河南中考数学模拟试题十一
中考数学模拟试卷(十一)(含解析)

2016年河南省信阳市新县一中中考数学模拟试卷(十一)一、选择题1.如图,数轴上有A、B、C、D四个点,其中表示互为相反数的点是()A.点A与点D B.点A与点C C.点B与点D D.点B与点C2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.3.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个B.3个C.2个D.1个4.下列运算正确的是()A.5ab﹣ab=4 B. += C.a6÷a2=a4D.(a2b)3=a5b35.下列调查中,适合用普查方式的是()A.调查佛山市市民的吸烟情况B.调查佛山市电视台某节目的收视率C.调查佛山市市民家庭日常生活支出情况D.调查佛山市某校某班学生对“文明佛山”的知晓率6.小卖部货架上摆放着某品牌方便面,它们的三视图如图,货架上的方便面至多有()A.7盒B.8盒C.9盒D.10盒7.如图,点A,B,C是⊙O上的三点,直线CD与⊙O相切于点C,若∠DCB=40°,则∠CAB的度数是()A.40° B.50° C.80° D.100°8.如图,在平面直角坐标系xOy中,等边三角形ABC的顶点A在反比例函数y=(k>0)的图象上,顶点B,C在x轴正半轴上,BC=8,将等边三角形ABC沿x轴正方向平移8个单位长度,得到△A′B′C′,线段A′C′的中点恰好又落在反比例函数y=(k>0)的图象上,则此时线段OC′的长为()A.16 B.22 C.6 D.14二、填空题9.分解因式:2a2﹣4a+2=_______.10.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=_______.11.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_______,该逆命题是_______命题(填“真”或“假”).12.如图,正六边形ABCDEF的边长为2,延长BA,EF交于点O.以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,则直线DF与直线AE的交点坐标是(_______,_______).13.有甲、乙两个黑布袋,甲布袋中有两个完全相同的小球,分别标有数字﹣1和2;乙袋中有三个完全相同的小球,分别标有数字﹣2、﹣3和﹣4.小明从甲袋中随机取出一个小球,记其标有的数字为a,再从乙袋中随机取出一个小球,记其标有数字为b:则满足x2+(a+b)x+4=0有两个不相等实数根的概率是_______.14.如图,菱形OABC中,∠A=120°,OA=1,将菱形OABC绕点O按顺时针方向旋转90°,则图中阴影部分的面积是_______.15.如图,将矩形纸片ABCD沿直线AE折叠,点B恰好落在线段CD的中点F上,点G是线段AF上一动点(不与A,F重合),点G过GH⊥AB,垂足为H,将矩形沿直线GH翻折,点A恰好落在线段BH上点A′处.若AB长为8,则当△A′GE为直角三角形时,AH的长为_______.三、解答题(本大题共8小题,满分75分)16.先化简,再求代数式的值,其中a=2tan60°﹣1.17.某校为了增加初三学生的复习时间,把上课时间提前到7:10;初二综合实践活动小组想探索这一举措的合理性,决定对初三学生到校时间及早餐质量进行调查.他们从早上6:30开始在校门口对初三到校学生进行观察统计,并把统计结果绘成条形统计图;然后对初三学生早餐质量进行抽样调查,并把结果画成扇形统计图.1)该校初三学生约有_______人,迟到学生有_______人,占初三学生总数的_______%.2)计算因担心迟到而在路上随便吃点早餐的初三学生数.3)通过以上信息,你认为“初三提前到7:10上课”这一举措是否合理?谈谈你的看法(不超过30字)18.如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是_______,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.19.为缓解交通压力,节约能源减少大气污染,上海市政府推行“P+R”模式(即:开自驾车人士,将车开到城郊结合部的轨道车站附近停车,转乘轨道交通到市中心).市郊某地正在修建地铁站,拟同步修建地下停车库.如图,是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D、F,坡道AB的坡度i=1:3,AD=9米,C在DE上,DC=0.5米,CD是限高标志牌的高度(标志牌上写有:限高_______米).如果进入该车库车辆的高度不能超过线段CF的长,计算该停车库限高多少米.(结果精确到0.1米)(提供可选用的数据:)20.如图1,直角三角形AOB中,∠AOB=90°,AB∥x轴,OA=2OB,AB=5,反比例函数y=(x>0)的图象经过点A.(1)求反比例函数的解析式;(2)如图2,P(x,y)在(1)中的反比例函数图象上,其中1<x<8,连接OP,过点O作OQ⊥OP,且OP=2OQ,连接PQ,设点Q坐标为(m,n),其中m<0,n>0,求n与m的函数解析式,并直接写出自变量m的取值范围.21. 2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?22.在□ABCD中,BC=2AB,M为AD的中点,设∠ABC=α,过点C作直线AB的垂线,垂足为点E,连ME.(1)如图①,当α=90°,ME与MC的数量关系是_______;∠AEM与∠DME的关系是_______;(2)如图②,当60°<α<90°时,请问:(1)中的两个结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)如图③,当0°<α<60°时,请在图中画出图形,ME与MC的数量关系是_______;∠AEM与∠DME 的关系是_______.(直接写出结论即可,不必证明)23.如图,平面直角坐标系xOy中,点A的坐标为(﹣2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.2016年河南省信阳市新县一中中考数学模拟试卷(十一)参考答案与试题解析一、选择题1.如图,数轴上有A、B、C、D四个点,其中表示互为相反数的点是()A.点A与点D B.点A与点C C.点B与点D D.点B与点C【考点】相反数;数轴.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:2与﹣2互为相反数,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个B.3个C.2个D.1个【考点】平行线的性质;余角和补角.【专题】几何图形问题.【分析】由互余的定义、平行线的性质,利用等量代换求解即可.【解答】解:∵斜边与这根直尺平行,∴∠α=∠2,又∵∠1+∠2=90°,∴∠1+∠α=90°,又∠α+∠3=90°∴与α互余的角为∠1和∠3.故选:C.【点评】此题考查的是对平行线的性质的理解,目的是找出与∠α和为90°的角.4.下列运算正确的是()A.5ab﹣ab=4 B. += C.a6÷a2=a4D.(a2b)3=a5b3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;分式的加减法.【专题】计算题.【分析】A、原式合并同类项得到结果,即可做出判断;B、原式通分并利用同分母分式的加法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式=4ab,故A选项错误;B、原式=,故B选项错误;C、原式=a4,故C选项正确;D、原式=a6b3,故D选项错误.故选:C.【点评】此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.5.下列调查中,适合用普查方式的是()A.调查佛山市市民的吸烟情况B.调查佛山市电视台某节目的收视率C.调查佛山市市民家庭日常生活支出情况D.调查佛山市某校某班学生对“文明佛山”的知晓率【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A.调查佛山市市民的吸烟情况,所费人力、物力和时间较多,适合抽样调查,故A选项错误;B.调查佛山市电视台某节目的收视率,所费人力、物力和时间较多,适合抽样调查,故B选项错误;C.调查佛山市市民家庭日常生活支出情况,所费人力、物力和时间较多,适合抽样调查,故C选项错误;D.调查佛山市某校某班学生对“文明佛山”的知晓率,适合用普查方式,故D选项正确.故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.小卖部货架上摆放着某品牌方便面,它们的三视图如图,货架上的方便面至多有()A.7盒B.8盒C.9盒D.10盒【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:易得第一层有4碗,第二层至多有2碗,第三层至多有1碗,所以至多共有4+4+1=9盒.故选:C.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.7.如图,点A,B,C是⊙O上的三点,直线CD与⊙O相切于点C,若∠DCB=40°,则∠CAB的度数是()A.40° B.50° C.80° D.100°【考点】切线的性质.【分析】根据切线的性质可得∠OCD=90°,进而可得∠OCB的度数,再利用三角形内角和为180°求出∠COB的度数,根据圆周角定理可得∠CAB的度数.【解答】解:∵直线CD与⊙O相切于点C,∴∠OCD=90°,∵∠DCB=40°,∴∠OCB=50°,∵CO=BO,∴∠OBC=50°,∴∠COB=80°,∴∠CAB=80°=40°,故选:A.【点评】此题主要考查了切线的性质,以及圆周角定理,关键是掌握圆的切线垂直于经过切点的半径.8.如图,在平面直角坐标系xOy中,等边三角形ABC的顶点A在反比例函数y=(k>0)的图象上,顶点B,C在x轴正半轴上,BC=8,将等边三角形ABC沿x轴正方向平移8个单位长度,得到△A′B′C′,线段A′C′的中点恰好又落在反比例函数y=(k>0)的图象上,则此时线段OC′的长为()A.16 B.22 C.6 D.14【考点】反比例函数图象上点的坐标特征;等边三角形的性质;坐标与图形变化-平移.【分析】设A(a,b),根据等边三角形的性质和平移的规律得到点A′、C、C′的坐标,由反比例函数图象上点的坐标特征来求a的值即可.【解答】解:设A(a,b),则C(a+4,0),A′(a+8,b),C′(a+12,0).所以线段A′C′的中点坐标是(a+10,).则ab=(a+10)•,解得a=10.所以C′(22,0).所以线段OC′的长为22.故选:B.【点评】本题综合考查了反比例函数图象上点的坐标特征、等边三角形的性质以及坐标与图形变化.解题时,采取了“设而不解”的方法来求a的值,减少了繁琐的计算过程.二、填空题9.分解因式:2a2﹣4a+2= 2(a﹣1)2.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A= 55°.【考点】旋转的性质.【分析】根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.【解答】解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.