初中数学专题训练--整式方程--解方程去分母去括号
部编数学七年级上册专题08解一元一次方程(40题)专项训练(解析版)含答案

专题08 解一元一次方程(40题) 专项训练1.(2022·河南周口·七年级期末)解方程:(1)2(3)37(1)3x x x +-=--; (2)3151123y y +-=+2.(2022·江苏扬州·七年级期末)解下列方程:(1)4x ﹣3=2(x ﹣1)(2)152126x x -+-=3.(2022·河北保定·七年级期末)解方程:(1)2(1)129x x --=; (2)13124x x +--=1.【答案】(1)2x =-;(2)1x =-.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.(1)解:去括号得:22129x x --=,移项得:29212x x -=+,合并同类项得:714x -=,系数化为1得:2x =-,(2)方程两边同时乘以4得:2(1)(31)4x x +--=,去括号得:22314x x +-+=,移项得:23412x x -=--,合并同类项得:1x -=,系数化为1得:1x =-.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.4.(2022·浙江丽水·七年级期末)解下列方程(1)3x +1=-2 (2)13132y y -+=-5.(2022·黑龙江·七年级期末)解下列方程:(1)862(64)x x x =--(2)231147x x +--=【答案】(1)x =2 (2)x =-2【分析】(1)先去括号,移项,合并同类项,系数化为1可得(2)去分母,去括号,移项,合并同类项,系数化为1可得(1)解:去括号得:8x =6x +8x -12移项得:8x -6x -8x =-12合并同类项得:-6x =-12系数化为1得:x =2(2)解:去分母得:7(x +2)-4(3x -1)=28去括号得:7x+14-12x +4=28移项得:7x -12x =28-14-4合并同类项得:-5x =10系数化为1得:x =-2【点睛】本题考查了解一元一次方程,熟练掌握解题步骤并小心计算是解题关键.6.(2022·福建泉州·七年级期末)解方程:714(10)3x x --=-.【答案】10x =【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:()()371210x x --=-,去括号得:3712120x x -+=-,移项得:1212037x x --=---,合并同类项得:13130x -=-,系数化为1得:10x =.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.7.(2022·河北·涿州市七年级期末)解一元一次方程(1)0.50.7 6.5 1.3x x -=-(2)1123x x --=8.(2022·陕西渭南·七年级期末)解方程:5144123x x x --+=-.9.(2022·四川眉山·七年级期末)解方程:213134x x -+-=10.(2022·河南郑州·七年级期末)解下列方程:(1)2(32)14x -=(2)13735x x x -+-=-【答案】(1)3x =(2)7x =【分析】(1)先去括号,再移项,合并同类项,化系数为 1;(2)先去分母,再去括号,移项,合并同类项,化系数为 1.(1)解:去括号,可得:6414x -=,移项,合并同类项:618x =,系数化为1,可得:3x =;(2)解:去分母,可得:155(1)7153(3)x x x --=´-+,去括号,可得:155510539x x x -+=--,移项,合并同类项,可得:1391x =,系数化为1,可得:7x =.【点睛】本题考查解一元一次方程,掌握解一元一次方程的方法是解题关键.11.(2022·新疆塔城·七年级期末)解方程:(1)()73326x x -+=(2)16136x x x -+-=-【答案】(1)6x =- (2)2x =【分析】(1)先去括号,再移项,合并同类项,最后化系数为1即可;(2)先去分母,再去括号,移项、合并同类项,最后化系数为1.(1)解:7966x x --=212x -=6x =-.(2)解:()()62166x x x --=-+714x -=-2x =.【点睛】此题考查了解一元一次方程,涉及去分母、去括号、移项,合并同类项、化系数为1等知识,解题的关键是掌握相关知识.12.(2022·福建泉州·七年级期末)解方程:2141126x x +--=.【答案】x =1【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可求解.【详解】去分母,得:3(2x +1)﹣(4x ﹣1)=6,去括号,得:6x +3﹣4x +1=6,移项,得:6x ﹣4x =6﹣3﹣1,合并同类项,得:2x =2,系数化为1,得:x =1;【点睛】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.13.(2022·四川广安·七年级期末)解方程:(1)()43204x x --=(2)2151136x x +--=14.(2022·黑龙江绥化·期末)解方程.(1)32185525x += (2)311043x x -=15.(2022·四川广元·七年级期末)解方程:21252x x x +--=-.16.(2022·河北承德·七年级期末)解下列方程:①2342x x -=- ②123123x x +--=.17.(2022·黑龙江牡丹江·七年级期末)解方程:312123x x x ---+=.18.(2022·安徽阜阳·七年级期末)2121134-+=-x x .19.(2022·贵州毕节·七年级期末)解方程:(1)2(3)3(1)6x x -+-=(2)123126x x +--=【答案】(1)3x = (2)0x =20.(2022·黑龙江大庆·期末)解方程:(1)3(x ﹣2)=2﹣5(x ﹣2); (2)223146x x +--=21.(2022·河南许昌·七年级期末)解方程:(1)83(21)172(3)--=++x x(2)14527-+-=-x x x22.(2022·宁夏·七年级期末)解下列方程:(1)5(2)3(21)7x x +--=(2)123123x x +--=23.(2022·陕西·西安七年级期末)解方程:(1)3x ﹣2(10﹣x )=5;(2)123146x x +--=.【答案】(1)x =5; (2)x =-3【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.(1)解:去括号得:3x -20+2x =5,移项合并得:5x =25,解得:x =5;(2)去分母得:3x +3-4x +6=12,移项合并得:-x =3,解得:x =-3;【点睛】此题考查了解一元一次方程,熟练掌握解方程的基本步骤是解本题的关键.24.(2022·辽宁·朝阳七年级期末)解方程:(1)2(21)37x x -=-; (2)341125x x -+-=.25.(2022·海南·七年级期末)解下列方程:(1)()()4321x x -+=-; (2)2543137x x +--=.26.(2022·安徽·七年级期末)解方程:123152x x -+-=27.(2022·山东聊城·七年级期末)解下列一元一次方程:(1)()()73124x x -+=- (2)121123x x --+=【答案】(1)4x =-(2)5x =【分析】(1)根据去括号,移项,合并同类项的步骤解一元一次方程即可;(2)根据去分母,去括号,移项,合并同类项的步骤解一元一次方程即可;28.(2022·湖南永州·七年级期末)解方程:(1)()()31241x x +=-; (2)5121136x x +--=.29.(2022·云南临沧·七年级期末)解方程:(1)4x -4=6-x(2)142123x x ---=【答案】(1)2(2)-1【分析】(1)根据解方程的步骤求解即可;(2)根据解方程的步骤求解即可.