单因素重复测量实验设计.

合集下载

教育与心理统计学 第六章 方差分析五 重复测量实验设计的方差分析考研笔记-精品

教育与心理统计学  第六章 方差分析五 重复测量实验设计的方差分析考研笔记-精品

第六章方差分析(五)[测量实验设计的方差分析一、重复测量的方差分析(一)重复测量实验设计的相关含义⑴重复测量实验设计的定义又叫:被试内设计、受试者内设计、单组实验设计、相关样本设计。

是每个被试或每组被试必须接受自变量的所有情况的处理(每个被试接受所有的实验处理水平或处理水平的结合)。

由于被试的行为是重复测量的,所以被试内实验设计也称重复测量实验设计。

(2)重复测量设计的基本原理每个被试者参与所有的实验处理,然后比较相同被试者在不同处理下的行为变化。

这种实验设计下的同一被试者既为实验组提供数据,也为控制组提供数据。

因此,被试者内设计无需另找控制组的被试者。

被试内设计不但节省了被试人数,而且不同组的被试个体差异也得到了最好的控制,被试内设计比被试间设计更有力,能更好的考察实验组和控制组之间的差异,这个优点使得许多研究者更倾向于使用被试内设计。

和被试间设计相反,被试内设计不会受到来自被试个体差异的困扰但却必需面对实验处理之间相互污染的问题。

可以采用平衡技术来控制这些差异。

(3)使用重复测量设计的主要目的重复测量实验设计的目的是所有被试自已做控制,使被试的各方面特点在该因素所有水平上保持恒定,克服被试间设计中存在的被试不同质的问题,以最大限度地控制由被试的个体差异带来的变异。

如果实验者主要想研究一个被试者对实验处理所引起的行为上的变化,一般可以考虑采用被试者内设计。

(二)重复测量实验设计的方差分析的条件重复测量实验设计方差分析是一般方差分析的深化,也具有正态性、变异的可加性和方差齐性等先决条件,还要求各重复测量数据组成的协方差矩阵满足球形性假设。

博克斯指出,若球状性假设得不到满足,则方差分析的F值是有偏的,会增加犯I类错误的可能。

(三)重复测量实验设计的方差分析的过程①建立检验假设;②计算离差平方和与均方;③进行F检验;④列出方差分析表。

二、单因素重复测量的方差分析(一)重复测量实验设计的基本方法实验中每个被试接受所有的处理水平。

SPSS:单因素重复测量方差分析(史上最详细教程)

SPSS:单因素重复测量方差分析(史上最详细教程)

SPSS:单因素重复测量方差分析(史上最详细教程)一、问题与数据研究者招募了10名研究对象,研究对象进行了6个月的锻炼干预。

CRP浓度共测量了3次:干预前的CRP浓度——crp_pre;干预中(3个月)——crp_mid;干预后(6个月)——crp_post。

这三个时间点代表了受试者内因素“时间”的三个水平,因变量是CRP的浓度,单位是mg/L。

部分数据如下:二、对问题的分析使用One-way Repeated Measures Anova进行分析时,需要考虑6个假设。

对研究设计的假设:假设1:因变量唯一,且为连续变量;假设2:受试者内因素(Within-Subject Factor)有3个或以上的水平。

注:在重复测量的方差分析模型中,对同一个体相同变量的不同次观测结果被视为一组,用于区分重复测量次数的变量被称为受试者内因素,受试者内因素实际上是自变量。

对数据的假设:假设3:受试者内因素的各个水平,因变量没有极端异常值;假设4:受试者内因素的各个水平,因变量需服从近似正态分布;假设5:对于受试者内因素的各个水平组合而言,因变量的方差协方差矩阵相等,也称为球形假设。

三、思维导图(点击图片可查看大图) 四、对假设的判断在分析时,如何考虑和处理这5个假设呢?由于假设1-2都是对研究设计的假设,需要研究者根据研究设计进行判断,所以我们主要对数据的假设3-5进行检验。

(一) 检验假设3和假设4的SPSS操作1. 在主菜单点击Analyze > Descriptive Statistics > Explore...,如下图:2. 出现Explore对话框,将crp_pre、crp_mid和crp_post选入Dependent List,点击Plots;3. 出现下图Plots对话框;4. 在Boxplots下选择Dependents together,去掉Descriptive下Stem-和-leaf,选择Normality plots with tests,点击Continue;5. 回到Explore主对话框,在Display下方选择Plots,点击OK。

