表示为"y"和"z"的函数。

根据第一个方程,我们可以得到:x=(10-3y-z)/2将这个表达式代入第三个方程:3((10-3y-z)/2)-y-z=53.现在,我们只有一个未知数"y"和一个未知数"z"的方程:15-9y-3z-2y-2z=10化简这个方程:17y+5z=54.接下来,我们可以从第二个方程中解出变量"x":将第二个方程重排:x=4-2z+3y5.最后,将"x"、"y"和"z"的表达式代入其中一个原始方程,例如第一个方程:2(4-2z+3y)+3y+z=10将这个方程化简:8-4z+6y+3y+z=106.再次进行化简:9y=2z+27.现在我们有两个未知数"y"和"z"的方程:17y+5z=59y=2z+28.使用这两个方程来解出变量"y"和"z"。

一种方法是将其中一个方程的变量表示为另一个方程的函数,然后代入到另一个方程中进行求解。

根据第二个方程,我们可以得到:y=(2z+2)/9将这个表达式代入第一个方程:17((2z+2)/9)+5z=5化简这个方程:34z+34+45z=45进一步化简:79z=119.解这个方程,我们得到:z=11/7910.将z的值代入y的表达式中:y=(2(11/79)+2)/9=4/7911.最后,将y和z的值代入x的表达式中:x=(10-3(4/79)-11/79)/2=625/79因此,方程组的解为x=625/79,y=4/79,z=11/79。

三元一次方程组解法举例

三元一次方程组解法举例

三元一次方程组解法举例1.三元一次方程组的概念:含有三个未知数,每个方程的未知项的次数都是1,并且共有三个方程,这样的方程组叫做三元一次方程组.例如:都叫做三元一次方程组.留意:每个方程不肯定都含有三个未知数,但方程组整体上要含有三个未知数.娴熟把握简洁的三元一次方程组的解法会表达简洁的三元一次方程组的解法思路及步骤.思路:解三元一次方程组的基本思想仍是消元,其基本方法是代入法和加减法.步骤:①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程中较简洁的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解.敏捷运用加减消元法,代入消元法解简洁的三元一次方程组.三元一次方程组的解法举例例如:解以下三元一次方程组分析:此方程组可用代入法先消去y,把①代入②,得,5x+3(2x-7)+2z=25x+6x-21+2z=2解二元一次方程组,得: 把x=2代入①得,y=-3例2.分析:解三元一次方程组同解二元一次方程组类似,消元时,选择系数较简洁的未知数较好.上述三元一次方程组中从三个方程的未知数的系数特点来考虑,先消z 比较简洁.解:①+②得,5x+y=26④①+③得,3x+5y=42⑤④与⑤组成方程组:解这个方程组,得把代入便于计算的方程③,得z=8留意:为把三元一次方程组转化为二元一次方程组,原方程组中的每个方程至少要用一次.能够选择简便,特别的解法解特别的三元一次方程组.例如:解以下三元一次方程组分析:此方程组中x,y,z出现的次数相同,系数也相同.依据这个特点,将三个方程的两边分别相加解决较简便.解:①+②+③得:2(x+y+z)=30x+y+z=15④再④-①得:z=5④-②得:y=9④-③得:x=1分析:依据方程组特点,方程①和②给出了比例关系,可先设x=3k,y=2k,由②得:z=y,z=2k=k,再把x=3k,y=2k,z=k代入③,可求出k值,进而求出x,y,z的值. 解:由①设x=3k,y=2k由②设z=y=2k=k把x=3k,y=2k,z=k分别代入③,得3k+2k+k=66,得k=10x=3k=30y=2k=20z=k=16。

三元一次方程组的解法及运用

三元一次方程组的解法及运用

__________________________________________________ 来,把这个工程交给了甲乙两个施工队,工期 50 天完成,甲乙两队合作了 30 天后,乙队因另外有任务需 要离开 10 天,于是甲队加快速度,每天多修了 0.6 千米,10 天后乙队回来,为了保证工期,甲队速度不 变,乙队每天也比原来多修 0.4 千米,结果如期完成。问:甲,乙两队原计划每天各修多少千米?
工作量=工作效率×工作时间(相对应的)
例 6.(遵义 07)某中学准备改造面积为1080m2 的旧操场,现有甲、乙两个工程队都想承建这项工程.经 协商后得知,甲工程队单独改造这操场比乙工程队多用 9 天;乙工程队每天比甲工程队多改造10m2 ;甲
船(飞机)航行问题:相对运动的合速度关系是: 顺水(风)速度=静水(无风)中速度+水(风)流速度; 逆水(风)速度=静水(无风)中速度-水(风)流速度。
车上(离)桥问题: ①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。 ②车离桥指车头离开桥到车尾离开桥的一段路程。所走的路程为一个成长 ③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长 ④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长 行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。
例 1.有大小两种货车,2 辆大车与 3 辆小车一次可以运货 15.5 吨,5 辆大车与 6 辆小车一次可以运货 35 吨。3 辆大车与 5 辆小车一次可以运货多少吨?