(1)解:4x -4=6-x ,移项得4x +x =6+4,合并同类项得5x =10,系数化1得x =2;(2)解:去分母得 3(x -1)-2(4x -2)=6,去括号得 3x -3-8x +4=6,移项合并得 -5x =5,系数化1得 x =-1;【点睛】本题考查了一元一次方程的解法,解题的关键是熟练掌握解方程的步骤.30.(2022·山东聊城·七年级期末)解下列方程:(1)32(3)23(21)--=--x x(2)332164x x +-=-31.(2022·福建龙岩·七年级期末)解方程:(1)6742x x -=-;(2)3157146y y --=+.32.(2022·山东威海·期末)解方程:(1)42(4)2(1)x x -+=-; (2)121(7)(5)352x x +=--; (3)0.30.40.50.220.20.3x x --+=.33.(2022·山东烟台·期末)解方程:(1)0.170.210.70.03x x--=(2)31423x x--+=∴x =7.【点睛】本题考查一元一次方程的应用,熟练掌握一元一次方程的解法是解题关键.34.(2022·山东济南·期末)解方程:(1)51263x x x +--=- (2)20.820.50.4x x --=35.(2022·吉林四平·七年级期末)某同学解方程12324x x +-=+的过程如下,请仔细阅读,并解答所提出的问题:解:去分母,得()()2123x x +=-+.(第一步)去括号,得2223x x +=-+.(第二步)移项,得2223x x +=-+.(第三步)合并同类项,得33x =.(第四步)系数化为1,得1x =.(第五步)(1)该同学解答过程从第___________步开始出错,错误原因是____________________;(2)写出正确的解答过程.【答案】(1)一,漏乘不含分母的项(2)见解析.【分析】(1)观察第一步,可得结论;(2)按解一元一次方程的一般步骤求解即可.(1)解:方程去分母,得2(x +1)=(2-x )+12,所以该同学从第一步就出错了,错误的原因是去分母时,不含分母的项漏乘了.故答案为:一,漏乘不含分母的项;(2)解:去分母,得2(x +1)=(2-x )+12,去括号,得2x +2=2-x +12,移项,得2x +x =2-2+12,合并同类项,得3x =12,系数化为1,得x =4.【点睛】本题主要考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.36.(2022·河南开封·七年级期末)下面是某同学解方程的过程,请认真阅读并完成相应的任务:解方程:51263x x x +--=-解:去分母,得()()125621x x x -+=--………………第一步去括号,得125622x x x -+=-+ ……………………第二步移项,得621252x x x --+=--+ ……………………第三步合并同类项,得515x -=- ………………………………第四步系数化为1,得3x = ………………………………………第五步(1)任务一:填空:①以上解方程步骤中,第一步去分母的依据是___.②第___步开始出现错误,这一步错误的原因是.(2)任务二:请写出本题正确的解题过程.(3)任务三:请你根据平时的学习经验,在解方程时还需注意的事项提一条合理化建议.【答案】(1)①等式的基本性质二;②二,去括号时没有变符号;(2)1x =(3)去分母时要注意每一项都要乘到,(答案不唯一,合理就行)【分析】(1)观察这位同学解方程的步骤,利用等式的基本性质及去括号可进行求解;(2)根据一元一次方程的解法可直接进行求解;37.(2022·吉林长春·七年级期末)阅读下面方程的求解过程:解方程:31421 25x x-+=-解15x﹣5=8x+4﹣1,(第一步)15x﹣8x=4﹣1+5,(第二步)7x=8,(第三步)78x=.(第四步)上面的求解过程从第 步开始出现错误;这一步错误的原因是 ;此方程正确的解为 .38.(2022·山东滨州·七年级期末)学习了一元一次方程的解法后,老师布置了这样一道计算题3157146x x ---=,甲、乙两位同学的解答过程分别如下:甲同学:解方程3157146x x ---=.解:3157121121246x x --´-´=´ 第①步3(31)122(57)x x --=- 第②步3112107x x --=- 第③步3107112x x -=-++ 第④步76x -= 第⑤步67x =-. 第⑥步乙同学:解方程3157146x x ---=.解:31571211246x x --´-=´ 第①步3(31)12(57)x x --=- 第②步3311014x x --=- 第③步3101413x x -=-++ 第④步710x -=- 第⑤步107x =-. 第⑥步老师发现这两位同学的解答过程都有错误,请回答以下问题:(1)甲同学的解答过程从第__________步开始出现错误(填序号);(2)乙同学的解答过程从第__________步开始出现错误(填序号);错误的原因是_________________________.(3)请写出正确的解答过程.【答案】(1)③(2)①,错用等式的性质2(方程两边漏乘)(3)1x =-【分析】准确运用一元一次方程的解法步骤:去分母、去括号、移项、合并同类项、化系数为1,即可得出答案.39.(2022·浙江台州·七年级期末)解方程:213x +﹣1016x +=1.甲、乙两位同学的解答过程如下甲同学:解:213x +×6﹣1016x +×6=1第①步2(2x +1)﹣10x +1=1⋯⋯第②步4x +2﹣10x +1=1⋯⋯第③步4x ﹣10x =1﹣2﹣1⋯⋯第④步﹣6x =﹣2⋯⋯第⑤步x =13……第⑥步乙同学:解:426x +﹣1016x +=1⋯⋯第①步421016x x +-+=1⋯⋯第②步636x -+=1⋯⋯第③步﹣6x +3=6⋯⋯第④步﹣6x =3⋯⋯第⑤步x =﹣12⋯⋯第⑥步老师发现这两位同学的解答过程都有错误.(1)请你指出甲、乙两位同学分别从哪一步开始出错,甲:第 步,乙:第 步(填序号);(2)请你写出正确的解答过程.40.(2022·浙江宁波·七年级期末)在解方程231136x x -=-时,小元同学的解法如下: 41(31)x x =--……第①步4131x x =--……第②步70x =……第③步0x =……第④步小元同学的解法正确吗?若不正确,请指出他在第 步开始出现错误,并写出正确的解题过程:【答案】小元同学的解法不正确,①,正确的解题过程见解析【分析】他在第①步开始出现错误,应该是:4x =6-(3x -1),根据解一元一次方程的一般步骤,写出正确的解题过程即可.【详解】解:小元同学的解法不正确,他在第①步开始出现错误,正确的解题过程如下:去分母得:46(31)x x =--,去括号得:4631x x =-+移项合并同类项得:77x = 解得:1x =【点睛】此题主要考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.。
5.2.2用去括号与去分母解一元一次方程 考点梳理(课件)人教版(2024)数学七年级上册

,得 7x=-9,系数化为 1,得 x=- .
思路点拨
根据整式之间的相等(互为相反数)的关系
构造出一元一次方程,再把得出的方程解出来即可得到答
案.
解题通法
解决本题的关键是抓住“相等”和“互为相
反数”两个关键性词语,进而根据题意正确列出方程.
■题型二
例 2
一元一次方程的错解问题
小明在对方程
+
;
(2)去括号,得 2x+2=1-x-3,移项,得 2x+x=1-3-2,
合并同类项,得3x=-4,系数化为 1,得 x=-
.
■考点二
利用去分母解一元一次方程
定义
依据
方程的两边同时乘各分母的
去分母 最小公倍数,将分母去掉的
等式的性质 2
过程叫作去分母
注意
事项
去分母时,如果分子是一个多项式,去掉分母后
续表
合并
把方程化为 ax=b
同类项 (a≠0)的形式
合并同类
项法则
(1)系数相加减;
(2)字母及其指
数不变
在方程 ax=b
(a≠0)的两边都
系数
除以未知数的系数 等式的
化为 1 a,得到方程的解 性质 2
为x= (a≠0)
(1)除数不为 0;
(2)不要把分子、
分母弄颠倒
归纳总结
(1)解一元一次方程的步骤不是固定不变的,有时可以
)-6,去括号,得 2x+4=3x-3-6,移项、合并同类项,得x=-13,系数化为 1,得 x=13.