单因素重复测量实验设计

单因素重复测量实验设计

研究题目:文章的生字密度对学生阅读理解的影响。 实验设计:为了更好地控制被试的个体差异对实验结果的 影响,本实验采用单因素重复测量实验设计。 实验变量:自变量——生字密度,含有4个水平(5:1、 10:1、15:1、20:1); 因变量——阅读测验的分数; 被试及程序:研究者选取8名被试参加实验,每个被试阅 读4篇生字密度不同的文章。为了克服疲劳效应、练习效 应等顺序效应,应以拉丁方排序实施4种生字密度的文章。
单因素重复测量实验设计
第二章 实验设计
单因素重复测量实验设计的基本特点
适用条件:研究中有一个自变量,自变量有两个或多于两个水平;当 若干处理水平连续实施给同一被试时,被试接受前面的处理对接受后 面的处理没有长期影响(如学习、记忆效应)。 基本方法:实验中每个被试接受所有的处理水平。 误差控制:兼作组法(重复测量法)。利用被试自己做控制,使被试 的各方面特点在所有的处理中保持恒定,以最大限度控制由被试的个 体差异带来的变异。但在这种设计的实验中,要注意控制顺序效应。 变异来源:自变量的处理效应;被试间个体差异的效应;随机误差变 异。 优点:能全面控制被试变量对实验结果的影响;只需较少被试即可。
数据处理方法(SPSS统计软件)
包含的统计变量:实验自变量A的各个处理 水平:A1,A2,A3…AP 实施的统计过程:analyze—General Linear Model—Repeated Measures 预期的统计结果:自变量A的主效应是否显 著;不能做多重检验,但可以做两两相关t 检验。
结束

第 讲单因素实验设计

第 讲单因素实验设计

高照明度 中等照明度
低照明度
组X
X
组Y
Y
组Z
Z
目录
原始数据表如下:
姓名
1 张明 ……
30 刘修 31 刘冬
…… 60 黄卫 61 李家
…… 90 张岩
组别(V1)
工作效率(V2)
高(照明度) 56

67
中等
53
中等
61

45

68
目录
不同照明条件对工作效率影响研究的统计分析:
不同照明条件下工作效率比较
如果水平数为2,则进行 independent samples T test; 如果水平数大于2,则进行完全随机的方差分析: analyze— compare means—One-Way ANOVA
(3目) 录两个处理水平的单因素完全随机设计举例
不同照明条件对工作效率的影响研究
研究2种照明条件下工人车零件的效率。被试60人,随机分 为2组,每组30人,每组被试分别接受1种处理,见下表:
高照明度
低照明度
组X
X
组Y
Y
目录
不同照明条件对工作效率的影响研究:
原始数据表
姓名
组别(V1)
工作效率(V2)
1 张明 ……
29 刘修
30 刘冬
31 黄卫
32 李家 ……
60 张岩
高(照明度) 56

67

53

61

45

68
目录
不同照明条件对工作效率影响研究的统计分析:
表1 不同照明条件下工作效率比较
目录
-- 基本方法:首先将被试在无关变量上进行匹配,并区分为 不同的组别(每一区组内的被试在无关变量上相似,不同区 组的被试在无关变量上不同),然后把各区组的被试随机分 配给自变量的各个水平,每个被试只接受一个水平的处理。

第5讲_单因素实验设计说明

第5讲_单因素实验设计说明
预期的统计结果:自变量A的主效应是否显著;无关变量即 区组变量效应是否显著;若自变量主效应显著,则进行平均数 多重检验.
目录
<3> 应用举例
研究题目:文章的生字密度对学生阅读理解的影响. 研究假设:阅读理解随着生字密度的增加而下降. 实验变量:自变量——生字密度,含有4个水平〔5:1、10:1、
15:1、20:1; 因变量——阅读测验的分数; 无关变量——被试的智力水平.
区组的个数根据控制无关变量的需要,每一区组内被试的 个数为多少??
目录
– 误差控制:区组法〔无关变量纳入法.通过统计处理,分离出 由无关变量引起的变异,使它不出现在处理效应和误差变异中, 从而提高方差分析的灵敏度.
目录
– 实验设计模型:Yij = μ+αj+πi +εi<j>