【点评】此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.11.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题(填“真”或“假”).【考点】命题与定理.【分析】交换原命题的题设和结论即可得到该命题的逆命题.【解答】解:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的面积相等,那么这两个三角形全等;假.【点评】本题考查逆命题的概念,以及判断真假命题的能力以及全等三角形的判定和性质.12.如图,正六边形ABCDEF的边长为2,延长BA,EF交于点O.以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,则直线DF与直线AE的交点坐标是( 2 , 4 ).【考点】正多边形和圆;两条直线相交或平行问题.【专题】压轴题.【分析】首先得出△AOF是等边三角形,利用建立的坐标系,得出D,F点坐标,进而求出直线DF的解析式,进而求出横坐标为2时,其纵坐标即可得出答案.【解答】解:连接AE,DF,∵正六边形ABCDEF的边长为2,延长BA,EF交于点O,∴可得:△AOF是等边三角形,则AO=FO=FA=2,∵以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,∠EOA=60°,EO=FO+EF=4,∴∠EAO=90°,∠OEA=30°,故AE=4cos30°=6,∴F(,3),D(4,6),设直线DF的解析式为:y=kx+b,则,解得:,故直线DF的解析式为:y=x+2,当x=2时,y=2×+2=4,∴直线DF与直线AE的交点坐标是:(2,4).故答案为:2,4.【点评】此题主要考查了正多边形和圆以及待定系数法求一次函数解析式等知识,得出F,D点坐标是解题关键.13.有甲、乙两个黑布袋,甲布袋中有两个完全相同的小球,分别标有数字﹣1和2;乙袋中有三个完全相同的小球,分别标有数字﹣2、﹣3和﹣4.小明从甲袋中随机取出一个小球,记其标有的数字为a,再从乙袋中随机取出一个小球,记其标有数字为b:则满足x2+(a+b)x+4=0有两个不相等实数根的概率是.【考点】列表法与树状图法;根的判别式.【分析】依据题意用列表法或画树状图法分析所有等可能的出现结果,再根据概率公式即可求出该事件的概率.【解答】解:如图所示:,∵△=(a+b)2﹣4×1×4,当a=﹣1,b=﹣2时,△=9﹣16=﹣7<0,此方程无实数根;当a=﹣1,b=﹣3时,△=16﹣16=0,此方程有两个相等的实数根;当a=﹣1,b=﹣4时,△=25﹣16=9,此方程有两个不相等的实数根;当a=2,b=﹣2时,△=0﹣16=﹣16<0,此方程无实数根;当a=2,b=﹣3时,△=1﹣16=﹣15<0,此方程无实数根;当a=2,b=﹣4时,△=4﹣16=﹣12<0,此方程无实数根;∴满足x2+(a+b)x+4=0有两个不相等实数根的概率是:.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.如图,菱形OABC中,∠A=120°,OA=1,将菱形OABC绕点O按顺时针方向旋转90°,则图中阴影部分的面积是.【考点】扇形面积的计算;菱形的性质;旋转的性质.【专题】压轴题.【分析】连接OB、OB′,阴影部分的面积等于扇形BOB′的面积减去两个△OCB的面积和扇形OCA′的面积.根据旋转角的度数可知:∠BOB′=90°,已知了∠A=120°,那么∠BOC=∠A′OB′=30°,可求得扇形A′OC的圆心角为30°,进而可根据各图形的面积计算公式求出阴影部分的面积.【解答】解:连接OB、OB′,过点A作AN⊥BO于点N,菱形OABC中,∠A=120°,OA=1,∴∠AOC=60°,∠COA′=30°,∴AN=,∴NO==,∴BO=,∴S△CBO=S△C′B′O=×AO•2CO•sin60°=,S扇形OCA′==,S扇形OBB′==;∴阴影部分的面积=﹣(2×+)=.故答案为:.【点评】此题考查了菱形的性质、扇形的面积公式、等边三角形的性质等知识点.利用已知得出S扇形OBB′的面积以及S△CBO,S△C′B′O的面积是解题关键.15.如图,将矩形纸片ABCD沿直线AE折叠,点B恰好落在线段CD的中点F上,点G是线段AF上一动点(不与A,F重合),点G过GH⊥AB,垂足为H,将矩形沿直线GH翻折,点A恰好落在线段BH上点A′处.若AB长为8,则当△A′GE为直角三角形时,AH的长为.【考点】翻折变换(折叠问题).【分析】根据翻转的性质可知△ABE≌△AFE,由于AF=AB=8,EF=BE,∠2=∠3,于是得到DC=AB=8,BC=AD,根据勾股定理得到BC=AD===4,根据已知求得∠1=∠2=30°,设BE=x,则EF=x,CE=4﹣x,由勾股定理列方程解得BE=x=,根据折叠的性质得到AG=A′G,AH=A′H,证出△AGA′是等边三角形,推出△AGE≌△AA′E,得到GE=A′E,当△A′GE是直角三角形时,只能∠A′EG=90°,于是得到△A′EG是等腰直角三角形,设AH=y,则AA′=A′G=2y,A′B=AB=AB﹣AA′=8﹣2y,再根据勾股定理列方程即可得到结果.【解答】解:如图所示,根据翻转的性质可知:△ABE≌△AFE,∵AF=AB=8,EF=BE,∠2=∠3,有已知得:DC=AB=8,BC=AD,∵F是DC的中点,DF=CF=DC=4,∴BC=AD===4,∵∠D=90°,AF=2DF,∴∠1=30°,∴∠BAF=60°,∴∠1=∠2=30°,设BE=x,则EF=x,CE=4﹣x,在Rt△CEF中,EF2=CE2+CF2,即,解得:BE=x=,∵矩形沿GH翻折,点A落在线段BH上点A′处,∴AG=A′G,AH=A′H,∵∠BAF=60°,∴△AGA′是等边三角形,∴AG=AA′,在△AGE与△AA′E中,,∴△AGE≌△AA′E,∴GE=A′E,∴当△A′GE是直角三角形时,只能∠A′EG=90°,∴△A′EG是等腰直角三角形,设AH=y,则AA′=A′G=2y,A′B=AB=AB﹣AA′=8﹣2y,在等腰直角三角形A′GE中,A′E=A′G=y,在直角三角形A′BE中,A′E==,2y2=(8﹣2y)2+()2解得:y1=,y2=8(不合题意舍去),∴AH=,故答案为:.【点评】本题考查了翻折变换﹣折叠问题,全等三角形的判定和性质,勾股定理,等腰三角形的性质,等腰直角三角形的性质,熟练掌握折叠的性质是解题的关键.三、解答题(本大题共8小题,满分75分)16.先化简,再求代数式的值,其中a=2tan60°﹣1.【考点】分式的化简求值;特殊角的三角函数值.【专题】计算题.【分析】先将分式的分子、分母因式分解,再将除法转化为乘法,将a=2tan60°﹣1的结果计算出来,代入求值即可.【解答】解:原式=÷(+)=÷=×=,又∵a=2tan60°﹣1=2×﹣1=2﹣1,∴原式===1﹣.【点评】本题考查了分式的化简求值、特殊角的三角函数值,会因式分解是解题的关键.17.某校为了增加初三学生的复习时间,把上课时间提前到7:10;初二综合实践活动小组想探索这一举措的合理性,决定对初三学生到校时间及早餐质量进行调查.他们从早上6:30开始在校门口对初三到校学生进行观察统计,并把统计结果绘成条形统计图;然后对初三学生早餐质量进行抽样调查,并把结果画成扇形统计图.1)该校初三学生约有480 人,迟到学生有120 人,占初三学生总数的25 %.2)计算因担心迟到而在路上随便吃点早餐的初三学生数.3)通过以上信息,你认为“初三提前到7:10上课”这一举措是否合理?谈谈你的看法(不超过30字)【考点】频数(率)分布直方图;扇形统计图.【分析】(1)把各组的人数相加即可求得初三学生数,以及迟到的学生数,进而求得占初三学生所占的百分比;(2)利用总数乘以所对的百分比即可;(3)根据实际情况,结合吃早餐的情况谈一下说法即可.【解答】解:(1)初三学生的人数是:17+43+80+220+65+45+10=480(人),迟到的学生人数是:65+45+10=120(人),占初三学生的百分比是:×100%=25%.故答案是:480,120,25;(2)因担心迟到而在路上随便吃点早餐的初三学生数是:480×(1﹣55%﹣15%)=144(人);(3)根据调查可以得到“初三提前到7:10上课”这一举措不合理,影响学生早餐质量.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是EH=FH ,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.【考点】全等三角形的判定与性质;矩形的判定.【专题】几何综合题;分类讨论.【分析】(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH时,都可以证明△BEH ≌△CFH,(2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形.【解答】(1)答:添加:EH=FH,证明:∵点H是BC的中点,∴BH=CH,在△BEH和△CFH中,,∴△BEH≌△CFH(SAS);(2)解:∵BH=CH,EH=FH,∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形),∵当BH=EH时,则BC=EF,∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).【点评】本题考查了全等三角形的判定和性质以及平行四边形的判定,是基础题,难度不大.19.为缓解交通压力,节约能源减少大气污染,上海市政府推行“P+R”模式(即:开自驾车人士,将车开到城郊结合部的轨道车站附近停车,转乘轨道交通到市中心).市郊某地正在修建地铁站,拟同步修建地下停车库.如图,是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D、F,坡道AB的坡度i=1:3,AD=9米,C在DE上,DC=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,计算该停车库限高多少米.(结果精确到0.1米)(提供可选用的数据:)【考点】解直角三角形的应用-坡度坡角问题.【专题】几何综合题.【分析】据题意得出,即可得出tanA,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF=3x的长.【解答】解:据题意得,∵MN∥AD,∴∠A=∠B,∴∵DE⊥AD,∴在Rt△ADE中,,∵AD=9,∴DE=3(2分),又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠1+∠2=90°,∵DE⊥AD,∴∠A+∠2=90°,∴∠A=∠1,∴(2分)在Rt△CEF中,CE2=EF2+CF2设EF=x,CF=3x(x>0),CE=2.5,代入得解得(如果前面没有“设x>0”,则此处应“,舍负”)(3分)∴CF=3x=≈2.3(2分),∴该停车库限高2.3米.(1分)【点评】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.20.如图1,直角三角形AOB中,∠AOB=90°,AB∥x轴,OA=2OB,AB=5,反比例函数y=(x>0)的图象经过点A.(1)求反比例函数的解析式;(2)如图2,P(x,y)在(1)中的反比例函数图象上,其中1<x<8,连接OP,过点O作OQ⊥OP,且OP=2OQ,连接PQ,设点Q坐标为(m,n),其中m<0,n>0,求n与m的函数解析式,并直接写出自变量m的取值范围.