(2)行程问题(基本关系:路程=速度×时间。) 相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相 等为等量关系。甲走的路程+乙走的路程=全路程

解三元一次方程组的方法

解三元一次方程组的方法

解三元一次方程组的方法三元一次方程组是指含有三个未知数的一次方程组,通常可以表示为如下形式:a1x + b1y + c1z = d1。

a2x + b2y + c2z = d2。

a3x + b3y + c3z = d3。

要解决这样的方程组,我们可以采用以下方法:1. 三元一次方程组的解法。

首先,我们可以使用消元法来解决三元一次方程组。

消元法的基本思想是通过加减乘除等运算,将方程组中的某个未知数逐步消去,最终得到只含有一个未知数的方程,然后通过代入法或者其他方法求解出该未知数的值,再逐步回代,最终得到所有未知数的值。

2. 三元一次方程组的求解步骤。

接下来,我们来具体介绍一下解三元一次方程组的步骤:(1)首先,我们可以通过消元法将方程组化为只含有两个未知数的方程组,具体的消元方法可以根据具体的方程组情况来选择,可以是加减消元法、乘除消元法等。

(2)然后,我们可以继续使用消元法,将方程组化为只含有一个未知数的方程,同样可以根据具体情况选择合适的消元方法。

(3)接着,我们可以通过代入法或者其他方法求解出最后一个未知数的值。

(4)最后,将求得的未知数的值逐步回代到原方程组中,验证是否满足所有方程,如果满足,则得到了方程组的解,如果不满足,则需要重新检查计算过程。

3. 三元一次方程组的解的表示形式。

最后,我们来看一下三元一次方程组的解的表示形式。

一般来说,三元一次方程组的解可以表示为一个有序三元组,即(x, y, z),其中x、y、z分别代表三个未知数的值,通过解方程组得到的有序三元组就是方程组的解。

总结:通过以上方法,我们可以解决三元一次方程组的问题,关键是灵活运用消元法和代入法,逐步化简方程组,最终得到方程组的解。

希望本文对解三元一次方程组有所帮助,谢谢阅读!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三元一次方程组的解法举例(精选5篇)三元一次方程组的解法举例篇1教学建议一、重点、难点分析本节教学的重点是掌握三元一次方程组的解法,教学难点是解法的灵活运用.能够熟练的解三元一次方程组是进一步学习一次方程组的应用,以及一次不等式组的解法的基础.1.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,这样的方程组就是三元一次方程组.2.三元一次方程组的解法仍是用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程.3.如何消元,首先要认真观察方程组中各方程系数的特点,然后选择最好的解法.4.有些特殊方程组,可用特殊的消元方法,有时一下子可消去两个未知数,直接求出一个未知数值来.5.解一次方程组的消元“转化”基本思想,可以推广到“四元”、“五元”等多元方程组,这是今后要学习的内容.二、知识结构三、教法建议1. 解三元一次方程组时,由于方程较多,学生容易出错.因此,应提醒学生注意,在消去一个未知数得出比原方程组少一个未知数的二元一次方程组的过程中,原方程组的每一个方程一般都至少要用到一次.2. 消元时,先要考虑好消去哪一个未知数.开始练习时,可以先把要消去的未知数写出来(如教科书在分析中所写的那样),然后再进行消元.在例2中,如果先确定消去,那么这三个方程两两分组的方法有3种;①与②,①与③,②与③.我们可以从中任选2种消去 .这里特别要注意选定2种后,必须消去同一个未知数.如果违背了这一点,所得的两个新方程虽然各含两个未知数,但由它们组成的方程组仍然含有三个未知数,这在实际上没有消元.示例一、素质教育目标(一)知识教学点1.知道什么是三元一次方程.2.会解某个方程只有两元的简单的三元一次方程组.3.掌握解三元一次方程组过程中化三元为二元或一元的思路.(二)能力训练点1.培养学生分析能力,能根据题目的特点,确定消元方法、消元对象.2.培养学生的计算能力、训练解题技巧.