雨量分析和暴雨强度计算

合集下载

雨量分析与暴雨强度公式教程

雨量分析与暴雨强度公式教程
缺点
暴雨强度公式的准确性受到气象数据、地形地貌数据等因素的影响,存在一定的误差。此外,暴雨强度公式在应用过程中需要考虑不同地区的具体情况,需要进行适当的修正和调整。
暴雨强度公式的优缺点
03
CHAPTER
暴雨强度公式推导
通过收集降雨数据,分析降雨量与时间的变化规律,建立数学模型。
确定降雨量与时间的关系
降雨历时(T)
表示径流与降雨量之间的比例关系,通常根据地区和地表类型确定。
径流系数(C)
根据具体公式,可能还包括其他参数,如汇流时间、流域面积等。
其他参数
暴雨强度公式参数解释
选择具有代表性的暴雨事件或地区,如某城市或某流域。
选择实例
收集相关气象、水文和地形数据。
数据收集
将数据代入暴雨强度公式,计算暴雨强度。
在城市排水系统设计中,暴雨强度公式用于计算排水管道的排水能力,确保城市在暴雨时能够有效地排水防涝。
在灾害风险评估中,暴雨强度公式用于评估不同降雨条件下可能造成的损失和影响。
暴雨强度公式的应用场景
优点
暴雨强度公式能够根据不同地区的气象、地形、城市特征等因素,较为准确地预测降雨量和降雨强度,为城市规划、灾害防控等方面提供科学依据。
应急响应
在暴雨天气发生时,启动应急响应机制,组织抢险救灾工作,保障人民生命财产安全。
ቤተ መጻሕፍቲ ባይዱ
雨水收集利用
利用雨水收集系统,将雨水收集起来用于绿化灌溉、冲厕、洗车等生活和工业用途,减少对城市供水的依赖。
水资源评估
通过雨量分析和暴雨强度公式,评估城市雨水资源的数量和质量,为雨水资源的开发和利用提供依据。
水资源保护
加强水资源保护,防止水体污染和生态破坏,促进水资源的可持续利用。

暴雨强度公式i

暴雨强度公式i

暴雨强度公式i=A /t n 中参数的推求,用试摆法对暴雨强度公式i =A /(t+b )n
中参数的推求,应用非线性最小二乘法(计算程序)推求暴雨强度公式i =A 1(1+C lg T )/(t+b )n 中的参数*
, 推求无自记雨量记录地区的暴雨强度公式,利用等值线图求暴雨强度。

另外针对管道排水设计的具体计算公式为:
q=288745( 1+ 0794 LgP )/( t + 188)
0.81
式中q--设计暴雨强度(立升/秒;公顷); P--设计重现期(P =1); t--降雨历时(分钟), t=t 1+mt 2。

; t 1--地向集水时问;取t 1-10分钟; t 2--雨水在管道内的流行时间(分钟); m--延缓系数,暗管取m=2.
雨水设计流量应按下列公式计算:
Q=ΨqA
式中Q--雨水设计流量(立升/秒); q--设计暴雨强度(立升/秒,公顷); w--径流系数: 商业区=0.85; 居住区=0.80; 工业区=0.75
A--汇水面积(公顷)。

欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

浙江省暴雨强度公式

浙江省暴雨强度公式

浙江省暴雨强度公式浙江省作为中国东部沿海地区的经济大省,其气候特点主要为亚热带季风气候,具有四季分明、雨水充沛的特点。

近年来,随着全球气候变化的加剧,极端天气事件频发,暴雨强度也呈现出日益增加的趋势。

因此,了解和掌握浙江省暴雨强度的计算公式对于城市规划、防洪减灾等方面具有重要意义。

一、暴雨强度公式的定义暴雨强度公式是用来计算某一地点在单位时间内的降雨量大小的公式。

在浙江省,暴雨强度公式通常采用以下形式:Q = (1242/t+4.48)/5.62其中,Q为暴雨强度(单位:毫米/分钟),t为时间(单位:分钟),该公式适用于浙江省大部分地区的暴雨强度计算。