【考点】反比例函数综合题.【分析】(1)设AB与y轴的交点为点D,由AB∥x轴可得出∠ADO=∠ODB=90°,根据∠AOB=90°,可得出∠B+∠A=90°,通过角的计算即可得出∠BOD=∠A,从而得出△ADO∽△ODB,再根据相似三角形的性质即可得出=,结合OA=2OB,AB=5,AB=AD+BD即可求出OD、AD的长度,从而得出点A的坐标,根据点A的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数解析式;(2)过点P作PM⊥x轴于点M,过点Q作QN⊥x轴于点N,通过角的计算找出∠POM=∠OQN,结合∠ONQ=∠PMO=90°即可证出△POM∽△OQN,根据相似三角形的性质即可得出,再结合点P、Q的坐标特征即可得出m、n之间的关系式,结合1<x<8即可找出m的取值范围.【解答】解:(1)设AB与y轴的交点为点D,如图3所示.∵AB∥x轴,∴OD⊥AB,∴∠ADO=∠ODB=90°.∵∠AOB=90°,∴∠B+∠A=90°,∵∠B+∠BOD=90°,∴∠BOD=∠A,∴△ADO∽△ODB,∴=.∵OA=2OB,AB=5,AB=AD+BD,∴OD=2,AD=4,∴点A的坐标为(4,2),∵反比例函数y=(x>0)的图象经过点A,∴2=,解得:k=8,∴反比例函数的解析式为y=.(2)过点P作PM⊥x轴于点M,过点Q作QN⊥x轴于点N,如图4所示.∵QN⊥x轴,PM⊥x轴,∴∠ONQ=∠PMO=90°,∵∠POQ=90°,∴∠QON+∠POM=90°,∠QON+∠OQN=90°,∴∠POM=∠OQN,∴△POM∽△OQN,∴.∵OP=2OQ,P(x,y),Q(m,n),且1<x<8,m<0,n>0,∴ON=﹣m=PM=y,QN=n=OM=x,∵1<x<8,∴1<y<8,∵m=﹣y,∴﹣4<m<﹣.∵P(x,y)在(1)中的反比例函数图象上,∴x•y=8(1<x<8),∴﹣4mn=8,∴n=﹣(﹣4<m<﹣).【点评】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质以及角的计算,解题的关键是:(1)求出点A的坐标;(2)利用x、y表示出m、n.本题属于中档题,难度不大,解决该题型题目时,根据相似三角形的性质找出边与边之间的关系是关键.21.2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?【考点】二次函数的应用.【分析】(1)根据题意直接得出y1与y2与x的函数关系式即可;(2)根据a的取值范围可知y1随x的增大而增大,可求出y1的最大值.又因为﹣0.5<0,可求出y2的最大值;(3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a>500以及2000﹣200a<500.【解答】解:(1)由题意得:y1=(120﹣a)x(1≤x≤125,x为正整数),y2=100x﹣0.5x2(1≤x≤120,x为正整数);。
河南省中考数学模拟测试卷-附参考答案与解析

河南省中考数学模拟测试卷-附参考答案与解析一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中选出符合题目的一项)1. −3的绝对值是( )C. 3D. ±3A. −3B. −132. 2023年3月30日郑州市人民公园第二十六届郁金香花展盛大开幕,据了解,本次花展共展出郁金香31个品种10万余株,采取全园分布,让游人闻着浓郁的花香,漫步于花田小径间,体验“人在花中走,如在画中游”的美妙感受.数据“10万”用科学记数法表示为( )A. 10×104B. 10×105C. 1×104D. 1×1053. 郑州是华夏文明的重要发祥地,是三皇五帝活动的腹地,是中华文明的轴心区,市政府开展了“游郑州知华夏”活动.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中与“郑”字所在面相对的面上的汉字是( )A. 知B. 华C. 夏D. 游4. 某校开展了丰富多彩的学雷锋志愿服务活动,为了了解同学们所做志愿者服务活动的情况,数学兴趣小组的同学在全校范围内随机抽查了部分同学,将收集的数据绘制成了如图所示的扇形统计图,若该校有2000名学生,则参加爱心捐助活动的学生人数为( )A. 200B. 300C. 400D. 5005. 如图,一副三角尺按如图所示的方式放置,若AB//CD,则∠α的度数为( )A. 75°B. 90°C. 105°D. 120°6. 一元二次方程x2−2x+3=0的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 只有一个实数根7. 凸透镜成像的原理如图所示,AG//l//HC.若缩小的实像是物体的23,则物体到焦点F1的距离与焦点F2到凸透镜的中心线GH的距离之比为(焦点F1和F2关于O点对称)( )A. 32B. 23C. 2D. 128. 如图,已知点A(2,a)在反比例函数y1=4√ 3x的图象上,过点A作AB⊥x轴,垂足为B,连接OA,将△AOB沿OA翻折,点B的对应点B′恰好落在y2=kx(k≠0)的图象上,则k的值为( )A. √ 3B. −√ 3C. 2√ 3D. −2√ 39. 如图,在平面直角坐标系中边长为2的等边三角形AOP在第二象限,OA与x轴重合,将△AOP绕点O顺时针旋转60°,得到△A1OP1,再作△A1OP1关于原点O的中心对称图形,得到△A2OP2,再将△A2OP2绕点O顺时针旋转60°,得到△A3OP3,再作△A3OP3关于原点O的中心对称图形,得到△A4OP4,以此类推⋯⋯,则点P2023的坐标是( )A. (1,√ 3)B. (−1,−√ 3)C. (2,0)D. (−2,0)10. 已知抛物线y=x2−2mx+m2−9(m为常数)与x轴交于点A,B点P(m+1,y1),Q(m−3,y2)为抛物线上的两点,则下列说法不正确的是( )A. y有最小值为m2−9B. 线段AB的长为6C. 当x<m−1时,则y随x的增大而减小D. y1<y2二、填空题(本大题共5小题,共15.0分)11. 写出一个比0大且比3小的无理数:______ .12. 方程3x+2−1x=0的解为______ .13. 对一批运动鞋进行抽检,统计合格的运动鞋的数量,得到合格运动鞋的频数表如下:抽取双数(双)20406080100200300合格频数1738557596189286合格频率0.850.950.920.940.960.950.95估计出厂的1500双运动鞋中次品大约有______ 双.14. 某校无人机社团的同学用无人机测量学校旗杆的高度,组员操作无人机飞至离地面高度为25米的A处时,则测得旗杆BC的顶端B的俯角为45°,然后操控无人机水平方向飞行20米至旗杆另一侧D处时,则测得旗杆BC的顶端B的俯角为30°,已知A,B、C、D在同一平面内,则旗杆的高度为______ 米.15. 黄金分割比是让无数科学家、数学家、艺术家为之着迷的数字.黄金矩形的长宽之比为黄金分割比,即矩形的短边为长边的√ 5−12倍.黄金分割比能够给画面带来美感,令人愉悦,在很多艺术品以及大自然中都能找到它.比如蜗牛壳的螺旋中就隐藏了黄金分割比.如图,用黄金矩形ABCD框住整个蜗牛壳,之后作正方形ABFE,得到黄金矩形CDEF,再作正方形DEGH,得到黄金矩形CFGH……,这样作下去,我们以每个小正方形边长为半径画弧线,然后连接起来,就是黄金螺旋.已知AB=√ 5+12,则阴影部分的面积为______ .三、解答题(本大题共8小题,共75.0分。
2021年河南省中考数学全真模拟试卷(十一)

2021年年年年年年年年年年年年年年年年一年一、选择题(本大题共10小题,共30.0分)1.下列各数中,最小的数是()A. −3B. −(−2)C. 0D. −142.下列运算,正确的是()A. 2x+3y=5xyB. (x−3)2=x2−9C. (xy2)2=x2y4D. x6÷x3=x23.如图所示的几何体的左视图是()A.B.C.D.4.今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A. 1.109×107B. 1.109×106C. 0.1109×108D. 11.09×1065.若关于x的一元二次方程kx2−4x+1=0有实数根,则k的取值范围是()A. k=4B. k>4C. k≤4且k≠0D. k≤46.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()D. 中位数是13A. 众数是11B. 平均数是12C. 方差是1877.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A. (−1,2)B. (1,−2)C. (2,3)D. (3,4)8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=4,则BD的长度为()5A. 94B. 125C. 154D. 49.已知点A,B,C在⊙O上,则下列命题为真命题的是()A. 若半径OB平分弦AC,则四边形OABC是平行四边形B. 若四边形OABC是平行四边形,则∠ABC=120°C. 若∠ABC=120°,则弦AC平分半径OBD. 若弦AC平分半径OB,则半径OB平分弦AC10.如图1,在平面直角坐标系中,▱ABCD在第一象限,且BC//x轴.直线y=x从原点O出发沿x轴正方向平移,在平移过程中,直线被▱ABCD截得的线段长度n与直线在x轴上平移的距离m的函数图象如图2所示.那么▱ABCD的面积为()A. 3B. 3√2C. 6D. 6√2二、填空题(本大题共4小题,共12.0分)11.计算(√3)2+1的结果是______.12.分解因式:x3−4xy2=______.13.如图,正方形OABC的边长为8,A、C两点分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=kx 的图像经过点Q,若S△BPQ=19S△OQC,则k的值为_____.14.在平行四边形ABCD中,∠A=30°,AD=4√3,BD=4,则平行四边形ABCD的面积等于______.三、计算题(本大题共2小题,共10.0分)15.计算或解方程(1)(10√48−6√27+4√12)÷√6(2)(3x −1)(x −1)=(4x +1)(x −1)16. 解方程组:{x −y =13x +y =7.四、解答题(本大题共7小题,共68.0分)17. 在8×5的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90°,画出对应线段CD ;(2)在线段AB 上画点E ,使∠BCE =45°(保留画图过程的痕迹);(3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法.18.观察以下等式:第1个等式:13×(1+21)=2−11,第2个等式:34×(1+22)=2−12,第3个等式:55×(1+23)=2−13,第4个等式:76×(1+24)=2−14.第5个等式:97×(1+25)=2−15.…按照以上规律,解决下列问题:(1)写出第6个等式:______;(2)写出你猜想的第n个等式:______(用含n的等式表示),并证明.19.如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)。
河南中考数学模拟试卷(十一)

BC=3,则平行四边形 ABCD 的周长为_______________.