变式衍生
小华在解方程 2x-k=5-x 时,把-x 看成+x
3.3解一元一次方程(二)去括号去分母-2021-2022学年七年级上学期同步课时训练(含答案)

同步课时训练-2021-2022学年七年级数学人教版上册 (广东地区)3.3解一元一次方程(二)去括号去分母一、单选题(在下列各题的四个选项中,只有一项是符合题意的.本题共8个小题)1.(2021·桥柱中学七年级期末)下列方程变形中,正确的是( )A .方程125x x -=去分母,得()512x x -= B .方程()3251x x -=--去括号,得3251x x -=--C .方程3221x x -=+移项,得3212x x -=-+D .方程2332t =系数化为1,得1t = 2.(2021·饶平县期末)若方程6322x a +=与方程()5147x x +=+的解相同,则a 的值是( )A .103B .310C .103-D .10 3.(2021·全国九年级专题练习)解方程21101136x x ++-=时,去分母、去括号后,正确的结果是( ) A .411011x x +-+=B .421011x x +--=C .421016x x +--=D .421016x x +-+= 4.(2020·肇庆市地质中学七年级月考)若12m +与273m -互为相反数,则m =( ) A .2 B .-2 C .87 D .87- 5.(2021·广东中山市·)代数式2ax+5b 的值会随x 的取值不同而不同,下表是当x 取不同值时对应的代数式的值,则关于x 的方程2ax+5b=4的解是( )A .12B .4C .-2D .06.(2020·广东广州市·绿翠现代实验学校七年级月考)某工程甲独做8天完成,乙独做12天完成,现由乙先做3天,甲再参加合做.设完成此工程一 共用了x 天,则下列方程正确的是( )A .3128x x ++=1 B .3128x x -+=1 C .128x x +=1 D .33128x x +-+=17.(2018·广东深圳实验学校七年级期末)下列变形中:①由方程125x -=2去分母,得x ﹣12=10; ①由方程29x =92两边同除以29,得x =1; ①由方程6x ﹣4=x +4移项,得7x =0;①由方程2﹣5362x x -+=两边同乘以6,得12﹣x ﹣5=3(x +3). 错误变形的个数是( )个.A .4B .3C .2D .18.(2020·广东霞山实验中学七年级开学考试)解方程124362x x x -+--= 步骤如下,开始发生错误的步骤为 ( )A .75x x x +-B .2x -2-x+2=12-3xC .4x=12D .x=3 二、填空题9.(2021·广东七年级期末)小明在做解方程5212x n x --=的过程中,去分母时,方程的右边忘记乘以2,结果他得到的解为2x =,那么n 的值为_________.10.(2020·和平县和丰中学七年级月考)对任意四个有理数 a ,b ,c ,d 定义新运算:,a b ad bc c d =-那么当43 77x x=-时,x =________. 11.(2020·全国七年级单元测试)当a =__________时,方程1132ax x a -++=解是1x =? 12.(2020·广东九年级零模)轮船沿江从 A 港顺流行驶到 B 港,比从 B 港返回 A 港少用 3 小时,若船速为 26 千米/小时,水速为 2 千米/时,则 A 港和 B 港相距_____千米.13.(2019·广东七年级期末)在梯形面积公式中1()2S a b h =+中,已知18,2,4===S b a h ,则b =______. 14.(2019·广东七年级期末)已知方程232353x x -=-与关于x 的方程()3132n x n n -=+-的解互为相反数,则n 的值为_____.15.(2020·江门市新会尚雅学校七年级期中)已知关于x 的一元一次方程13102020x x m +=+的解为3x =-,那么关于y 的一元一次方程1(21)310(21)2020y y m •++=++的解为__________.16.(2018·广东)定义新运算:对于任意有理数a 、b 都有a①b=a (a ﹣b )+1,等式右边是通常的加法、减法及乘法运算.比如:2①5=2×(2﹣5)+1=2×(﹣3)+1=-6+1=-5.则4①x=13,则x=_____.三、解答题17.(2020·广州大学附属中学七年级期中)解方程:(1)2(x +1)﹣7x =﹣8; (2)5121136x x +--=.18.(2018·广东广州市·七年级期末)解下列方程:(1)()32421x x -+=- (2)1122525x x x +-+-=-19.(2020·东莞市光大新亚外国语学校七年级期中)用“*”定义一种新运算:对于任意有理数a 和b ,规定22*;1*31310a b a b =+=+=.(1)求(4)*2-的值.(2)若1*(3)12a a +⎛⎫-=-⎪⎝⎭,求a 的值.20.(2020·广州市东江外语实验学校七年级月考)定义一种新运算“⊕”:2a b a ab ⊕=-,比如()()1321135⊕-=⨯-⨯-=.(1)求()23-⊕的值;(2)若()()315x x -⊕=+⊕,求x 的值.21.(2020·广东阳江市·七年级月考)小华在解方程21132x x a -+=-去分母时,方程右边的1-没有乘6,求得的方程的解为2x =.(1)求a 的值.(2)正确地解出原方程.22.(2020·东莞市南开实验学校)一般情况下,2323a b a b ++=+不成立,但有些数是可以成立,例如a=b=0,我们称使得2323a b a b ++=+成立的一对数a 、b 为“相对数对”,记为(a ,b). (1)若(-1,b)是相对数对,求b 的值;(2)若(m ,n)是相对数对且m≠0,求n m的值; (3)若(m ,n)是相对数对,求代数式[]2242(31)3m n m n ----的值.参考答案1.A【思路点拨】根据解一元一次方程的步骤逐项判断即可.【详细解答】A .方程125x x -=去分母,得()512x x -=.故A 正确. B .方程()3251x x -=--去括号,得3255x x -=-+.故B 错误.C .方程3221x x -=+移项,得3212x x -=+.故C 错误.D .方程2332t =系数化为1,得94t =.故D 错误. 故选:A .【方法总结】本题考查解一元一次方程,掌握解一元一次方程的步骤是解答本题的关键. 2.A【思路点拨】先求出方程5(x +1)=4x +7的解,再代入第一个方程中计算,即可求出a 的值.【详细解答】解: 5(x +1)=4x +7,5x +5=4x +7.解得:x =2.将x =2代入方程6x +3a =22中,得:12+3a =22,解得:a =103. 故选:A .【方法总结】此题考查了解一元一次方程,掌握同解方程即为两方程未知数的值相同是解题的关键.3.C【思路点拨】对原方程按要求去分母,去括号得到变形后的方程,再和每个选项比较,选出正确选项. 【详细解答】21101136x x ++-=, 去分母,两边同时乘以6为:()()2211016x x +-+=去括号为:421016x x +--=.故选:C .【方法总结】此题考查解一元一次方程的去分母和去括号,注意去分母是给方程两边都乘以分母的最小公倍数;去括号时,括号前是负号括在括号内的各项要变号.4.C【思路点拨】根据题意列出方程,再解关于m 的方程即可. 【详细解答】解:由题意得,271023m m -++=, 去分母,3m+6+2(2m -7)=0,去括号得,3m+6+4m -14=0,移项合并同类项得,7m=8,系数化为1,得87m =. 故选C .【方法总结】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.5.C【思路点拨】根据表格中的数据确定出a 与b 的值,代入方程计算即可求出解.【详细解答】解:根据题意得:-2a+5b=0,5b=-4,解得:a=-2,b= 4-5, 代入方程得:-4x -4=4,解得:x=-2,故选:C .【方法总结】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6.B【思路点拨】根据“乙先做3天,甲再参加合做”找到等量关系列出方程即可.【详细解答】解:设完成此项工程共用x 天,根据题意得:31128x x -+=, 故选B .【方法总结】本题考查的知识点是由实际问题抽象出一元一次方程的知识,解题关键是根据工作量之间的关系列出方程.7.B【思路点拨】根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.【详细解答】①方程125x -=2去分母,两边同时乘以5,得x ﹣12=10,故①正确. ①方程29x =92,两边同除以29,得x =814;要注意除以一个数等于乘以这个数的倒数,故①错误.①方程6x ﹣4=x +4移项,得5x =8;要注意移项要变号,故①错误.①方程2﹣5362x x -+=两边同乘以6,得12﹣(x ﹣5)=3(x +3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故①错误.故①①①变形错误.故选B .【方法总结】在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号.8.B【解析】124362x x x -+--=, ()()()21234,x x x --+=-222123x x x ---=-,3124x x +=+,4x=16,x=4.