<i=1,2,......,n; j=1,2,......,p>
目录
① 随机实验组控制组前测后测设计----应用举例
• 研究目的:通过一系列教学程序和方法的训练,来培养学 生根据报纸标题预测所报道内容的能力. • 随机选取了46名8年级的学生,并随机将他们分为两组,随 机选择其中一个组为实验组,接受标题阅读教学,而另一个组 为控制组,仍接受常规阅读教学.
目录
Yijkl 表示被试i在处理水平j上的分数,μ表示总体平均 数,αj表示水平j 的处理效应;βk 表示无关变量B的效 应,γl 表示无关变量C的效应, ε pooled 表示误差变异.
总变异组成:实验处理A引起的变异;无关变量B、C引起的变 异;误差引起的变异.
目录
平方和分解:
SST = SSA + SSB + SSC + SSE SST是总平方和; SSA是因素A〔实验处理的效应平方和; SSB是无关变量B的效应平方和; SSC是无关变量C的效应 平方和; SSE是误差平方和.

单因素重复实验设计方差分析(GLM

单因素重复实验设计方差分析(GLM

实验设计步骤
1. 确定实验目的和假设。
3. 设定实验处理和测量指标。
5. 进行统计分析,包括数据清 洗、方差齐性检验等。
2. 选择样本和分组。
4. 实施实验并记录数据。
6. 解读和分析结果,得出结论 。
实验设计注意事项
样本代表性
确保样本具有足够的代表性,能够反映总体 的情况。
数据处理规范
遵循数据处理规范,确保数据的准确性和可 靠性。
05
结论
研究成果总结
01
验证了单因素重复实验设计方差分析(GLM)在处理重复测量数 据时的有效性。
02
揭示了不同处理组之间的显著差异,为进一步研究提供了依 据。
03
证明了GLM在处理具有重复测量特点的数据时具有优越性, 能够更准确地估计实验处理效应。
研究不足与展望
需要更多的研究来验证GLM在处理不同类型重复测量数据时的适用性和稳 健性。
背景
在科学实验、社会科学调查和工 业生产等领域中,经常需要进行 单因素重复实验设计,以评估不 同处理或条件下的结果差异。
GLM简介
GLM全称General Linear Model,即一般线性模型,是一种广泛使用的统计分析方 法。
它通过构建线性模型来描述因变量和自变量之间的关系,并使用适当的统计技术来 估计模型参数和检验假设。
对数据进行整理,计算出每个 组的均值和观测值的总数。
5. 检验假设
通过比较组间变异和组内变异 的比例,判断处理方式是否对 实验结果验是方差分析中重要的一步,它通过比较组间变异和组内变异的比例来检验多个总体均值是否 相等。
在进行假设检验时,需要选择合适的统计量来描述组间变异和组内变异的比例,并确定显著性水平。

心理学与教育研究中的多因素实验设计——————舒华

心理学与教育研究中的多因素实验设计——————舒华

心理学与教育研究中的多因素实验设计——————舒华第二章 几种基本的实验设计一、 基本特点适用于:研究中有一个自变量,自变量有两个或多于两个水平。

方法:把被试随机分配给自变量的各个水平,每个水平被试只接受一个水平的处理。

二、 计算与举例(一) 检验的问题与实验设计 (二) 实验数据及其计算()()()()()22i 22j T 2j ij j ss ss X X NX X ss n nNss ss n S X ss ss X X ss X =+=-=-=∙-=-=∙=-∑∑∑∑∑∑∑∑∑∑∑∑总变异组间组内总变异组间组内总变异组间一、 基本特点适用于:研究中有一个变量,自变量有两个或多个水平(P ≥2),研究中还有一个无关变量,也有两个或多个水平(n ≥2);并且自变量的水平与无关变量的水平之间没有交互作用。

适合检验的假说:(1)处理水平的总体平均数相等或处理效应为零;(2)区组的总体平均数相等或区组效应为零。

二、计算ss ss ss (ss SS ss =+=++总变异组间组内组间区组残差)三、优点:从实验中分离出了一个无关变量的效应,从而减少了实验误差。

一、 基本特点定义:是一个含P 行、P 列、把P 个字母分配给方格的管理方案,其中每个字母在每行中只出现一次。

适用于:(1)研究中自变量与无关变量的水平平均≥2,一个无关变量的水平被分配给P行,另一个则给P列;(2)假定处理水平与无关变量水平之间没有交互作用, (3)随即分配处理水平给2P 个方格单元,每个处理水平仅在每行,每列中出现一次。