︵ 14. 如图,菱形 OACD 的边长为 2,以点 O 为圆心,OA 长为半径的AD经过点 C,
作 CE⊥OD,垂足为点 E,则阴影部分的面积为____________.
15. 如图,在 Rt△ABC 中,∠ACB=90°,∠B=30°,BC=3.点 D 是 BC 边上一动 点(不与点 B,C 重合),过点 D 作 DE⊥BC 交 AB 边于点 E,将∠B 沿直线 DE 翻折,点 B 落在射线 BC 上的点 F 处,当△AEF 为直角三角形时,BD 的 长为____________.
中位数分别是( )
A.60,57
B.57,60
C.60,75
D.60,60
6. 如图,AD∥BE∥CF,直线 l1,l2 与这三条平行线分别交于点 A,B,C 和点
D,E,F.已知 AB=1,BC=3,DE=1.2,则 DF 的长为( )
A.3.6
B.4.8
C.5
D.5,2
1/8
7. 九年级学生去距学校 10 千米的博物馆参观,一部分学生骑自行车先走,过
河南中考数学模拟试卷(十一)
(满分 120 分,考试时间 100 分钟)
一、选择题(每小题 3 分,共 30 分)
1. 9 的绝对值是( )
A.9
B.-9
C. 1 9
D. 1 9
2. 下列四个图形中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
3. 2018 年 11 月 19 日,我国成功发射了第四十二、四十三颗北斗导航卫星.中
19. (9 分)已知关于 x 的方程 x2–(k+2)x+2k=0. (1)求证:无论 k 为何值,方程一定有两个实数根; (2)若等腰△ABC 的一边长 a=1,另两边 b,c 的长恰好是这个方程的两个 根,求△ABC 的周长.
2022年河南省新乡十一中中考数学一模试卷

2022年河南省新乡十一中中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)下列各数为分数的是()A.B.﹣1C.0D.2.(3分)奥密克戎是新型冠状病毒的一种变异株,它给全球人民带来了巨大的灾难,冠状病毒的直径约80~120nm,1nm=10﹣9m.将85nm用科学记数法表示正确的是()m.A.8.5×10﹣7B.8.5×10﹣8C.85×10﹣9D.0.85×10﹣93.(3分)如图是某地一日气温T随时间t的变化图象.下列说法中错误的是()A.4时气温最低,最低为﹣3℃B.这一日温差为11℃C.从14时至24时气温呈下降状态D.这天只有一个时刻气温为0℃4.(3分)今年的植树节,某校组织学生参加义务植树活动.为了使每一列树都栽种在一条直线上,爱思考的小亮说:“只要在一列上定出两棵树的位置,就能保证一列上的所有树在一条直线上”.用数学知识解释其道理应是()A.两点之间,线段最短B.两点确定一条直线C.两直线平行,同位角相等D.垂线段最短5.(3分)如图,AB是⊙O的直径,∠AOC=110°,则∠D=()A.70°B.55°C.35°D.80°6.(3分)田径运动会上,体育老师对20名运动员的跳高成绩进行了统计,其中已经完成比赛的19位运动员的成绩统计如表.不论最后一位运动员的成绩如何,这组数据(20名运动员的跳高成绩)中能确定的统计量是()成绩(m) 1.50 1.55 1.60 1.65 1.70人数28531 A.平均数B.中位数C.众数D.方差7.(3分)我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.若设牧童有x人,根据题意可列方程为()A.6x+14=8x B.6(x+14)=8x C.8x+14=6x D.8(x﹣14)=6x8.(3分)关于抛物线y=﹣2x2+4x+1,下列说法正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(1,3)D.x>2时,y随x增大而减小9.(3分)如图,四边形ABCD中,AB∥CD,∠B=90°,DE垂直平分AC,交AC于点O,交AB于点E.若BE=3,CD=5,则AC的长为()A.5B.8C.4D.410.(3分)如图,在平面直角坐标系中,正六边形ABCDEF的边AB在x轴正半轴上,顶点F在y轴正半轴上,AB=2.将正六边形ABCDEF绕原点O顺时针旋转,每次旋转90°,经过第2022次旋转后,顶点D的坐标为()A.(﹣3,﹣2)B.(﹣2.﹣2)C.(﹣3,﹣3)D.(﹣2,﹣3)二、填空题(每小题3分,共15分)11.(3分)因式分解:m2﹣mn=.12.(3分)不等式组的最小整数解是.13.(3分)现有四张完全相同的刮刮卡,涂层下面的文字分别是“我”、“爱”、“中”、“国”.小亮从中随机抽取两张并刮开,则这两张刮刮卡上的文字恰好是“爱”和“国”的概率是.14.(3分)如图,在Rt△ABC中,∠C=90°,分别以AB、BC、AC为直径作半圆,图中阴影部分图形称为“希波克拉底月牙”.当AB=13,BC=5时,则阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=6,BC=8,点E是BC边上的一个动点,把△ABE沿AE折叠得到△AFE.若点B的对称点F恰好落在矩形的对称轴上,则BE的长为.三、解答题(共8小题,满分75分)16.(9分)(1)计算:()﹣1+|2﹣|﹣.(2)解分式方程:+1=.17.(9分)劳动教育是学校贯彻“五育并举”的重要举措,某校倡议学生在家做一些力所能及的家务劳动.数学兴趣小组随机抽取该校部分学生进行问卷调查,问卷调查表如图所示,并根据调查结果绘制了两幅不完整的统计图.平均每周家务劳动时长调查表设平均每周做家务的时间为x小时,则最符合你的选项是(单选)A.0≤x<1B.1≤x<2C.2≤x<3D.x≥3根据以上信息,解答下列问题:(1)数学兴趣小组共调查了人.(2)补全条形统计图,并求出扇形统计图中D所对应的圆心角度数.(3)该校有2500名学生,根据抽样调查结果,请你估计该校平均每周家务劳动的时间不少于2小时的学生人数.18.(9分)火灾是最经常、最普遍地威胁公众安全和社会发展的主要灾害之一,消防车是消防救援的主要装备.图1是云梯消防车的实物图,图2是其工作示意图.起重臂AC(10m≤AC≤20m)是可伸缩的,且起重臂AC可绕点A在一定范围内转动,张角∠CAE的度数范围为90°≤∠CAE≤150°,点A距离地面BD的高度AE为3.5m.(1)当起重臂AC长度为12m,张角∠CAE=120°时,求云梯消防车最高点C距离地面的高度CF.(2)一日,某居民家突发火灾,已知该居民家距离地面的高度为20m.请问该云梯消防车能否实施有效救援?(参考数据:≈1.73,≈1.41)19.(9分)如图,在平面直角坐标系中,正比例函数y=﹣2x与反比例函数y=相交于点A(﹣1,b)和点B.(1)求k的值.(2)点C是x轴上的一点,若△AOC的面积为3,求点C的坐标.(3)若点M(a,m)在正比例函数y=﹣2x的图象上,点N(a,n)在反比例函数y=的图象上.根据图象直接写出m>n时,a的取值范围.20.(9分)如图,Rt△ABC内接于⊙O,∠ACB=90°,直线l与⊙O相切于点C.(1)用无刻度的直尺和圆规作图:过点O作射线OD∥AC,交直线l于点D.(要求:不写作法,保留作图痕迹)(2)在(1)的基础上,若AB=10,BC=8,求CD的长.21.(10分)2022年北京冬奥会如期举行,为满足大众的需求,某商店决定采购A、B两款纪念品共100件进行零售.已知每件A款纪念品的进价比每件B款纪念品的进价多40元,4件A款纪念品的费用与6件B款纪念品的费用相等.每件A款纪念品的零售价为150元,每件B款纪念品的零售价为100元.(1)求A、B两款纪念品每件的进价分别是多少元?(2)受政策影响,A款纪念品最多能进40件.请你用所学的函数知识说明商店应如何进货才能使销售完这批纪念品获利最大,并求出最大利润.(3)善于思考的子轩发现,无论如何进货,销售完这批纪念品的利润率是恒定的.请你用所学知识给出解释,并求出该值.(注:利润率=×100%)22.(10分)如图,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0),两点,与y轴交于点C.(1)求二次函数的解析式.(2)点P(m,n)是第二象限抛物线上一动点,过点P作PQ⊥x轴于点Q.若△PQB∽△AOC,求m 的值.(3)点M为抛物线上一动点,点N为x轴上一动点,是否存在以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.23.(10分)已知△ABC,点E是AC中点,点D是BC延长线上的一点,连接BE,AD.(1)如图1,若∠ABC=60°,∠BAD=90°,CD=AB,BE=,则AD=.(2)如图2,过点C作CF∥AB交BE延长线于点F.若∠ABC=60°,CD=AB,求证:AD=2BE.(3)如图3,若∠ABC=α(0°<α<90°),是否存在实数m,使得当CD=mAB时,AD=2BE?若存在,请直接写出m的值(用含α的式子表示);若不存在,请说明理由.。
河南中考数学模拟试题十一