所以选B.9.1【思路点拨】根据题意得出小明去分母后的方程,然后将x=2代入方程求解.【详细解答】解:由题意可得小明去分母之后的方程为:541x n x --=把2x =代入方程541x n x --=得:21n -=,解得:1n =,故答案为1.【方法总结】本题考查解一元一次方程,正确理解题意列出方程代入计算是解题关键. 10.4【思路点拨】首先看清这种运算的规则,将43 77x x=-转化为一元一次方程,通过去括号、移项、系数化为1等过程,求得x 的值. 【详细解答】解:由题意可得:将43 77x x =-化为:()4377x x --=, 去括号得:42137x x -+=,合并得:728x =,系数化为1得:x=4.故答案为:4.【方法总结】本题立意新颖,借助新运算,实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.11.1【思路点拨】将1x =代入方程,再解一元一次方程即可.【详细解答】由题意,将1x =代入得:11132a a -++= 两边同乘以6得2(1)3(1)6a a -++=去括号得22336a a -++=移项、合并同类项得55a =系数化为1得1a =故答案为:1.【方法总结】本题考查了方程的解、解一元一次方程,掌握方程的解法是解题关键. 12.504【思路点拨】轮船航行问题中的基本关系为:(1)船的顺水速度=船的静水速度+水流速度;(2)船的逆水速度=船的静水速度一水流速度.若设A 港和B 港相距x 千米,则从A 港顺流行驶到B 港所用时间为262x +小时,从B 港返回A 港用262x -小时,根据题意列方程求解.【详细解答】解:设A 港和B 港相距x 千米,根据题意,得262x ++3=262x -, 解之得x=504.故答案为:504.【方法总结】本题考查了一元一次方程的应用,考验学生对顺水速度,逆水速度的理解,注意:船的顺水速度、逆水速度、静水速度、水流速度之间的关系.13.6【思路点拨】将18S =,2b a =,4h =代入公式求出a 的值,即可得到b 的值.【详细解答】将18S =,2b a =,4h =代入公式得:118(2)42=+⨯a a 解得:3a =①26==b a故答案为:6.【方法总结】本题考查了解一元一次方程,将字母的值代入公式得到关于a 的一元一次方程是解题的关键.14.−13【思路点拨】根据解方程,可得x 的值,根据方程的解互为相反数,可得关于n 的方程,根据解方程,可得答案. 【详细解答】解232353x x -=-,得x =9. 由关于x 的方程232353x x -=-与方程3n−1=3(x +n )−2n 的解互为相反数,得 3n−1=3(x +n )−2n 的解为x =−9,将x =−9代入3n−1=3(x +n )−2n ,得3n−1=3(−9+n )−2n .解得n =−13.故n 的值为−13.【方法总结】本题考查了一元一次方程的解,利用方程的解互为相反数的出关于n 的方程是解题关键.15.-2【思路点拨】设2y+1=x ,再根据题目中关于x 的一元一次方程的解确定出y 的值即可.【详细解答】解:设2y+1=x ,则关于y 的方程化为:13102020x x m +=+, ①2y+1=x=-3①y=-2故答案为:-2. 【方法总结】本题考查的知识点是解一元一次方程,若关于x 、y 的方程毫无关系,一般是将x 的解代入关于x 的方程求出m 值,再代入关于y 的方程,求出y 的值.16.1【解析】解:根据题意得:4(4﹣x )+1=13,去括号得:16﹣4x +1=13,移项合并得:4x =4,解得:x =1.故答案为1.17.(1)2x =;(2)38x = 【思路点拨】(1)方程去括号,移项,合并同类项,系数化1即可;(2)方程去分母,去括号,移项,合并同类项,系数化1即可.【详细解答】解:(1)2(x +1)﹣7x =﹣8,去括号,得2x +2﹣7x =﹣8,移项,得2x ﹣7x =﹣8﹣2,合并同类项,得﹣5x =﹣10,系数化1,得x =2;(2)5121136x x +--=, 分母,得2(5x +1)﹣(2x ﹣1)=6,去括号,得10x +2﹣2x +1=6,移项,得10x ﹣2x =6﹣2﹣1,合并同类项,得8x =3,系数化1,得38x =. 【方法总结】本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.18.(1)1x =(2)-9x =【思路点拨】(1)去括号、移项合并,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详细解答】解:(1)()32421x x -+=-去括号:36421x x -+=-移项:3-21+2x x =-合并同类项:1x =(2)1122525x x x +-+-=- 去分母:()()()21512022x x x +--=-+去括号:225+5202-4x x x +-=-移项:22520-4-7x x x +-=合并同类项:9x -=系数化为1:-9x =【方法总结】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.(1)0;(2)21.【思路点拨】(1)根据新定义运算的规则进行计算即可得出结果;(2)根据新定义运算的规则先求得11*(3)922a a ++⎛⎫-=+ ⎪⎝⎭,则可由已知建立关于a 的方程,利用解一元一次方程的方法即可求解.【详细解答】解:(1)2(4)*2(4)2(4)40-=-+=-+=;(2)根据题意,得:2111*(3)(3)9222a a a +++⎛⎫-=+-=+ ⎪⎝⎭, ①1*(3)12a a +⎛⎫-=-⎪⎝⎭, ①1912a a ++=-, 解得21a =.【方法总结】本题主要考查了解一元一次方程,掌握一元一次方程的解法并准确理解题目中新定义运算的规则是解题的关键.20.(1)2;(2)12x =. 【思路点拨】(1)原式利用题中的新定义计算即可求出值;(2)已知等式利用题中的新定义化简,计算即可求出x 的值;【详细解答】解:(1)2a b a ab ⊕=-,()2∴-⊕()()322232=⨯---⨯=;(2)a ⊕2b a ab =-,()3∴-⊕()()23363x x x =⨯---=-+,()1x +⊕()()5215133x x x =+-+=--,6333x x ∴-+=--, 解得12x =. 【方法总结】此题考查了解一元一次方程,有理数的混合运算,以及代数式求值,弄清题中的新定义是解本题的关键.21.(1)13a =;(2)3x =- 【思路点拨】(1)由题意可得2x =是方程2(21)3()1x x a -=+-的解,然后根据解一元一次方程的方法求解即可;(2)把a 的值代入原方程后,根据解一元一次方程的方法和步骤解答即可.【详细解答】解:(1)由题意可得:2x =是方程2(21)3()1x x a -=+-的解,所以2(221)3(2)1a ⨯-=+-, 解得:13a =; (2)解方程1213132x x +-=-, 去分母,得12(21)363x x ⎛⎫-=+- ⎪⎝⎭,去括号,得42316x x -=+-,移项、合并同类项,得3x =-.【方法总结】本题考查了一元一次方程的解法,正确理解题意、熟练掌握解一元一次方程的方法和步骤是解题的关键.22.(1)94;(2)94-;(3)-2. 【思路点拨】阅读理解题意,理解“相对数对”,在此基础上,对于(1)运用“相对数对”的定义列出方程求解;对于(2)运用“相对数对”的定义列出m 、n 的关系式化简即可;对于(3)用(2)的结论,用m 表示n ,代入到所求代数式中,化简即可.【详细解答】解:(1)由“相对数对”的定义得11235b b --++=,解得94b =; (2)①(m ,n)是相对数对且m≠0 ①把2323a b a b ++=+中的a 、b 分别用m 、n 代换得 2323m n m n ++=+ 化简得94n m =-; (3)由(2)得94n m =-,所以得9n 4m =-代入到[]2242(31)3m n m n ----得 原式=2299()423()1344m m m m ⎧⎫⎡⎤-⨯-----⎨⎬⎢⎥⎣⎦⎩⎭ =3327(42)22m m m m +-++ =33274222m m m m +--- =-2.【方法总结】此题是新定义题型,综合考查解一元一次方程和代数式求值,关键是要理解“相对数对”含义和熟练整式加减运算.。
5.2+解一元一次方程去分母解一元一次方程++课件+2024-2025学年人教版七年级数学上册

D
)
4.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组
8人,这样就比原来减少2组,则这些学生共有多少人?
解:设这些学生共有 x 人.根据题意,得
- =2,解得 x=48.
答:这些学生共有 48 人.
5.解下列方程:
-
-
(1)
-1=
;
解:(1)去分母,得3(3x-1)-1×12=2(5x-7).
合并同类项
;
(5)
系数化为1.
最小
.
课堂互动
知识点 1 去分母解一元一次方程
例1
在解方程
+ -
是( D )
A.2(x+1)-x-1=1
B.2(x+1)-x-1=4
C.2(x+1)-(x-1)=1
D.2(x+1)-(x-1)=4
-
=1 时,第一步应先“去分母”,去分母后所得方程
知识点2 去分母解一元一次方程的应用
+
由题意,得 -
=1.
解得 x=360.
答:该单位参加旅游的职工有 360 人.
10.(运算能力)小明解方程
-
素养题
+1=
+
,由于粗心大意,在去分母时,方程左
边的 1 没有乘 10,由此求得的解为 x=4,试求 a 的值,并求出方程的正确解.