(三)德育渗透点渗透“消元”的思想,设法把未知数转化为已知.(四)美育渗透点通过本节课的学习,渗透方程恒等变形的数学美,以及方程组解的奇异美.二、学法引导1.教学方法:观察法、讨论法、练习法.2.学生学法:三元一次方程组比二元一次方程组要复杂些,有些题的解法技巧性较强,因此在解题前必须认真观察方程组中各个方程的系数特点,选择好先消去的“元”,这是决定解题过程繁简的关键.一般来说应先消去系数最简单的未知数.三、重点·难点·疑点及解决办法(一)重点使学生会解简单的三元一次方程组,经过本课教学进一步熟悉解方程组时“消元”的基本思想和灵活运用代入法、加减法等重要方法.(二)难点针对方程组的特点,选择最好的解法.(三)疑点如何进行消元.(四)解决办法加强理解二元及三元一次方程组的解题思想是“消元”,故在求解中为便于计算应选择系数较简单的未知数将它消去.四、课时安排一课时.五、教具学具准备投影仪、自制胶片.六、师生互动活动设计1.教师先复习解二元一次方程组的解题思想及办法,让学生充分理解方程组的消元思想及方法.2.教师由引例引出三元一次方程组,由学生思考、讨论后解决如何消三元变二元,教师讲解、小结.3.由学生尝试,解决例题.4.学生练习,教师小结、讲评.七、教学步骤(一)明确目标本节课将学习如何求三元一次方程组的解.(二)整体感知通过复习二元一次方程组的解题思想,从而类推出三元一次方程组的解题思想及解题方法,让学生牢牢抓住利用消元的思想化三元为二元,再化二元为一元的办法来求解.(三)教学过程1.复习导入、探索新知(1)解二元一次方程组的基本方法有哪几种?(2)解二元一次方程组的基本思想是什么?甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.题目中有几个未知数?含有几个相等关系?你能根据题意列出几个方程?学生活动:回答问题、设未知数、列方程.这个问题必须三个条件都满足,因此,我们把三个方程合在一起,写成下面的形式:这个方程组有三个未知数,每个方程的未知数的次数都是1,并且一共有三个方程,像这样的方程组,就是我们要学的三元一次方程组.怎样解这个三元一次方程组呢?你能不能设法消云一个或两个未知数,把它化成二元一次方程组或一元一次方程?学生活动:思考、讨论后说出消元方案.教师对学生的回答给予肯定或否定,纠正后说出消元方案:依照代入法,由较简单的方程②,可得④,进一步将④分别代入①和③中,就可消去,得到只含、的二元一次方程组.解:由②,得④把④代入①,得⑤把④代入③,得⑥⑤与⑥组成方程组解这个方程组得把代入④,得∴∴注意:a.得二元一次方程组后,解二元一次方程的过程在练习本上完成.b.得,后,求,要代入前面最简单的方程④.c.检验.这道题也可以用加减法解,②中不含,那么可以考虑将①与③结合消去,与②组成二元一次方程组.学生活动:在练习本上用加减法解方程组.【教法说明】通过一题多解,不仅能开阔学生的思维,培养学生的兴趣,而且,可以巩固解方程组时通过“消元”把未知转化为已知的基本思想.2.学生尝试解决例题例1 解方程组学生活动:独立分析、思考,尝试解题,有的学生可能用代入法解,有的学生可能用加减法解,选一个用加减法解的学生板演,然后,让用代入法的学生比较哪种方法简单.解:②×3+③,得④①与④组成方程组解这个方程组,得把,代入②,得∴∴归纳:这个方程组的特点是方程①不含,而②、③中的系数绝对值成整数倍关系,显然用加减法从②、③中消去后,再与①组成只含、的二元一次方程组的解法最为合理.而用代入法由①得到的式子含有分母,代入②、③较繁.【教法说明】有了前例的基础,让学生独立尝试解题,可以培养他们分析问题、解决问题的能力;在解题后归纳题目的特点为,点明消元方法和消元对象,更有助于学生探索方法、掌握技巧.3.尝试反馈,巩固知识练习:P30 (1).学生活动:独立完成练习后,同桌、前后桌之间按不同解法的同学交换,看哪种方法最简单.4.变式训练要,培养能力补例:解方程组学生活动:独立完成.【教法说明】此方程组中方程①、③中、的系数完全相同,用③-①可直接得到,再把代入②可求,代入①可求 .这道题直接化三元为一元,能使学生体会到解法技巧的重要性,觉得数学问题真是奥妙无穷!(四)总结、扩展1.