河南省2010年数学中考模拟试题(十一)一、选择题(每题3分,共18分) 1.下列各数比1-大的负无理数是 ( )A . -3B .-3C .33-D .02.北京2008年奥运会的国家体育场“鸟巢”建筑面积达 25.8万平方米,用科学记数法表示应为 ( ) A .24108.25m ⨯ B . 25108.25m ⨯ C . 251058.2m ⨯D . 261058.2m ⨯3.如图,已知12355===∠∠∠,则4∠的度数是( )A .110B .115C .120D .1254. 已知两圆的半径分别为6m 和4m ,圆心距为10cm ,则此两圆的位置关系是( )A .外离B .外切C .相交D .内切5.解放军某部接到上级命令,乘车前往四川地震灾区抗震救灾.前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往.若部队离开驻地的时间为t (小时),离开驻地的距离为s (千米),则能反映s 与t 之间函数关系的大致图象是( )6.由一些完全相同的小立方块搭成的几何体的主视图、俯视图如图所示 那么搭成这个几何体最少用的小立方块的个数是( ) A .8B .7C .6D .5二、填空题(每题3分,共27分) 7..从1~9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是_____________。
8.课本中介绍我国古代数学名著《孙子算经》上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几只? 如果假设鸡有x 只,兔有y 只,请你列出关于(第2题图)(第3题)4132(第6题)主视图俯视图x ,y 的二元一次方程组____________________。
9.分解因式:3a -a = 。
10.函数3y x =+中,自变量x 的取值范围是 。
11.在你所学过的几何图形中,既是轴对称图形又是中心对称图形的有 (写出两个)。
12.如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积___________cm 2。
河南省开封市2024届九年级下学期中考一模数学试卷(含解析)
2024年中招第一次模拟考试数学试题注意事项:1.本试题卷共6页,三个大题,满分120分,考试时间100分钟.2.试题卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试题卷上的答案无效,3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面指定的位置.一、选择题(每小题3分,共30分,下列各题均有四个答案,其中只有一个是正确的.)1. 的相反数是()A. 正有理数B. 负有理数C. 正无理数D. 负无理数答案:B解析:解:的相反数是,是负的有理数,故选:B .2. 如图所示几何体,其主视图是()A. B. C. D.答案:A解析:解:根据题意可得,该几何体是一个长方体挖去半个圆柱体,∴其主视图是“”,故选:A.3. 年我国经济回升向好,国内生产总值超过万亿元,增长,增速居世界主要经济体前列.数据万亿用科学记数法可以表示为的形式,则n的值为()A. B. C. D.答案:B解析:解:万亿,故选:B .4. 提高全民安全意识,倡导安全文明风尚.下列安全提示标志既是轴对称图形又是中心对称图形的是()A. 紧急出口B. 避险处C. 小心地滑D. 急救药箱答案:D解析:解:A、不是轴对称图形,也不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意;故选:D .5. 传统文化如同一颗璀璨的明珠,熠熠生辉.为增强学生体质,同时让学生感受中国传统文化,某校将国家非物质文化遗产“抖空竹”引入阳光特色大课间.如图①是某同学“抖空竹”时的一个瞬间,小红同学把它抽象成数学问题:如图②,已知,,,则的度数为()A. B. C. D.答案:C解析:解:如图所示,过点作,∵,∴,∴,∴,∴,故选:C .6. 下列计算正确的是()A. B.C. D.答案:D解析:解:A、,原式计算错误,不符合题意;B、,原式计算错误,不符合题意;C、,原式计算错误,不符合题意;D、,原式计算正确,符合题意;故选;D.7. 如图,把两个边长为的小正方形沿对角线剪开,用得到的个直角三角形拼成一个大正方形,则大正方形的边长最接近的整数为()A. B. C. D.答案:A解析:解:根据题意,小正方形的对角线为,∵,∴,∴,∴大正方形的边长最接近的整数是3, 故选:A .8. 已知二次函数(是常数,),当时,,若此一元二次方程有两个不相等的实数根,则该二次函数的图象可能是()A. B. C. D.答案:C 解析:解:当时,有两个不相等的实根,∴,即二次函数图象与轴有两个交点,∴根据图示可得,A 、与轴无交点,不符合题意;B 、与轴有一个交代,不符合题意;C 、与轴有两个交点,符合题意;D 、与轴有一个交代,不符合题意; 故选:C .9. “准、绳、规、矩”是古代使用的测量工具, 一个简单结构的“矩”(如图①),由于使用时安放的位置不同,能测定物体的高低远近及大小,把矩放置在如图②所示的位置,令(单位:),(单位:),若,则关于的函数解析式为( )A. B. C. D.答案:A解析:解:根据题意,,∴,∵四边形是矩形,∴,,,,∴,∴,故选:A .10. 如图,在平面直角坐标系中,的顶点A,B,O的坐标分别为、、.点,,,…中的相邻两点关于的其中一个顶点对称.如:点,关于点A对称;点,关于点B对称;点,关于点O对称;点,关于点A对称;点,关于点B对称;点,关于点O对称,…,对称中心分别是A,B,O,…,且这些对称中心依次循环,若的坐标是,则点的坐标是()A. B. C. D.答案:B解析:解:∵的坐标是,A的坐标为,∴的坐标是同理可得:的坐标是,的坐标是,的坐标是,的坐标是,的坐标是,由此可知:与的坐标相同∵∴与的坐标相同故选:B二、填空题(每小题3分,共15分)11. 实数在数轴上的位置如图所示,请把按从小到大的顺序用“”号连接为______________.答案:解析:解:如图所示,∴,故答案为:.12. 用配方法解方程时,配方后得到的方程为________________.答案:解析:解:,移项得,,等式两边同时加上1得,,∴,故答案:.13. 在某市初中升学体育终结性评价考试的素质类项目中,小明从“1分钟跳绳”、“立定跳远”、“双手正面掷实心球”、“50米跑”四个项目中随机选择两项,则他选择“立定跳远”与“50 米跑”两个项目的概率是_________________.答案:解析:解:将“1分钟跳绳”,“立定跳远”,“双手正面掷实心球”,“50米跑”表示为A,B,C,D,列表把所有等可能结果表示出来,如表所示,A B C DA----B----C----D----共有种等可能结果,出现“立定跳远”,“50米跑”的结果为,共种,∴选择“立定跳远”与“50 米跑”两个项目的概率是,故答案为:.14. 如图①是清明上河园中供人们游玩的古代的马车.如图②是马车的侧面示意图,车轮的直径为,车架经过圆心,地面水平线与车轮相切于点,连接,.小明测出车轮的直径米,米,则的长为__________米答案:解析:解:如图所示,连接,延长,作延长线于点,∵与切与点,∴,且,∴,∴,∴,∵是直径,∴,则,,∴,在中,,在中,,∴,∴在中,,∴的长为,故答案为:.15. 如图1,点P从矩形的顶点A出发,沿A→D→B以的速度匀速运动到点B,图2是点P 运动时,的面积y()随时间x(s)变化的关系图象,则a的值为_____.答案:4解析:解:∵矩形中,,∴当点P在边上运动时,y的值不变,由图像可知,当时,点与点重合,,∴,即矩形的长是,∴,即.当点P在上运动时,y逐渐减小,由图像可知:点从点运动到点共用了,∴,在中,,∴,解得.故选:C.三、解答题(本大题共8个小题,共75分)16. (1)计算:(2)化简:答案:(1),(2)解析:(1)解:;(2)17. 今年春节期间,开封跻身全国热门文旅目的地前五名,人们常常穿着汉服进入各大景区,汉服的销售成为热门,某汉服商店计划购进A ,B 两款汉服,为调研顾客对两款汉服的满意度,调整进货方案,设计了下面的调查表.序号维度分值A 款得分B 款得分满意度打分标准1舒适性202性价比203时尚性20不满意基本满意满意非常满意商店随机抽取了20名顾客试穿两款汉服,并对其进行评分,收回全部问卷,并将调查结果绘制成如下统计图和统计表.A 、B 两款汉服性价比满意度人数分布统计图A 、B 两款汉服各项得分平均数统计表舒适性得分平均数性价比得分平均数时尚性得分平均数综评平均数A B注:将舒适性、性价比和时尚性三个方面得分的平均数按的权重计算,可得出综评平均数.(表中数据精确到)B 款汉服性价比满意度得分在范围的数据是:11 12131313 14 1414请根据以上信息,回答下列问题:(1)此次调研中A 款汉服性价比满意度达到“非常满意”的人数为;(2)补全条形统计图,根据图、表中信息可得出:B 款汉服性价比得分的中位数为分;(3)根据统计图、表中数据,请计算 B 款汉服综评平均数,并参照调查问卷中的满意度打分标准,分析并写出顾客对B 款汉服的满意度情况;(4)综合以上信息,请你给该汉服商店进货方面提一条建议,并说明理由.答案:(1)6(2)补全条形图见解析:,(3)顾客对B 款的满意情况良好,尤其是对B 款的时尚性方面满意度良好(4)汉服商店在进货时,可考虑A 款汉服在数量比B 款汉服的数量多一些(答案不唯一)小问1解析:解:根据题意,非常满意的百分比为,∴(人),故答案为:6;小问2解析:解:共有人,∴基本满意的人数为:(人),补全条形统计图如下,B款汉服性价比得分的中位数是第10,11位顾客分数的平均值,∴,故答案为:;小问3解析:解:B款基本满意的占,满意的占,非常满意的占,在舒适性和性价比方面,B款的平均分小于A款的平均分;在时尚性方面,B款的平均分高于A款的平均分;∴顾客对B款的满意情况良好,尤其是对B款的时尚性方面满意度良好;小问4解析:解:根据题意,A款基本满意的占,满意的占,非常满意的占,∴汉服商店在进货时,可考虑A款汉服在数量比B款汉服的数量多一些(答案不唯一).18. 