二、暴雨强度公式的应用1、城市规划在城市规划中,暴雨强度的计算对于排水系统的设计至关重要。

根据暴雨强度公式,可以计算出不同区域的暴雨强度,进而确定排水系统的规模和设计标准。

同时,还可以根据暴雨强度公式对城市的防洪标准进行评估和优化,确保城市安全。

2、防洪减灾在防洪减灾方面,暴雨强度公式可以为相关部门提供决策依据。

根据暴雨强度公式,可以预测出某一地区的降雨量大小,进而评估该地区的洪涝风险。

同时,可以根据暴雨强度公式对水库的蓄水量进行合理调整,避免因降雨过多导致洪涝灾害的发生。

三、暴雨强度公式的解析1、系数调整在暴雨强度公式中,系数的调整是根据不同地区的地理、气候条件而定的。

因此,在应用暴雨强度公式时,需要根据当地的具体情况进行系数调整,以确保计算结果的准确性。

2、时间尺度暴雨强度公式中的时间尺度是分钟,这意味着计算出的降雨量是每分钟的平均降雨量。

在实际应用中,可以根据需要将时间尺度进行调整,如将分钟调整为小时或日等,以适应不同的需求。

四、总结浙江省暴雨强度公式的应用与解析对于城市规划、防洪减灾等方面具有重要意义。

通过掌握暴雨强度公式,可以更加准确地预测降雨量大小,进而为相关部门的决策提供有力支持。

在应用暴雨强度公式时需要注意系数的调整以及时间尺度的选择,以确保计算结果的准确性。

黄山市暴雨强度公式评估

黄山市暴雨强度公式评估

黄山市暴雨强度公式评估简介黄山市地处中国东南部,是一个风景旖旎的城市。

然而,由于气候变化的影响,该城市近年来遭受了多次暴雨袭击。

因此,如何准确评估暴雨强度,成为了保障该市居民生命与财产安全的重要研究课题。

本文将介绍针对黄山市暴雨强度进行评估的公式及其应用。

黄山市暴雨强度公式介绍一般来说,暴雨强度公式可以根据地区的降雨数据进行定制化。

针对黄山市这一特定地区,研究者们制定了一组基于降雨量的暴雨强度公式。

该公式采用了统计分析方法,包括对历史降雨数据的分析、正态分布曲线的图形绘制、以及回归分析等方法。

最终,制定出了一个以降雨量为自变量,以暴雨强度为因变量的公式:I = a * ln(R) + b其中,I表示暴雨强度,R表示单位时间内的降雨量,a和b是待求系数。

应用案例为了验证该公式的可靠性与准确性,研究者们通过在黄山的多个监测站点对公式进行了测试。

结果显示,该公式具有较高的拟合度和稳定性,能够较为准确地评估黄山市暴雨强度。

下面是一个具体应用案例:某一监测站记录到单位时间内的降雨量为60mm,研究者们根据公式计算该地区的暴雨强度为:I = a * ln(60) + b经过计算和取值,求得a=0.65,b=1.03,带回公式得:I = 0.65 * ln(60) + 1.03 = 2.64因此,该地区当前的暴雨强度为2.64。

总结本文介绍了针对黄山市暴雨强度进行评估的公式及其应用,该公式通过统计分析方法得出,能够较为准确地预估该地区的暴雨强度。

公式的应用案例表明其具有实际应用价值,为黄山市及其周边地区数据监测和防范提供了一定的参考。

雨水管渠系统的设计课件.ppt

雨水管渠系统的设计课件.ppt
(1)汇水面积随降雨历时的增加而均匀的增加;
(2)降雨历时t等于或大于汇水面积最远点的雨水流达设计断面的集水 时间τ;
(3)径流系数Ψ为确定值,为讨论方便,假定其值等于1。
求:图中各管段的设计流量
A
B
C
τ1
1
2
3
4
解:(1)管段1~2的雨水设计流量
Q1~2= Ψ1·q1·FA=q1·FA
其中,q1为降雨历时t= τ1时对应的暴雨强度。
0
∫ 其中:
τ0
i·dt
0
表示的是τ0时段内的总降雨量h
所以:Qn=f·h=
Fh
τ0
=F·i
▪ 若流量的单位以L/s表示,则: Qn = 167F i = Fq (L/S)
4、雨水管段的设计流量计算举例
A
B
C
1
2
3
4
图中:A、B、C为3块互相毗邻的区域,设面积FA=FB=FC,雨水从各块 面积上的最远点分别流入设计断面1、2、3所需的集水时间均为 τ1( min),并设:
暴雨强度公式是反映暴雨强 度q(i)、降雨历时t、重现期P 三者之间的关系,是设计雨水 管渠的依据。
我国《室外排水设计规范》 中规定,我国采用的暴雨强度 公式的形式为:
q167A1(1clgP) (t b)n
降雨历时
式中: q——设计暴雨强度,L/s.ha;
(min)
P——设计重现期,年;
t ——降雨历时,min;
▪ 暴雨强度是描述暴雨特征的重要指标,是 确定雨水设计流量的重要依据。
▪ 在任一场暴雨中,暴雨强度随降雨历时的 变化而变化 。就雨水管渠设计而言,有意 义的是找出降雨量最大的那个时段内的降 雨量。因此,暴雨强度的数值与所取的连 续时间段t的跨度和位置有关。在城市暴雨 强度公式推求中,经常采用的降雨历时为 5min、10min、15min、20min、30min、 45min、60min、90min、120min等9个历 时数值,特大城市可以用到180min。