解:由题意,得方程 2(2x-1)+1=5(x+a)的解为 x=4,所以 2(2×4-1)+1=5(4+a),
-
+
2019秋人教版七年级数学上册测试试题:3.3-解一元一次方程(二)——去括号与去分母

第1课时 利用去括号解一元一次方程[学生用书B38]1.方程3-5(x +2)=x 去括号后正确的是( B )A .3-x +2=xB .3-5x -10=xC .3-5x +10=xD .3-x -2=x2.方程7(2x -1)-3(4x -1)=11去括号后,正确的是( C )A .14x -7-12x +1=11B .14x -1-12x -3=11C .14x -7-12x +3=11D .14x -1-12x +3=113.方程-3(x +1)=9的解为( C )A .x =-3B .x =4C .x =-4D .x =5【解析】 去括号,得-3x -3=9,移项,合并同类项,得-3x =12,系数化为1,得x =-4.故选C.4.解方程4(x -1)-x =2步骤如下:①去括号,得4x -4-x =2x +1;②(x +12)移项,得4x +x -2x =4+1;③合并同类项,得3x =5;④化系数为1,x =.从53哪一步开始出现错误( B )A .①B .②C .③D .④【解析】 步骤②出现错误,应为移项,得4x -x -2x =4+1.5.多项式2(x -2)比多项式3(4x -1)大19,则x 的值为( A )A .x =-2B .x =2C .x =1D .x =-1【解析】 根据题意,得2(x -2)=3(4x -1)+19,去括号,得2x -4=12x -3+19,移项,得2x -12x =-3+19+4,合并同类项,得-10x =20,系数化为1,得x =-2.故选A.6.方程4-x =3(2-x )的解为__x =1__.【解析】 去括号,得4-x =6-3x ,合并同类项,得2x =2,系数化为1,得x =1.7.当x =____时,5(x -2)与7x -(4x -3)的值相等.1328.解下列方程:(1)[2017·武汉]4x -3=2(x -1);(2)5(m +8)-6(2m -7)=1;(3)2(0.3x +4)-5(0.2x -7)=9;(4)6+2x =7-.(12x -4)(13x -1)解:(1)去括号,得4x -3=2x -2,移项,得4x -2x =3-2,合并同类项,得2x =1,系数化为1,得x =;12(2)去括号,得5m +40-12m +42=1,移项,得5m -12m =1-40-42,合并同类项,得-7m =-81,系数化为1,得m =;817(3)去括号,得0.6x +8-x +35=9,移项,得0.6x -x =9-8-35,合并同类项,得-0.4x =-34,系数化为1,得x =85;(4)去括号,得3x -24+2x =7-x +1,13移项,得3x +2x +x =7+1+24,13合并同类项,得x =32,163系数化为1,得x =6.9.某班在绿化校园的活动中共植树130棵,有5位学生每人种了2棵,其余学生每人种了3棵,这个班共有__45__名学生.【解析】 设这个班共有x 名学生.根据题意,得5×2+3(x -5)=130,解得x =45.10.某班学生分两组参加植树活动,甲组有17人,乙组有25人,后来由于需要,又从甲组抽调了部分学生去乙组.结果乙组的人数是甲组的2倍.则从甲组抽调了__3__名学生去乙组.【解析】 设从甲组抽调了x 名学生去乙组.根据题意,得2(17-x )=25+x ,解得x =3.11.[2017·荆门]已知派派的妈妈和派派今年的年龄之和为36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,派派的年龄为__12__岁.【解析】 设妈妈今年x 岁,则派派今年(36-x )岁,依题意可列方程x +5=4[(36-x )+5]+1.解得x =32.此时36-x =4.40-32=8,4+8=12.所以当派派的妈妈40岁时,派派的年龄为12岁.12.毕业在即,九年级某班为纪念师生情谊,决定让班委花800元班费买两种不同单价的留念册,分别送给50位同学和10位任课老师每人一本留做纪念.其中送给任课老师的留念册的单价比给同学的单价多8元.请问:这两种不同留念册的单价分别为多少元?解:设送给任课老师的留念册的单价为x 元,则送给同学的留念册的单价为(x -8)元.根据题意,得10x +50(x -8)=800,解得x =20,∴x -8=12.答:送给任课老师的留念册的单价为20元,送给同学的留念册的单价为12元.13.一个两位数,十位上的数字与个位上的数字之和是8,将十位上的数字与个位上的数字对调得到的新数比原数的2倍多10,求原来的两位数.解:设原来的两位数的个位上的数字为x ,则十位上的数字为(8-x ),则这个两位数为10(8-x )+x ,数字调换后的两位数为10x +(8-x ).根据题意,得10x +(8-x )=2[10(8-x )+x ]+10,解得x =6.∴8-x =2,则原来的两位数为26.14.悟空顺风探妖踪,千里只用四分钟,归时四分行六百,试问风速是多少?解:设风速是x 里/min.则悟空的速度为-x =(250-x )里/min.1 0004根据题意,得4(250-x -x )=600,解得x =50.答:风速是50 里/min.15.某同学解关于x 的方程2(x +2)=a -3(x -2)时,由于粗心大意,误将等号右边的“-3(x -2)”看作“+3(x -2)”,其他解题过程均正确,从而解得方程的解为x =11,请求出a 的值,并正确地解方程.解:根据题意,将x =11代入2(x +2)=a +3(x -2),得2×(11+2)=a +3×(11-2),解得a =-1,则原方程为2(x+2)=-1-3(x-2),解得x=.15第2课时 利用去分母解一元一次方程[学生用书A40]1.解方程+=时,为了去分母应将方程两边同时乘以( A )x +12x +4365A .30B .15C .10D .6【解析】 分母2,3,5的最小公倍数为30,故方程两边同时乘以30.故选A.2.[2018春·惠安期中]方程+1=x ,去分母后正确的是( A )x +2413A .3(x +2)+12=4xB .12(x +2)+12=12xC .4(x +2)+12=3xD .3(x +2)+1=4x3.[2018春·泉州期末]下列解方程中去分母正确的是( D )A .由-1=,得2x -1=3-3x x 31-x 2B .由-=-1,得 2x -2-x =-4x -22x 4C .由-1=,得 2y -15=3y y 3y 5D .由=+1,得 3(y +1)=2y +6y +12y 34.方程-=的解为( C )x -13x +264-x 2A .x =1B .x =-2C .x =4D .x =35.推理填空:依据下列解方程=的过程,请在前面的括号内填写变形步骤,在后面3x +522x -53的括号内填写变形依据.解:去分母,得3(3x +5)=2(2x -5).(__等式的性质2__)去括号,得9x +15=4x -10.(__移项__),得9x -4x =-10-15.(__等式的性质1__)合并同类项,得5x =-25.(__系数化为1__),得x =-5.(__等式的性质2__)6.解方程:1-=.x +25x -12解:__去分母__,得10-2(x +2)=5(x -1),__去括号__,得10-2x -4=5x -5,__移项__,得-2x -5x =-5-10+4,__合并同类项__,得-7x =-11,__系数化为1__,得x =.1177.解方程:x -=-.x -1223x +23解:去分母,得6x -3x +1=4-2x +4①,即3x +1=-2x +8②,移项,得3x +2x =8-1③,合并同类项,得5x =7④,系数化为1,得x =⑤.75上述解方程的过程中,是否有错误?答:__有__;如果有错误,则错在第__①__步.如果上述解方程有错误,请你给出正确的解题过程.解:正确的解题过程:去分母,得6x -3(x -1)=4-2(x +2),去括号,得6x -3x +3=4-2x -4,移项,合并同类项,得5x =-3,系数化为1,得x =-.358.解方程:(1)-=5;x 630-x 4(2)[2017·黄冈模拟]+1=x -.x +13x -12解:(1)去分母,得2x -3(30-x )=60,去括号,得2x -90+3x =60,移项,得2x +3x =60+90,合并同类项,得5x =150,系数化为1,得x =30;(2)去分母,得2(x +1)+6=6x -3(x -1),去括号,得2x +2+6=6x -3x +3,移项合并,得-x =-5,解得x =5.9.