如图所示是小华完成的尺规作图题,已知:矩形.作法:①分别以点为圆心,以大于长为半径,在两侧作弧,分别交于点;②作直线;③以点为圆心,以长为半径作弧,交直线于点,连接.根据小华的尺规作图步骤,解决下列问题.(1)填空:.(2)过点作,交直线于点.①求证:四边形是平行四边形;②请直接写出平行四边形的面积和矩形的面积的数量关系.答案:(1)(2)①证明过程见解析:;②小问1解析:解:根据作图可得,是线段的垂直平分线,,∴,∴,即是等边三角形,∴,∴,故答案为:;小问2解析:解:∵四边形是矩形,∴,,∴,①∵是的垂直平分线,∴,∴,即,∵,∴四边形是平行四边形;②如图所示,设与交于点,∴,∴平行四边形的面积为,矩形的面积为,∴.19. “黄河风”雕塑位于开封市金明广场,寓意着开封像一艘巨轮,开足马力,永往直前. 某数学小组开展综合与实践数学活动,以“测量黄河风雕塑高度”为课题,制定了测量方 案.为了减小测量误差,该小组在测量仰角以及两点间的距离时,都分别测量了两次并取它 们的平均值作为测量结果,测量数据如下表:课题测量黄河风雕塑的高度实物图成员组长:×××组员:×××,×××,×××测量工具卷尺、测角仪 …测量示意图说明:表示黄河风雕塑的高度,测角仪的高度,点C ,F 与点B 在同一直线上,点C ,F 之间的距离可直接测得,且点A ,B ,C ,D ,E ,F 在同一平面内测量项目第一次第二次平均值的度数的度数测量数据C,F之间的距离参考数据(1)请帮助该小组的同学根据上表中的测量数据,求黄河风雕塑的高度.(结果精确到)(2)为测量结果更加准确,你认为在本次方案的实行过程中,该小组成员应该注意的事项有哪些.(写出一条即可)答案:(1)黄河风雕塑的高度约为(2)测角仪测量时要与地面垂直(答案不唯一,合理即可)小问1解析:解:设,交于G,如图,由题意知,,,在中,,,在中,,,,,解得,,即黄河风雕塑的高度约为.小问2解析:解:该小组成员应该注意的事项有:测角仪测量时要与地面垂直;测量时卷尺要拉直(答案不唯一,合理即可).20. 某数学活动小组研究一款如图①简易电子体重秤,当人踏上体重秤的踏板后,读数器可以显示人的质量(单位:).图②是该秤的电路图,已知串联电路中,电流(单位:)与定值电阻.可变电阻(单位:)之间关系为,电电压恒为,定值电阻的阻值为.根据与之间的关系得出一组数据如下:…123q6…4p2(1)填空:,;(2)该小组把上述问题抽象为数学模型,请根据表中数据在图③中描出实数对的对应点,画出函数的图象,并写出一条此函数图象关于增减性的性质.(3)若电流表量程是,可变电阻与踏板上人的质量之间函数关系如图④所示,为保护电流表,求电子体重秤可称的最大质量为多少千克?答案:(1),(2)作图见解析:,电流随可变电阻的增大而减小(3)电子体重秤可称的最大质量为千克小问1解析:解:已知电流(单位:)与定值电阻.可变电阻(单位:)之间关系为,电电压恒为,定值电阻的阻值为,∴当时,,即;当时,,解得,,即;故答案为:,;小问2解析:解:根据题意,…12346…432根据表格数据在平面直角坐标系中描点如下,∴根据图示,电流随可变电阻的增大而减小;小问3解析:解:根据题意,设可变电阻与人的质量的函数关系为,且该直线过,,∴,解得,,∴可变电阻与人的质量的函数关系为:,∴可变电阻随人质量增大而减小,当时,,∴;当时,,∴;∵,∴不能超过;当时,,解得,,∴,解得,,∴电子体重秤可称的最大质量为千克.21. 近年来,市民交通安全意识逐步增强,头盔需求量增大.某生产厂家销售的甲、乙两种头盔,已知甲种头盔比乙种头盔的单价多元,购进甲种头盔个,乙种头盔个,共需元.(1)求甲、乙两种头盔的单价;(2)某商店欲购进两种头盔共个,正好赶上厂家进行促销活动,其方式如下:甲种头盔按单价的八折出售,乙种头盔每个降价元出售.如果此次购买甲种头盔的数量不低于乙种头盔的数量,那么应购买多少个甲种头盔可以使此次购买头盔的总费用最少?最少费用是多少元?答案:(1)甲种头盔的单价是元,乙种头盔的单价是元(2)应购买个甲种头盔可以使此次购买头盔的总费用最少,最少费用是元小问1解析:解:设购买乙种头盔的单价为元,则甲种头盔的单价为元,根据题意,得,解得:,,答:甲种头盔的单价是元,乙种头盔的单价是元;小问2解析:解:设购只甲种头盔,则购只乙种头盔,设总费用为元,则,解得:,,∵,∴随的增大而增大,∴时,取最小值,最小值,答:应购买个甲种头盔可以使此次购买头盔的总费用最少,最少费用是元.22. 开封黑岗口引黄调蓄水库上的东京大桥,又名“彩虹桥”.夜晚在桥上彩灯的映衬下好似彩虹般绚丽.主景观由三个抛物线型钢拱组成(如图①所示),其中最高的钢拱近似看成二次函数的图象抛物线,钢拱最高处C点与路面的距离为50米,若以点O为原点,所在的直线为y轴,建立如图②所示的平面直角坐标系,抛物线与x轴相交于A、B两点,且两点间的距离为80米.(1)求这条抛物线的解析式;(2)钢拱最高处C点与水面的距离为72米,请求出此时这条钢拱之间水面的宽度;(3)当时,求y的取值范围.答案:(1)(2)(3)小问1解析:解:∵,,∴,,设抛物线解析式为,把代入得:,解得:,∴抛物线解析式为.小问2解析:解:∵,∴,∴,把代入得:,解得:,∴此时这条钢拱之间水面的宽度为;小问3解析:解:∵,∴抛物线的定做坐标为,∴当时,y取最大值50,∵,∴抛物线开口向下,则离对称轴越远,函数值越小,∵,∴当时,y取最小值,,∴当时,.23. 问题情境:在数学课上,张老师带领学生以“图形的平移”为主题进行教学活动.在菱形纸片中,,对角线,将菱形沿对角线剪开,得到和.将沿射线方向平移一定的距离,得到.观察发现:(1)如图①,菱形中,;如图②,连接,四边形的形状是;操作探究:(2)将沿直线翻折,得,如图③,然后沿射线方向进行平移,连接,若添加一个条件,能否使得四边形是一个特殊的四边形?若能,请写出添加的条件和这个特殊的四边形,并写出证明过程,若不能,说明理由.拓展应用:(3)在(2)的条件下,设和相交于点,当是的三等分点时,直接写出的面积.答案:(1),平行四边形;(2)添加点为中点,可得四边形是矩形,证明见解析:;(3)的面积为或解析:解:如图所示,连接与交于点,∵四边形是菱形,∴,,,且,在直角中,,∴,如图所示,连接,∵四边形是菱形,图形平移,∴,,∴,∴四边形是平行四边形,故答案为:,平行四边形;(2)如图所示,连接,根据题意,,添加点为中点,可得四边形是矩形,证明如下,∵四边形菱形,∴,,∴,,且,∴,∴,,,∴四边形是矩形;(3)当是的三等分点,第一种情况,如图所示,过点作于点,过点作于点,,根据题意,,∴,,∴,∴,∴,根据(1)的证明可得,,∴,∴,则,∴的面积为;第二种情况,如图所示,,∴由上述证明可得,,∴,则,∴的面积为;综上所,的面积为或.。
2024年河南省商丘市第十一中学中考数学第一次模拟试题
2024年河南省商丘市第十一中学中考数学第一次模拟试题一、单选题1.如果向东走5米记作+5米,那么−3米表示( )A .向东走5米B .向西走5米C .向东走3米D .向西走3米 2.据国家统计局发布数据显示,2023年末全国人口(包括31个省、自治区、直辖市和现役军人的人口,不包括居住在31个省、自治区、直辖市的港澳台居民和外籍人员)60岁及以上人口29697万人,占全国人口的21.1%.数据“29697万”用科学记数法可表示为( )A .62.969710⨯B .72.969710⨯C .82.969710⨯D .92.969710⨯ 3.2024年1月17日22时27分,搭载天舟七号货运飞船的长征七号遥八运载火箭,在我国文昌航天发射场成功发射,中国航天取得了举世瞩目的成就.下列有关中国航天的图标中,是中心对称图形的是( )A .B .C .D .4.下列计算正确的是( )A .()222x y x y -=-B .()11202p p p -=≠C .()()32a a a --=÷D .()()32282312m m m ⋅=5.河南“小豫米”应邀到哈尔滨观赏冰雕,其中一个“小豫米”从某个角度发现一座冰雕(图①)中隐藏着数学问题,建立模型如图②所示,直线AB CD ∥,点G 在直线AB 上,点E 在直线CD 上,EF 平分GEC ∠,交AB 于点F ,若62EFG ∠=︒,则EGF ∠的度数为( )A .56︒B .58︒C .60︒D .62︒6.已知,,a b c 为常数,点(),A a c 在第二象限,点()0,B b 在y 轴的正半轴上,则关于x 的方程()210ax b x c +-+=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断7.下列采用的调查方式中,不合适的是( )A .调查全省中学生视力和用眼卫生情况,采用抽样调查B .企业招聘,对应聘人员进行面试,采用抽样调查C .检查神舟飞船十七号的各零部件,采用普查D .了解某品牌新能源电动汽车的碰撞测试效果,采用抽样调查8.如图,在ABCD Y 中,点E 在边DC 上,:2:1DE EC =,连接AE 交BD 于点F ,若D E F V 的面积为4,则ABCD Y 的面积为( )A .28B .30C .32D .169.如图是由边长为1的小正方形组成的66⨯的网格,每个小正方形的顶点叫做格点,其中4OA =,2OB =,若M 是这个网格中的格点,连接,MA MB ,则所有满足45AMB ∠=︒的MAB △中,边MA 的长的最大值是( )A.B .6 C.D.10.如图①所示的家用扫地机器人,其底部安装有滚刷,内置集尘器,机器人在除尘时先“脱灰”(滚刷将灰尘从地面上脱离附着),后“吸灰”(将脱附的灰尘转移进集尘器).