第3章雨水管渠系统的设计1-2资料

第3章雨水管渠系统的设计1-2资料

2.降雨历时
是指连续降雨的时段,可以指一场雨 全部降雨的时间.也可以指其中个别的 连续时段。
用t表示,以min或h计,从自记雨量记 录纸(如图3-1所示)上读得。
3.暴雨强度 是指某一连续降雨时段内的平均降雨量, 即单位时间的平均降雨深度,用i表示。
i H (mm / min) t
在工程上,常用单位时间内单位面积上的降雨体积 q(L/(s·ha))表示。 q与i之间的换算关系是将每分钟的 降雨深度换算成每公顷面积上每秒钟的降雨体积.即;
t渗终 ~ t雨终 I<<μˊ 全下渗,无径流
2.流域上汇流过程
通常将雨水径流从流域的最
远点流到出口断面的时间称
为流域的集流时间或集水时 间。
b
图3—3(2)是一块扇形流域汇 水面积,其边界线是ac,ab 和bc弧,a点为集流点(如雨 水口,管渠上某一断面)。
假定汇水面积内地面坡度均
等,则以a点为圆心所划的 圆弧线de,fg,hi,…称为等 流时线.
雨强I
死水
径流 入渗率μˊ
t=0
无雨水,无渗流
0~t余始
I=μˊ 无径流,全下渗,植物截留
t余始 ~ t径始 I>μˊ 余水积于洼地
t径始 ~ tmax I>μˊ 径流且逐渐增大
tmax ~ t等径点 I>μˊ径流且逐渐减小
t等径点 ~ t径终 I<μˊ 地面积水,植物截水参与径流
t径终 ~ t渗终 I<μˊ 死水下渗,降雨全下渗
第3章 雨水管渠系统的设计
雨水管渠系统:是由雨水口、雨水管渠、 检查井、出水口等构筑物所组成的一整 套工程设施。
雨水管渠系统的任务:就是及时地汇集 并排除暴雨形成的地面径流,防止城市 居住区与工业企业受淹,以保障城市人 民的生命安全和生活生产的正常秩序。

雨量分析与暴雨强度计算

雨量分析与暴雨强度计算

(3)合理地确定溢流井的数目和位置 ●从对水体的污染情况看,合流制管渠系统中的初期
雨水虽被截流,但溢流的混合污水总比一般雨水 脏,为保护受纳水体,溢流井的数目宜少,其位 置应尽可能设置在水体的下游。 ●从经济上讲,溢流井过多,会提高溢流井和排放管 渠的造价,特别是在溢流井离水体远,施工条件 困难时更是如此。当溢流井的溢流堰口标高低于 受纳水体的最高水位时,需在排放管渠上设置防 潮门、闸门或排涝泵站。为减少泵站造价、减少 对水体的污染和便于管理,溢流井应适当集中, 不宜过多。
减小管渠断面尺寸的目的。规范规定:暗管 m =2, 明渠 m =1.2,在陡坡地区的暗管 m=1.2~2。
各设计管段的雨水设计流量应等于该管段所承 担的全部汇水面积与该管段设计暴雨强度的乘积。
Q qF
各管段的设计暴雨强度就是以管段设计断面集 水时间作为降雨历时所对应的暴雨强度。
由于各管段的集水时间不同,所以各管段的设 计暴雨强度也不同。
10.3 雨水管网设计与计算
10.3.1 雨水管网平面布置特点 1.充分利用地形,就近排入水体
雨水管渠应尽量利用自然地形坡度布置,要以 最短的距离靠重力流将雨水排入附近的池塘、河流、 湖泊等水体中。
一般情况下,当地形坡度较大时,雨水干管布置 在地形低处或溪谷线上;当地形平坦时,雨水干管布 置在排水流域的中间,以便于支管接入,尽量扩大重 力流排除雨水的范围。
10.2 雨水管网设计流量计算
10.2.1 地面径流与径流系数 径流系数概念
在雨水管渠系统设计中,汇水面积通常是由各 种性质的地面覆盖组成的,随着它们占有的面 积比例变化,ψ 值也各异。因此整个汇水面积的 径流系数应采用平均径流系数
也可采用区域的综合径流系数。一般市区的综 合径流系数ψ=0.5~0.8,郊区的综合径流系数ψ =0.4~0.6。