若a +1与互为相反数,则a 的值为__1__.132a -63【解析】 根据题意,得a +1+=0,解得a =1.132a -6310.[2018春·南安期中]当k 取何值时,代数式的值比的值大2?4k -25k +62解:根据题意得-=2,4k -25k +622(4k -2)-5(k +6)=20,8k -4-5k -30=20,8k -5k =20+4+30,3k =54,解得k =18.答:当k =18时,代数式的值比的值大2.4k -25k +6211.现有四个整式:x 2-1,,,-6.12x +15(1)若选择其中两个整式用等号连接,则共能组成哪几个方程?(2)请选择(1)中的一个一元一次方程,解这个方程.解:(1)若选择其中两个整式用等号连接,则有以下方程:x 2-1=,x 2-1=,x 2-1=-6,12x +15=,=-6;x +1512x +15(2)=,x +1512去分母,得x +1=2.5,移项,得x =1.5.12.[2017·长泰月考]小李在解方程-=1去分母时方程右边的1没有3x +522x -m 3乘以6,因而得到方程的解为x =-4,求出m 的值并正确解方程.解:由题意知x =-4是方程3(3x +5)-2(2x -m )=1的解,∴3×(-12+5)-2(-8-m )=1,解得m =3,∴原方程为-=1,3x +522x -33∴3(3x +5)-2(2x -3)=6,5x =-15,∴x =-3.13.先读懂古诗,然后列出方程并求解:巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共用一碗饭,四人共吃一碗羹.试问先生明算者,算来寺内几多僧?这首诗的大概意思是:山林里有一寺院,不知寺内有多少僧人,但知道有364个碗,三人共吃一碗饭,四人共喝一碗汤,正好用完这364个碗,求寺内有多少僧人?解:设寺内有僧人x 个,三人共吃一碗饭,则吃饭用碗 个,x 3四人共喝一碗汤,则喝汤用碗 个.x 4根据题意,得+=364,解得x =624.x 3x 4答:寺内有624个僧人.。
人教版七年级数学上册3.3《解一元一次方程(二)去括号与去分母》同步练习(含答案)

3.3《解一元一次方程(二)去括号与去分母》一、选择题1.方程3-(x +2)=1去括号正确的是( )A.3-x +2=1B.3+x +2=1C.3+x -2=1D.3-x -2=12.方程1-(2x -3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.将等式2-x-13=1变形,得到( ) A .6-x+1=3 B .6-x-1=3 C .2-x+1=3 D .2-x-1=34.把方程去分母正确的是( )A.18x +2(2x -1)=18-3(x +1)B.3x +(2x -1)=3-(x +1)C.18x +(2x -1)=18-(x +1)D.3x +2(2x -1)=3-3(x +1)5.方程去分母正确的是( )A.18x +2(2x-1)=18-3(x +1)B.3x +2(2x-1)=3-(x +1)C.18x +(2x-1)=18-(x +1)D.3x +2(2x-1)=3-3(x +1)6.下列方程中变形正确的是( )①3x+6=0变形为x +2=0;②2x+8=5-3x 变形为x=3;③x 2+x 3=4去分母,得3x +2x=24; ④(x+2)-2(x -1)=0去括号,得x +2-2x -2=0.A.①③B.①②③C.①④D.①③④7.已知1-(2-x)=1-x ,则代数式2x 2-7的值是( )A.-5B.5C.1D.-18.整式mx +n 的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值,则关于x 的方程-mx -n=8的解为( )A. -1B.0C. 1D.2二、填空题9.已知与的值相等时,x=__________。
10.已知与互为相反数.则 x =_______.11.当x=_______时,代数式与的值相等.12.如果关于x的方程2x+1=3和方程的解相同,那么k的值为_______13.如果4是关于x的方程3a﹣5x=3(x+a)+2a的解,则a=________.14.若方程2x+1=-3和的解相同,则a的值是。
初中数学 如何去括号和去分母操作一元一次方程

初中数学如何去括号和去分母操作一元一次方程一、引言在初中数学中,一元一次方程是一个重要的概念。
解一元一次方程的过程中,去括号和去分母是常见的操作。
本文将详细介绍如何进行去括号和去分母的操作,以解决一元一次方程。
我们将探讨这些操作的目的、方法和实际应用。
二、去括号的操作1. 去括号的目的:去括号的目的是将括号内的项与括号外的项相乘,以便进行合并同类项和简化方程。
这样可以将复杂的方程转化为更简单的形式,便于求解。
2. 去括号的方法:a. 分配律:使用分配律将括号外的数与括号内的每一项相乘。
例如,对于方程2(x + 3) = 4x - 5,我们可以使用分配律得到2x + 6 = 4x - 5。
这样,我们可以合并同类项和移项,进一步简化方程。
b. 因式分解法:如果括号内有多项,我们可以使用因式分解法将括号内的项进行因式分解,以简化方程。
例如,对于方程3(x + 2) + 2(x - 1) = 4 - 2x,我们可以使用因式分解法得到3x + 6 + 2x - 2 = 4 - 2x。
然后,我们可以合并同类项,得到5x + 4 = 4 - 2x。
三、去分母的操作1. 去分母的目的:去分母的目的是将方程中的分式转化为整式,使方程更容易处理和求解。
2. 去分母的方法:a. 通分:对于方程中的每个分式,我们可以将其分母相乘得到一个公共分母,然后将分子乘以相应的倍数。
例如,对于方程2/(x + 1) + 3/(x - 2) = 5,我们可以将分母(x + 1)和(x - 2)相乘得到(x + 1)(x - 2),然后将分子乘以相应的倍数,得到2(x - 2) + 3(x + 1) = 5(x + 1)(x - 2)。
然后,我们可以合并同类项,简化方程。
b. 乘法逆元:对于方程中出现的除法,我们可以使用乘法逆元将其转化为乘法。
例如,对于方程(2/x) + (3/(x + 1)) = 4,我们可以使用乘法逆元将分式转化为乘法,得到2 + 3(x/x + 1) = 4。
5.2 解一元一次方程(二)———去括号与去分母 课堂练习人教版数学七年级上册

5.2 解一元一次方程(二)———去括号与去分母第1 课时利用去括号解一元一次方程要点归纳知识要点1 去括号解决路程问题常用的等量关系:(1)顺水速度=静水速度水速,逆水速度=静水速度水速.(2)在匀速运动中,路程=时间×;相遇时间=路程÷;追及时间=路程÷当堂检测(建议用时:15分钟)1.方程4(2x--1)-2(--1+10x)=2 可化简为( )A.8x-4-2-10x=2B.8x-4+2-20x=2C.8x-4+2+20x=2D.8x-1+2-10x=22.方程-3(x+1)=9的解为( )A. x=-2B. x=-4C. x=2D. x=33.一艘轮船从甲码头到乙码头顺流行驶用3小时,从乙码头到甲码头逆流行驶用4小时,已知轮船在静水中的速度为30千米/时,求水流的速度.若设水流的速度为x 千米/时,则可列方程为.4.父亲今年32岁,儿子今年5岁,年后,父亲的年龄是儿子年龄的4倍.5.利用去括号解下列方程:(1)4(x+2)=-20; (2)4-x=3(2-x).6.某羽毛球协会组织一些会员到球场观看了一场比赛.已知该协会购买了每张300元和每张400 元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?7.甲、乙两地之间的公路全长为200千米,A,B两车同时从两地相对匀速开出,经过2小时相遇.A 车比B车每小时多行驶20 千米,求A,B两车的速度.第2 课时利用去分母解一元一次方程要点归纳知识要点解一元一次方程的一般步骤当堂检测(建议用时:12分钟)1.把方程x2−x−26=1去分母后正确的是( )A.3x-x+2=1B.3x-x-2=1C.3x-x-2=6D.3x-x+2=62.下列解方程正确的是( )A.由4x-6=2x+3,移项得4x+2x=3-6B.由47x=5−x−17,去分母得4x=5-x-1C.由2(x+3)--3(x--1)=7,去括号得2x+3-3x+1=7D.由x0.3−0.5=x,得10x3−12=x3.方程x−12=x+3的解为.4.将若干本书分给七(2)班同学,每人6本,则余18本,每人7本,则少24本.设共有图书x 本,则可列方程为.5.解方程:(1)4x+25=5x−43;(2)x−32−x+13=16.第1 课时利用去括号解一元一次方程要点归纳知识要点2:+—速度速度和速度差当堂检测1. B2. B3.3(x+30)=4(30-x)4.45.