研究滚刷滚速对“脱灰”效果的影响,小静在保持扫地机器人“吸灰”效果一定的情况下,对除尘过程中滚刷的滚速与除尘能力C (在地面撒灰后,清扫10次所减少的灰占所撒的灰总质量的比)进行了试验,得到如图②所示的关系图,规定除尘能力C 超过36.5%即为及格.则下列说法正确的是( )A .除尘能力关于滚刷的滚速的图象是反比例函数图象的一部分B .随着滚刷滚速的增加,除尘能力增加得越来越快C .当滚速为1300转/分时,除尘能力为及格D .除尘能力C 的数值越大,表示除尘能力越强二、填空题11.不等式组13120x x ⎧≤⎪⎨⎪->⎩的解集是 .12.计算:2221111x x x x+++=--. 13.某数学兴趣小组做“用频率估计概率”的试验时,记录了试验过程并把结果绘制成如下表格,则符合表格数据的试验可能是 .①掷一枚质地均匀的硬币,出现反面朝上;②掷一枚质地均匀的骰子,掷得朝上的点数是3的整数倍;③在“石头、剪刀、布”游戏中,小明出的是“石头”;④将一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张扑克牌的花色是红桃.14.如图,在矩形ABCD 中,6AB =,4BC =,以A 为圆心,AD 长为半径画弧交AB 于点E ,以C 为圆心,CD 长为半径画弧交CB 的延长线于点F ,则图中阴影部分的面积是.15.如图①,AB 是半圆O 的直径,C 是半圆O 上的一点,连接AC ,BC .点P 从点B 出发,沿B C A →→以1/s cm 的速度匀速运动到点A .图②是点P 运动时,PAB V 的面积()2y cm 随时间()s x 变化的关系图象,若ABC V 的周长为6,则=a .三、解答题16.(1)计算:111tan452-⎛⎫︒+ ⎪⎝⎭; (2)解方程:2237339x x x +=-+-. 17.中华人民共和国第十四届全国人民代表大会第一次会议于2023年3月5日在北京召开,为了使七、八年级的同学们了解两会,争做新时代好少年,学校组织两会知识竞赛,满分100分,七、八年级各有200人,现从七、八年级各随机抽取10名学生的成绩进行统计,过程如下:收集数据:七年级:99,95,95,91,100,86,77,93,85,79八年级:99,91,97,63,96,97,100,94,87,76整理数据:分析数据:应用数据:(1)由上表填空:=a ______ ,b = ______ ,c = ______ ;(2)你认为哪个年级的学生对两会了解水平较高?请说明理由;(3)请你估计七、八年级成绩在90分以上的人数共有多少人.18.如图,在Rt ABC V 中,90C ∠=︒,点E 在边AB 上.(1)请用无刻度的直尺和圆规作BAC ∠的平分线AD 交BC 于点D (不写作法,保留作图痕迹).(2)若以AE 为直径的圆O 经过点D .求证:直线BC 是圆O 的切线.19.某地的地标性建筑如图所示.为测量此地标性建筑的高度,某数学兴趣小组在该地标性建筑附近一座居民楼顶D 处测得地标性建筑顶A 处的仰角为45︒,地标性建筑底部B 处的俯角为22︒.已知居民楼的高CD 约为171米,请你计算地标性建筑AB 的高度.(结果精确到1米.参考数据:sin220.37︒≈,cos220.93︒≈,tan220.40︒≈)20.随着自媒体的快速发展,出现了抖音等多种平台的直播带货销售模式.某水果电商对甲、乙两种水果进行网上销售,若销售甲种水果10千克,乙种水果20千克,共收入1180元;若销售甲种水果20千克,乙种水果10千克,共收入1520元.若顾客在限定时间内拍下甲种水果超过40千克,则超过部分的价格打八折,乙种水果的销售价格不变,设电商销售甲种水果x 千克,甲种水果的销售额y (元)与x (千克)之间的函数关系如图所示.(1)求甲种水果打折前的销售单价和乙种水果的销售单价.(2)求y 与x 之间的函数表达式.(3)若电商计划在限定时间内销售甲、乙两种水果共120千克,且甲种水果不少于50千克,但又不超过80千克,如何分配甲、乙两种水果的销售量,才能使电商的销售额达到最大?最大值是多少?21.如图,点(),6A m ,(),1B n 在反比例函数图象上,AD x ⊥轴于点D ,BC x ⊥轴于点C ,5DC =,连接AB .(1)求出反比例函数的表达式及直线AB 的函数表达式;(2)在线段DC 上是否存在一点E ,使ABE V 的面积等于10?若存在,求出点E 的坐标;若不存在,请说明理由.22.已知二次函数()20y ax bx c a =++≠中的x 和y 满足下表:(1)根据表格内容,求该二次函数的表达式和m 的值;(2)请在图所示的平面直角坐标系中画出上述二次函数的图象,并在图象上标出点()()2,0,1,3A B -;(3)连接AB ,若M 是线段AB 上(不与点,A B 重合)的一个动点,过点M 作MN x ⊥轴,交抛物线于点N ,求线段MN 的最大值.23.背景:一次小组合作探究课上,小明将两个正方形按背景图位置摆放(点E ,A ,D 在同一条直线上),发现BE =DG 且BE ⊥DG .小组讨论后,提出了三个问题,请你帮助解答:(1)将正方形AEFG 绕点A 按逆时针方向旋转,(如图1)还能得到BE =DG 吗?如果能,请给出证明.如若不能,请说明理由:(2)把背景中的正方形分别改为菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转,(如图2)试问当∠EAG 与∠BAD 的大小满足怎样的关系时,背景中的结论BE =DG 仍成立?请说明理由;(3)把背景中的正方形改成矩形AEFG和矩形ABCD,且23AE ABAG AD==,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,BG2+DE2是定值,请求出这个定值.。
2023-2024学年河南省郑州市第十一中学中考数学仿真试卷含解析
一、选择题(每题 2 分,共20 分)1.She likes ______ fish. ( )A. eatB. eatingC. eats2._____ Daming like bananas? ()A. DoB. IsC. Does3.Look __________ that monkey. It’s fat. ( )A. atB. inC. on4.here are __________ ducks in the box. ( )A. aB. twoC. one5.( )A. green B. strawberry C. yellow6._______ ( )—I’m from China.A. What’s your name?B. Where are you from?C. Welcome! 7.( )A. grandpa B. grape C. strawberry8.like red. Red is ______ love and luck. ( )A. toB. forC. with9.t is ________ apple. It’s ________ big apple. ( )A. a; aB. an; anC. an; a10.e can _________on Mother’s Day. ( )A. make a cardB. say “Happy birthday”C. throw stones二、判断题(每题 3 分,共15 分)11.判断句子与图片内容是(T)否(F)相符:The book is on the desk.()12.watermelon ()13.sweet ()14.判断英文表达与图片内容是(T)否(F)相符:He is my brother. ()15.判断每组对话是(T)否(F)符合日常交际:—Is he your dad? —No, he isn’t. ()三、填空题(每题 2 分,共20 分)16.Look, the is in the box.17.girl(对应词)_________________18.A: How old are you, Sam? B: I’m ______ years old.19.(ccolk)20._____ (How / What) nice!21.There are three w_______ on the desk.22.—This doll is for you.—______ nice!23.—_____ (Who / What) is the man? —Is he your father?24.I’d like some (pears / apples).25.yes(反义词)________________四、情景交际(每题 5 分,共20 分)26.当你想知道远处的女人是不是对方的妈妈时,可以说:______ ( )A. Is she your mother?B. Who is she?C. She is my mother.27.“问候对方你好吗?”,可以这样问:( )A. I’m fine.B. How are you?28.你想知道你朋友几岁,你应该说:()A. How are you?B. How old are you?29.—Is it in your bag? ( )—______A. Yes, it is.B. Yes, I do.C. It’s red.五、连词成句(每题10 分,共10 分)30.to, bike, My, goes, work, father, by (.)六、选出每组单词画线部分发音不同的一项(每题 5 分,共15 分)31.( )A. like B. big C. six 32.( )A. map B. fat C. make 33.( )A. it B. driver C. ship参考答案一、选择题1.B【解析】【详解】句意:她喜欢吃鱼。