山南市暴雨强度公式

山南市暴雨强度公式

山南市暴雨强度公式1、暴雨强度公式: Qy=ψ.qF。

2、暴雨强度指的是降雨的集中程度。

-般以--次暴雨的降雨量、最大瞬间降雨强度、小时降雨量等表示。

其计量单位通常以mm/min或L /(s.万m2)表示。

我国气象局规定,按降水强度大小又分为三个等级,即24小时降水量为50~99.9毫米称“暴雨”,100~249.9毫米以下为“大暴雨”,250毫米以上称“特大暴雨”。

3、世界.上最大的暴雨出现在南印度洋上的留尼汪岛,24小时降水量为1870毫米。

我国最大暴雨出现在台湾省新寮,24小时降水量为1672毫米,均是热带气旋活动引起的。

我国是多暴雨国家之一,几乎各省(市、区)均有出现。

主要集中在下半年。

暴雨日数的地域分布呈明显的南方多,北方少;沿海多,内陆少;迎风坡侧多,背风坡侧少的特征。

台湾山地的年暴雨日达16天以上,华南沿海的东兴、阳江、汕尾及江淮流域一些地区在10天以上,而西北地区平均每年不到1天。

暴雨分为好几个等级,暴雨是有强度之分的,对其暴雨强度有专门的计算公式,那么暴雨强度公式怎么计算?今天佰佰安全网小编来给大家详细的讲解一下。

暴雨强度公式t=t1+n*t2,其中t1是地面集水时间,一般取5-15分钟;t2是雨水在管道中流行的时间。

n是折减系数,新版规范已取消,n取1。

暴雨强度及雨水流量计算是大小为291KB的免费版软件。

可以查询到各个城市的暴雨强度公式的计算软件,和全国各个城市暴雨强度计算公式和算法。

暴雨强度及雨水流量计算是可以查询到各个城市的暴雨强度公式的计算软件,和全国各个城市暴雨强度计算公式和算法。

并且通过计算可以得出全国各地城市的降雨量,非常方便实用。

暴雨强度指的是降雨的集中程度。

一般以一次暴雨的降雨量、最大瞬间降雨强度、小时降雨量等表示。

其计量单位通常以mm/min或L/(s.万m2)表示。

我国气象上规定,24小时降水量为50毫米或以上的雨称为“暴雨”。

按其降水强度大小又分为三个等级,即24小时降水量为50~99.9毫米称“暴雨”100~200毫米以下为“大暴雨”;200 毫米以上称特大暴雨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雨量分析和暴雨强度计算
(3)折减系数 m的确定 折减系数 m的提出原因如下:
1)按公式算出的管渠内流行时间 t2将比实际时 间偏小。
2)为了利用管道的调蓄能力,应使管内水流实 际流速低于设计流速,故要延缓管内流行时间 t2。
雨量分析和暴雨强度计算
考虑到以上两个原因,在设计降雨历时计算
时引入了折减系数m,延缓了管内流行时间,使之
(1)地面集水时间 t1 的确定
地面集水时间是指雨水从汇水面积上最远点流 到雨水口的地面流行时间。
地面集水时间受地形坡度、地面铺砌、地面植 被情况、距离长短等因素的影响,主要取决于水流 距离的长短和地面坡度。在工程实践中,地面集水 时间通常不予计算,一般采用5~15 min。
雨量分析和暴雨强度计算
雨量分析和暴雨强度计算
(2)设计管段2~3的雨水设计流量
该设计管段收集汇水面积 F1和 F2上的雨水,2
断面为管段2~3的设计断面。
当 t=τ1 + t 1-2时,F1和 F2全部面积上的雨
水均流到2断面,管段2~3的流量达到最大值。即:
Q 2 3q 2F 1 F 2 (L/s)
式中 q2—— 管段2~3的设计暴雨强度,即相应于 降雨历时 t=τ1 + t 1-2的暴雨强度
地面经常积水; 选用过小,又将加大雨水管渠尺寸,从而增加工
程造价。
雨量分析和暴雨强度计算
(2)管渠内雨水流行时间 t2的确定 t2 是指雨水在管渠内的流行时间,即:
式中 t2 —— 管渠内雨水流行时间(min); L —— 各设计管段的长度(m); v —— 各设计管段满流时的流速(m/s); 60 —— 单位换算系数。
(L/s ·ha);
t 1-2—— 管段1~2的管内雨水流行时间
(min)。
雨量分析和暴雨强度计算
(3)设计管段3~4的雨水设计流量
Q 3 4 q 3 F 1 F 2 F 3 (L/s)
式中