1c 2c 3c 4c无关变量C的四个水平 无关变量B的四个水平 1b 自变量A的四个水平 2b3b4bA B C SS SS SS SS SS SS SS SS =+=++++处理间总变异处理内残差单元内()一、 基本特点:(也叫被试内设计) 基本方法:实验中每个被试接受所有的处理水平目 的:利用被试自己做控制,使被试的各方面特点在所有的处理中保持恒定,以最大限度地控制由被试的个体差异带来的变异。

15.1.115.1重复测量单因素实验设计

15.1.115.1重复测量单因素实验设计

重复测量设计举例
• 给被试呈现如图所示的照片制成的幻灯片,要求被试利用7点量 表评价每一张幻灯片的情绪的强度。每次呈现一张幻灯片,每张 呈现10秒钟,然后给被试35秒钟进行评定。实验中的自变量为照 片的形式(左侧构成,原始照片,和右侧构成),每位被试评价 54张幻灯片:18张左侧构成照片,18张原始照片和18张右侧构 成照片。
被试在接受实验处 理时,可能由于所 有处理水平对被试 施测的顺序不同, 而产生不同的影响。
重复测量设计的要求(2)
• 在实验设计中的自变量,按照其是否能被研究者所操纵,可以分 为可操纵的变量,和不可操纵的变量。
• 在不可操纵的变量中,有的是能够进行重复测量实验的,如年龄。 • 但是有的不可操纵变量是不能成为重复测量实验中的自变量的,
重复的接受不同的处理水平,因此大大的 减少了实验的被试数量,只需要较少的被
1
试就能获取大量的实验数据。
2
这在被试为特殊群体,或者被试 取样较困难的情况下,具有极大 的优势。
它也有一定的前提要求。
3
重复测量设计的要求(1)
被试先后接受不同 的处理水平时,相 互之间无长期影响。
当被试接受前面的 如在一些学习,记 处理对接受后面的 忆的研究中,就不 处理有长期影响时, 能使用重复测量设 就会将这种影响带 计。 入到下一个处理水 平中,从而混淆实 验处理的效应。
L
31
R
40 O 49
O
5
O 14
L 23 R 32
L
41 R 50 R
6
L
15
R
24
O
33
O
42
L
51
L
7
R 16 R 25 R 34 O 43 R 52 R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单因素重复测量实验设计
第二章 实验设计
单因素重复测量实验设计的基本特点



适用条件:研究中有一个自变量,自变量有两个或多于两个水平;当 若干处理水平连续实施给同一被试时,被试接受前面的处理对接受后 面的处理没有长期影响(如学习、记忆效应)。 基本方法:实验中每个被试接受所有的处理水平。 误差控制:兼作组法(重复测量法)。利用被试自己做控制,使被试 的各方面特点在所有的处理中保持恒定,以最大限度控制由被试的个 体差异带来的变异。但在这种设计的实验中,要注意控制顺序效应。 变异来源:自变量的处理效应;被试间个体差异的效应;随机误差变 异。 优点:能全面控制被试变量对实验结果的影响;只需较少被试即可。
结束

应用举例及延伸

Hale Waihona Puke 研究题目:文章的生字密度对学生阅读理解的影响。 实验设计:为了更好地控制被试的个体差异对实验结果的 影响,本实验采用单因素重复测量实验设计。 实验变量:自变量——生字密度,含有4个水平(5:1、 10:1、15:1、20:1); 因变量——阅读测验的分数; 被试及程序:研究者选取8名被试参加实验,每个被试阅 读4篇生字密度不同的文章。为了克服疲劳效应、练习效 应等顺序效应,应以拉丁方排序实施4种生字密度的文章。
数据处理方法(SPSS统计软件)
包含的统计变量:实验自变量A的各个处理 水平:A1,A2,A3…AP 实施的统计过程:analyze—General Linear Model—Repeated Measures 预期的统计结果:自变量A的主效应是否显 著;不能做多重检验,但可以做两两相关t 检验。
相关文档
最新文档