2023年河南省开封市中考数学模拟试卷(含解析)
2023年河南省开封市中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 2023的倒数是( )A. 2023B. −2023C. −12023D. 120232.如图所示的几何体是由五个小正方体组合而成的,它的左视图是( )A.B.C.D.3. 若2+a在实数范围内有意义,则a的取值范围是( )A. a>−2B. a<−2C. a≥−2D. a≤−24. 第19届亚运会将于2023年9月23日至10月8日在中国浙江省杭州市举行,杭州奥体博览城游泳馆区建筑总面积272000平方米,将数272000用科学记数法表示为( )A. 0.272×107B. 2.72×106C. 2.72×105D. 272×1045. 某学校将国家非物质文化遗产——“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图所示,若将左图抽象成右图的数学问题:在平面内,AB//CD,DC的延长线交AE于点F;若∠BAE=75°,∠AEC=35°,则∠DCE的度数为( )A. 120°B. 115°C. 110°D. 75°6.每年的4月23日为“世界读书日”,某学校为了鼓励学生多读书,开展了“书香校园”的活动.如图是初三某班班长统计的全班50名学生一学期课外图书的阅读量(单位:本),则这50名学生图书阅读数量的中位数、众数和平均数分别为( )A. 18,12,12B. 12,12,12C. 15,12,14.8D. 15,10,14.57. 如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是( )A. 8(3−3)mB. 8(3+3)mC. 6(3−3)mD. 6(3+3)m8.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,以下结论错误的是( )A. AD是∠BAC的平分线B. ∠ADC=60°C. 点D在线段AB的垂直平分线上D. S△A B D:S△A B C=1:29. 如图,在平面直角坐标系xOy 中,点A ,B 都在反比例函数y =kx(x <0)的图象上,且△OAB 是等边三角形,若AB =6,则k 的值为( )A. −8B. −9C. −6 3D. −1210. 如图,点E 在矩形ABCD 的AB 边上,将△ADE 沿DE 翻折,点A 恰好落在BC 边上的点F 处,若CD =3BF ,BE =4,则AD 的长为( )A. 9B. 12C. 15D. 16第II 卷(非选择题)二、填空题(本大题共5小题,共15.0分)11. 因式分解:x 2+2x +1= .12. 已知关于x 的一元二次方程x 2+kx−6=0的一个根是2,则另一个根是______.13. 不等式组{1−x <013x −1≤0的解集是______.14. 若关于x 的一元二次方程x 2−4x +m =0没有实数根,则m 的取值范围是______.15. 甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),图中的折线表示y 与x 之间的函数关系,则图中m 的值为______ .三、解答题(本大题共8小题,共64.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省2010年数学中考模拟试题(十一)
一、选择题(每题3分,共18分) 1.下列各数比1-大的负无理数是 ( )
A . -3
B . -3
C .3
3
-
D .0
2.北京2008年奥运会的国家体育场“鸟巢”建筑面积达
25.8万平方米,用科学记数法表示应为 ( ) A .24108.25m ⨯
B . 25108.25m ⨯
C . 251058.2m ⨯
D . 261058.2m ⨯
3.如图,已知12355===∠∠∠,则4∠的度数是(
)
A .110
B .115
C .120
D .125
4. 已知两圆的半径分别为6m 和4m ,圆心距为10cm ,则此两圆的位置关系是( )
A .外离
B .外切
C .相交
D .内切
5.解放军某部接到上级命令,乘车前往四川地震灾区抗震救灾.前进一段路程后,
由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往.若部队离开驻地的时间为t (小时),离开驻地的距离为s (千米),则能反映s 与t 之间函数关系的大致图象是( )
6.由一些完全相同的小立方块搭成的几何体的主视图、俯视图如图所示
那么搭成这个几何体最少用的小立方块的个数是( ) A .8
B .7
C .6
D .5
二、填空题(每题3分,共27分) 7..从1~9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是_____________。
(第2题
(第3题)
4 1
3
2
(第6题) 主视俯视
8.课本中介绍我国古代数学名着《孙子算经》上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几只?如果假设鸡有x只,兔有y 只,请你列出关于x,y的二元一次方程组____________________。
9.分解因式:3a-a= 。
10
.函数y=x的取值范围是。
11.在你所学过的几何图形中,既是轴对称图形又是中心对称图形的有(写出两个)。
12.如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积___________cm2。
(不考虑接缝等因素,计算结果用π表示)
13.如图,Rt△ABC中,∠A=90︒,AB=4,AC=3,D在BC上运动(不与B、C重合),过D点分别向AB、Ac作垂线,垂足分别为E、F,则矩形AEDF的面积的最大值为___________。
14、如图,点O是⊙O的圆心,点A、B、C在⊙O上,∠
AOB=38°,则∠ACB的度数是。
15.如图的围棋盘放在某个平面直角坐标系内,白棋②的
黑棋①坐标为(8,5)
--,白棋④的坐标为(7,9)
--,那么
的坐标应该是 .
三、解答题(15
O
C
B
A
(第14题图)
16、(8分)解方程2
2011
x x
x x ⎛⎫--= ⎪
++⎝⎭ 17、(本小题10分)韭园一中九年级学生进行了五次体育模拟测试,甲同学...
的测试成绩如表(一),乙同学...的测试成绩折线统计图如图(一)所示: 表(一)
(1)请根据甲、乙两同学五次体育模拟测试的成绩填写上表:
(2)甲、乙两位同学在这五次体育模拟测试中,谁的成绩较为稳定?请说明理由.
18.(8分)已知,如图平行四边形ABCD 求证:∠BAE =∠DCF 。
19(本小题10分)如图,一个被等分成标有数字2,5,6扇形会恰好停在指
针所指的位置(指针指向两个扇形的交线时,重新转动转盘).
(1)求当转动这个转盘,转盘自由停止后,指针指向没有标数字的扇形的概率; (2)请在4,7,8,9这4个数字中选出一个数字....
填写在没有标数字的扇形内,使得分别转动转盘2次,转盘自由停止后指针所
指扇形的
数字..和.分别为奇数..与为偶数..的概率相等,并说明理由. 20. (本题满分14分)
如图,AC 是某市环城路的一段,AE ,BF ,CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A ,B ,C .经测量花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上,AB =2km ,∠DAC =15°.
(1)求B ,D 之间的距离; (2)求C ,D 之间的距离.
21、(13分).如图,ΔABC 中,AC=BC ,以BC 上一点O 为圆心、OB 为半径作⊙O 交AB 于点D 。
已知经过点
D 的⊙O 切线恰好经过点C 。
(1)试判断CD 与AC 的位置关系,并证明。
(2)若ΔACB ∽ΔCDB ,且AC=3,求⊙O
的半径
22.(12分) 如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6
米,底
部宽度为12米. 现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.
(1) 直接写出点M 及抛物线顶点P 的坐标; (2) 求出这条抛物线的函数解析式;
(3) 若要搭建一个矩形“支撑架”AD+DC+CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 一、选择题
A
B
C
中山路
文化路
D
和
平
路
45° 15°
30°
E
F O
·
A
D
C
B
(第21题
第20题图
1、C
2、C
3、D
4、B
5、A
6、A 二、填空题
7、23
8、35
2494
x y x y +=⎧⎨
+=⎩ 9、a (a+1)(a-1) 10、3x ≥-
11、圆、正方形(不唯一)
12、100π 13、3 14、19 15、(-4,-8) 三、解答题
16、1212,2
x x =-=-
17、(1)甲中位数48,乙方差1(2)乙的较为稳定,因为乙的方差小,波度小。
18、(SAS)ABE CDF BAE DCF ∆≅∆∴∠=∠ 19、(1)p=14(2)选7或9,1p p 2
==和奇和偶
20、分别过B 、A 作DC 的垂线,垂足分别为M 、N ,再过B 作BH ⊥AN 于H 。
BA=BD=2 ;。