q3—— 管段3~4的设计暴雨强度,即相应于 降雨历时 t=τ1 + t 1-2 + t 2-3的
10.1 雨量分析-暴雨强度公式
10.1.1 雨量分析 1.降雨量 2.降雨强度(暴雨强度) 3.降雨面积和汇水面积 4.降雨的频率和重现期
雨量分析和暴雨强度计算
10.1.2 暴雨强度公式
暴雨强度公式是( )、 ( )、( )三者间关系的数学 表达式,我国常用的暴雨强度公式为:
q167A1t1bcnlgP
雨量分析和暴雨强度计算
10.2 雨水管网设计流量计算
10.2.1 地面径流与径流系数 径流系数概念 在雨水管渠系统设计中,汇水面积通常是由各种
性质的地面覆盖组成的,随着它们占有的面积比 例变化,ψ 值也各异。因此整个汇水面积的径流 系数应采用平均径流系数 也可采用区域的综合径流系数。一般市区的综合 径流系数ψ=0.5~0.8,郊区的综合径流系数ψ= 0.4~0.6。
更接近于实际情况,并达到折减管段设计流量,
减小管渠断面尺寸的目的。规范规定:暗管 m =2, 明渠 m =1.2,在陡坡地区的暗管 m=1.2~2。
雨量分析和暴雨强度计算
各设计管段的雨水设计流量应等于该管段所承 担的全部汇水面积与该管段设计暴雨强度的乘积。
Q qF
各管段的设计暴雨强度就是以管段设计断面集 水时间作为降雨历时所对应的暴雨强度。
雨量分析和暴雨强度计算
10.2.2 断面集水时间与折减系数 1.集水时间——指雨水从汇水面积上最远点流到设
计的道断面所需时间。(min)
2. t1m2t
式中 —— 设计降雨历时(min); t1 —— 地面集水时间(min); t2 —— 管渠内雨水流行时间(min); m —— 折减系数。
雨量分析和暴雨强度计算
暴雨强
度(L/s·ha)。
t 2-3—— 管段2~3的管内雨水流行时间
(min)。
雨量分析和暴雨强度计算
(4)设计管段4~5的雨水设计流量
Q 4 5 q 4 F 1 F 2 F 3 F 4 (L/s)
式中
q4—— 管段4~5的设计暴雨强度,即相应于 降雨历时 t=τ1 + t 1-2 + t 2-3 + t 3-4的暴
雨强度(L/s·ha)。
t 3-4—— 管段3~4的管内雨水流行时间
(min)。
雨量分析和暴雨强度计算
某雨水管线如图所示,径流系数为0.5,q=1200 (1+0.75lgT)/(t+5)0.61,重现期T=1a,F1、F2 F3 的地面集水时间分别为10min、5min、10min,折减 系数m=2,管内流动时间t1-2=5min,t2-3=3.75min, t4-3=3min,则2-3管段和3-5管段的设计流量分别是 ( )L/s,和( )L/s。
➢ 一般在建筑密度较大、地形较陡、雨水口布置 较密的地区,宜采用较小值,取 t1=5~8 min。 ➢ 在建筑密度较小、地形较平坦、雨水口布置较 疏的地区,宜采用较大值,取 t1=10~15 min。 ➢ 同时,起点检查井上游地面雨水流行距离以不
超过120~150 m为宜。
应结合当地具体条件,合理地选定 t1值。 t1选用过大,将会造成排水不畅,致使管道上游
雨量分析和暴雨强度计算
10.3 雨水管网设计与计算
10.3.1 雨水管网平面布置特点 1.充分利用地形,就近排入水体
雨水管渠应尽量利用自然地形坡度布置,要以 最短的距离靠重力流将雨水排入附近的池塘、河流、 湖泊等水体中。
雨量分析和暴雨强度计算
由于各管段的集水时间不同,所以各管段的设 计暴雨强度也不同。
雨量分析和暴雨强度计算
2.例题
雨量分析和暴雨强度计算
雨水从各汇水面积上最远点分别流入雨水口
a、b、c、d的地面集水时间均为τ1,并假设:
1)汇水面积随集水时间的增加而均匀增加;
2)降雨历时 t 等于或大于汇水面积上最远
点的雨水流达设计断面的集水时间τ1;
3)径流系数ψ为定值。
雨量分析和暴雨强度计算
(1)设计管段1~2的雨水设计流量
直到 t=τ1时,F1全部面积上的雨水均已全部
流到设计断面,这时管段1~2内流量达到最大值。
Q 12 q1F1 (L/s)
式中
q1—— 管段1~2的设计暴雨强度,即相应 降雨历时 t=τ1时的暴雨强度
(L/s·ha)。
相关文档
最新文档