解:(1)x=-7. (2)x=1.6.解:设每张300元的门票买了x 张,则每张400元的门票买了(8--x)张.由题意得300x+400(8--x)=2700,解得x =5.则8--x=3.答:每张300 元的门票买了5 张,每张400元的门票买了3张.7.解:设B车速度为x 千米/时,则A 车速度为(x+20)千米/时.由题意得2(x+20+x)=200,解得x=40.则x+20=60.答:A 车速度为60 千米/时,B 车速度为40千米/时.第2 课时利用去分母解一元一次方程要点归纳知识要点:最小公倍整数当堂检测1. D2. D3. x=-74.x−186=x+2475.解:(1)去分母,得3(4x+2)=5(5x-4).去括号,得12x+6=25x—20.移项,得12x—25x=-20-6.合并同类项,得-13x=-26.系数化为1,得x=2.(2)去分母,得3(x-3)-2(x+1)=1.去括号,得3x--9--2x--2=1.移项,得3x-2x=1+9+2.合并同类项,得x=12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于解方程中的去分母的典型例题一例 解下列方程(1)22)5(54-=--+x x x (2)13.02.03.05.09.04.0=+-+yy (3)52221+-=--y y y (4)6.15.032.04-=--+x x (5)621223+-=--x x x (6)01.002.01.02.02.018+=--x x x 分析:①先找出各分母的最小公倍数,去掉分母.②分母出现小数,为了减少运算量,将分子、分母同乘以10,化小数为整数. 解:(1)去分母,得,)2(5)5(10)4(2-=--+x x x , 去括号,得,105501082-=+-+x x x . 移项合并后,6813=x .两边同时除以13,得1368=x . (2)原方程化为1323594=+-+yy , 去分母,得15)23(5)94(3=+-+y y , 去括号,得1510152712=--+y y , 移项合并后32=y . 系数化为1,得23=y . (3)去分母,得)2(220)1(510+-=--y y y去括号,得42205510--=+-y y y移项,得54202510--=+-y y y合并,得117=y系数化为1,得711=y (4)原方程可以化成6.15)3(102)4(10-=--+x x 去分母,得6.1)3(2)4(5-=--+x x去括号,得6.162205-=+-+x x移项,得2066.125---=-x x合并,得6.273-=x系数化为1,得2.9-=x(5)去分母,得)2(6)23(36+-=--x x x 去括号,得26696--=+-x x x移项,得92666+-=++x x x 合并,得1313=x 系数化为1,得1=x (6)原方程可化为21022108+=--x xx 去分母,得)210(2)210(16+=--x x x去括号,得42021016+=+-x x 移项,得10420216+=-+x x x 合并,得142=-x 系数化为1,得7-=x 说明:(2)去分母时要注意不要漏乘没有分母的项,当原方程的分母是小数时,可以先用分数基本性质把它们都化成整数后,再去分母;(3)分数线除了可以代替“÷”以外,还起着括号的作用,分子如果是一个式子时,应该看作一个整体,在去分母时,不要忘了将分子作为整体加上括号.解方程的过程是等式恒等变形的过程,计算中要注意括号、符号等,掌握正确计算的方法.关于解方程中的去分母的典型例题二例 代数式318x+与1+x 的值的和是23,求x 的值.分析:根据题意,可列方程23)1(318=+++x x,解x 即可. 解:得方程23)1(318=+++x x, 去分母,得693318=+++x x . 移项,合并得484=x . 所以,12=x即x 的值为12.说明:①方程的形式不同,解方程的步骤也不一定相同,五个步骤没有固定顺序,也未必全部用到.②解方程熟练以后,步骤可以简化.关于解方程中去分母的典型例题二例 汽车从甲地到乙地,用去油箱中汽油的41,由乙地到丙地用去剩下汽油的51,油箱中还剩下6升.(1)求油箱中原有汽油多少升?(2)若甲乙两地相距22千米,则乙丙两地相距多少千米?(3)若丁地距丙地为10千米,问汽车在不再加油的情况下,能否去丁地然后再沿原路返回到甲地?分析:①利用等量关系:甲乙路段的汽油+乙丙路段的汽油+剩余的汽油=油箱的总油量;②利用路程与油量成比例方程;③看油量6升能使用多少千米?解:(1)设油箱的总油量为x 升,则x x x x =+⨯⎪⎭⎫ ⎝⎛-+6514141, 整理得62012=x ,得10=x (升). (2)设乙、丙相距y 千米,则甲乙相距22千米,用油5.24110=⨯=(升) 每升油可行驶8.85.222=千米. 乙、丙之间用油5.151)5.210(=⨯-(升),所以2.135.18.8=⨯=y (千米).(3)若从丙地返回还需用4升油,因此还剩2升油要从丙到丁再返回,6.1728.8=⨯(千米).2升油可行驶17.6千米,而丙、丁来回10×2=20千米, 6.1720>,因此,不能沿原路返回.说明:①多个问题的题目,前面问题的解可作为后面问题的条件;②本题关键要找出每升汽油可行驶多少千米.关于解方程中去分母的典型例题三例 一件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙合做.剩下的部分需要几小时完成?解:设剩下的部分需要x 小时完成.根据两段工作量之和应是总工作量,得11220204=++x x 去分母,得605312=++x x移项及合并,得488=x 6=x答:剩下的部分需要6小时完成.说明:此问题里的相等关系可以表示为:全部工作量=甲独做工作量+甲、乙合做的工作量.于是问题转化为如何表示工作量,我们知道,工作量=工作效率×工作时间.这里的工作效率是用分数表示的:一件工作需要a 小时完成,那么1小时的工作效率为a1.由此可知:m 小时的工作量=工作效率a m m =⨯,全部工作量=工作效率1==⨯aaa ,即在工程问题中,可以把全部工作量看作是1.关于解方程中的去括号的典型例题一例 解下列方程:(1))72(65)8(5-=-+x x (2))1(2)1()1(3-=--+x x x (3)()[]{}1720815432=----x分析:方程中含有多重括号,一般方法是逐层去括号,但考虑到本题的特点,可先将-7移到右边,再两边除以2,自动地去掉了大括号,同理去掉中括号,再去掉小括号.解:(1)去括号,得42125405-=-+x x移项,得54042125+--=-x x合并,得777-=-x系数化为1,得11=x(2)去括号,得22133-=+-+x x x移项,得13223+--=-+x x x 合并,得42-=x系数化为1,得2-=x(3)移项,得()[]{}820815432=---x 两边都除以2,得[]4208)15(43=---x 移项,得[]248)15(43=--x 两边都除以3,得88)15(4=--x 移项,得16)15(4=-x两边都除以4,得415=-x 移项,得55=x系数化为1,得1=x说明:去括号时要注意括号前面的符号,是负号时去掉括号后要改变括号内各项的符号;解方程的过程是等式恒等变形的过程,计算中要注意括号、符号等,掌握正确计算的方法.关于解方程中去括号的典型例题二例 某抗洪突击队有50名队员,承担着保护大堤的任务.已知在相同的时间内,每名队员可装土7袋或运土3袋.问应如何分配人数,才能使装好的土及时运到大堤上?解:设分配工人装土,则运土有)50(x -人.根据装上的袋数与运土的袋数相等的关系,列得)50(37x x -=去括号,得x x 31507-=移项及合并,得15010=x所以运土的人数为3550=-x .答:应分配15人装土,35人运土,才能使装好的土及时运到大堤上.说明:找准题目中的相等关系关键在于如何理解“装好的土及时运到大堤上”,即使得已装好土的袋数和运走的袋数是相同的,所以依靠总人数50人可没装土的人数为x 人,则可以用x 表示运土的人数.其实在题中还可以依靠其他的相等关系列方程,试试看.关于解方程中去括号的典型例题三例 蜘蛛有8条腿,蜻蜓有6条腿.现有蜘蛛、蜻蜓若干只,它们共有270条腿,且蜻蜓的只数是蜘蛛的2倍少5.问蜘蛛、蜻蜓各有多少只? 解:设蜘蛛有x 只,则蜻蜓有)52(-x 只.根据蜘蛛与蜻蜓共有270条腿,列得270)52(68=-+x x去括号,得27030128=-+x x移项及合并,得30020=x 15=x蜻蜓的只数为2552=-x答:蜘蛛有15只,蜻蜓有25只.说明:本题要求出两个未知数的值,但由于这两个未知数的关系为“2倍少5”,所以只要用x 表示其中的一个未知数,就可以用)52(-x 表示另一个未知数.