解三元一次方程组的基本思想是什么?方法有哪些?2.解题前要认真观察各方程的系数特点,选择最好的解法,当方程组中某个方程只含二元时,一般的,这个方程中缺哪个元,就利用另两个方程用加减法消哪个元;如果这个二元方程系数较简单,也可以用代入法求解.3.注意检验.【教法说明】这样总结,既突出了本课重点,又突出了本节内容中例题、习题的特点—某个方程只含两元,使学生在以后解题时有很强的针对性.八、布置作业(一)必做题:P31 A组1.(二)选做题:解方程组(三)思考题:课本第32页“想一想”.【教法说明】作业(一)是为了巩固本节所学知识;作业(二)有很强的技巧性,可培养学生兴趣;作业(三)培养学生分析问题、解决问题的能力.三元一次方程组的解法举例篇2教学建议一、重点、难点分析本节教学的重点是掌握三元一次方程组的解法,教学难点是解法的灵活运用.能够熟练的解三元一次方程组是进一步学习一次方程组的应用,以及一次不等式组的解法的基础.1.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,这样的方程组就是三元一次方程组.2.三元一次方程组的解法仍是用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程.3.如何消元,首先要认真观察方程组中各方程系数的特点,然后选择最好的解法.4.有些特殊方程组,可用特殊的消元方法,有时一下子可消去两个未知数,直接求出一个未知数值来.5.解一次方程组的消元“转化”基本思想,可以推广到“四元”、“五元”等多元方程组,这是今后要学习的内容.二、知识结构三、教法建议1. 解三元一次方程组时,由于方程较多,学生容易出错.因此,应提醒学生注意,在消去一个未知数得出比原方程组少一个未知数的二元一次方程组的过程中,原方程组的每一个方程一般都至少要用到一次.2. 消元时,先要考虑好消去哪一个未知数.开始练习时,可以先把要消去的未知数写出来(如教科书在分析中所写的那样),然后再进行消元.在例2中,如果先确定消去,那么这三个方程两两分组的方法有3种;①与②,①与③,②与③.我们可以从中任选2种消去 .这里特别要注意选定2种后,必须消去同一个未知数.如果违背了这一点,所得的两个新方程虽然各含两个未知数,但由它们组成的方程组仍然含有三个未知数,这在实际上没有消元.教学设计示例一、素质教育目标(一)知识教学点1.知道什么是三元一次方程.2.会解某个方程只有两元的简单的三元一次方程组.3.掌握解三元一次方程组过程中化三元为二元或一元的思路.(二)能力训练点1.培养学生分析能力,能根据题目的特点,确定消元方法、消元对象.2.培养学生的计算能力、训练解题技巧.(三)德育渗透点渗透“消元”的思想,设法把未知数转化为已知.(四)美育渗透点通过本节课的学习,渗透方程恒等变形的数学美,以及方程组解的奇异美.二、学法引导1.教学方法:观察法、讨论法、练习法.2.学生学法:三元一次方程组比二元一次方程组要复杂些,有些题的解法技巧性较强,因此在解题前必须认真观察方程组中各个方程的系数特点,选择好先消去的“元”,这是决定解题过程繁简的关键.一般来说应先消去系数最简单的未知数.三、重点·难点·疑点及解决办法(一)重点使学生会解简单的三元一次方程组,经过本课教学进一步熟悉解方程组时“消元”的基本思想和灵活运用代入法、加减法等重要方法.(二)难点针对方程组的特点,选择最好的解法.(三)疑点如何进行消元.(四)解决办法加强理解二元及三元一次方程组的解题思想是“消元”,故在求解中为便于计算应选择系数较简单的未知数将它消去.四、课时安排一课时.五、教具学具准备投影仪、自制胶片.六、师生互动活动设计1.教师先复习解二元一次方程组的解题思想及办法,让学生充分理解方程组的消元思想及方法.2.教师由引例引出三元一次方程组,由学生思考、讨论后解决如何消三元变二元,教师讲解、小结.3.由学生尝试,解决例题.4.学生练习,教师小结、讲评.七、教学步骤(一)明确目标本节课将学习如何求三元一次方程组的解.(二)整体感知通过复习二元一次方程组的解题思想,从而类推出三元一次方程组的解题思想及解题方法,让学生牢牢抓住利用消元的思想化三元为二元,再化二元为一元的办法来求解.(三)教学过程。

相关文档
最新文档