如果设蜻蜓的只数为x ,那么应该如何列方程呢?应用题的答案与上面求得的答案一样吗?关于解方程中去括号的典型例题四例(北京崇文,2003)小王在超市中买了单价是2.8元的某品牌鲜奶若干袋,过了一段时间再去超市,发现这种鲜奶正进行让利销售,每袋让利0.3元,于是他比上次多买了2袋,只比上次多花了2元钱,问上次买了多少袋这样的鲜奶?分析:等量关系是:上次买牛奶的钱数+2=这次买牛奶的钱数. 解:设上次买了x 袋这样的鲜奶,依题意得)2(5.228.2+=+x x 55.228.2+=+x x 255.28.2-=-x x 33.0=x 10=x答:小王上次买了10袋这样的鲜奶.说明:与市场经济相关联的方程应用题是当前中考的一个热点,要加强这方面的练习.关于解方程中去括号的典型例题五例(“希望杯”试题)方程0333321212121=-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛-x 的解为__________. 分析:方程里的括号较多,要依次去掉. 解法1:去掉小括号,整理后03329412121=-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-x , 去掉中括号,整理后034218121=-⎭⎬⎫⎩⎨⎧-x ,去掉大括号,整理后0845161=-x . 去分母,得090=-x . 所以90=x .解法2:-3移到右边,去掉大括号(乘以2),得6333212121=-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x ,-3移到右边,乘以2去掉中括号,得18332121=-⎪⎭⎫⎝⎛-x , -3移到右边,乘以2去掉小括号,得42321=-x 易得90=x说明:①解此方程要边去括号,边运算、化简;②解法2运算量小.关于解方程中去括号和去分母的选择题1.解方程1443312=---x x 时,去分母正确的是( ) A .1129)12(4=---x x B .12)43(348=---x x C .1129)12(4=+--x x D .12)43(348=-+-x x 2.将方程5)24(32=--x x 去括号正确的是( )A .52122=--x xB .56122=--x xC .56122=+-x xD .5632=+-x x 3.将方程131212=--+x x 去分母正确的是( ) A .62216=+-+x x B .62236=--+x x C .12236=+-+x x D .62236=+-+x x4.解方程256133xx x -=--+,去分母所得结果正确的是( ) A .x x x -=+-+15132 B .x x x 315162-=+-+ C .x x x -=--+15162 D .x x x 315132-=+-+5.下列解方程的过程中正确的是( )A .将5174732+-=--x x 去分母得)17(4)75(52+-=--x x B .由102.07.015.03.0=--x x 得10027015310=--x xC .)28(2)73(540+=--x x 去括号得41671540+=--x xD .552=-x ,得225-=x 6.下列方程,解是0=x 的是( )A .8.034.057x x =-B .13423--=-x x C .()[]{}98765432=---x D .x x 322)73(72-=+7.方程)1(332+=-y y 的解是( )A .-6B .6C .54D .0 8.式子33+x 的值比式子512-x 的值大1,则x 为( ) A .3 B .4 C .5 D .6 9.若代数式23-y 的值比312-y 的值大1,则y 的值是( )A .15B .13C .-13D .-15 10.方程60)1(4)2(4=+--x x 的解是( )A .7=xB .76=xC .76-=x D .7-=x 11.若213+x 比322-x 小1,则x 的值为( )A .513B .-135C .-513D .13512.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做一天,然后甲、乙合作完成此项工作,若甲乙共做了x 天,所列方程为( )A .1641=++x x B .1614=++x x C .1614=-+x x D .161414=+++x x 13.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①1431040-=+m m ②4314010+=+n n ③4314010-=-n n ④1431040+=+m m 其中符合题意的是( ) (A )①② (B )③④ (C )①③ (D )②④14.若方程)23()12(3+-=++a x a x 的解是0,则a 的值等于( )A .51 B .53 C .-51 D .-5315.(天津市,2001)甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5千米,则乙的时速是( )A .12.5千米/时B .15千米/时C .17.5千米/时D .20千米/时参考答案:1.B 2.C 3.D 4.B 5.D 6.D 7.A 8.A 9.C 10.D 11.C 12. A 13.B 14.D 15.B关于解方程中去括号和去分母的填空题1.____=m 时,式子212-m 的值是3; 2.如果4是关于x 的方程a a x x a 2)(353++=-的解,则____=a ; 3.若x y x y -=+=8,3521,当1y 比2y 大于1时,____=x ; 4.关于x 的方程054)2(2=-++k kx x k 是一元一次方程,则____=k 5.若)9(312y --与)4(5-y 的值相等,则____=y 6.当____=x 时,31-x 的值比21+x 的值大-3 7.当____=m 时,方程3445-=+x x 和方程)2(2)1(2-=-+m m x 的解相同.8.要使21+m 与23-m 不相等,则m 不能取的值是_______ 9.方程332=-x 与方程0331=--xa 有相同的解,则____=a . 10.某数x 的21倍比另一数y 的23倍多5,则____=y .11.一个两位数,两个数位上的数字之和为12,且个位数字比十位数字大2,则这个两位数为________________;12.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则它最后的单价是___________.13.甲能在11天内完成此项工作,乙的工作效率比甲高10%,那么乙完成这项工作的天数为_______天.14.(2003年河南省中考题)某超市规定,如果购买不超过50元的商品时,按全额收费,购买超过50元的商品时,超过部分按九折消费,某顾客在一次消费中向售货员交纳了212元,那么在此消费中该顾客购买的是价值________________元的商品.15.(济南市,2003)下面是甲商场电脑产品的进货单,其中进价一栏被墨迹污染.读元 1.27 2.-16 3.1 4.-2 5.25 6.413 7.38- 8.1 9.2 10.310-x 11.57 12.0.99a 13.1014.答案:230.利用等量关系50元+九折消费=212元. 设购买的是价值x 元的商品,则212%90)50(50=⨯-+x去括号整理得2079.0=x ,解得230=x (元). 15.4470(设进价为x 元,则2101085850+=⨯x ,解得4470=x关于解方程中去括号和去分母的计算题1.解下列方程(1)521215++=--y y y (2)13.02.18.12.06.02.1=-+-x x (3)5162.15.032.08+-=--+x x x (4)23241233431=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 2.解下列方程(1)250)104(2)3010(5-=--+x x(2)2233)5(54--+=--+x x x x (3)1612213-+=-x x (4)⎥⎦⎤⎢⎣⎡+-=⎪⎭⎫ ⎝⎛---4)3(551014224123x x x x (5)5:63:2=m(6)7:23:4t =(7))1(27)1(4)1(31)1(3+--=--+x x x x (8))1(32)1(2121-=⎥⎦⎤⎢⎣⎡--x x x 3.利用等式的性质解方程:(1))1(9)14(3)2(2x x x -=--- (2)37615=-y (3)14126110312-+=+--x x x (4)x x 5.12)73(72-=+ (5)103.02.017.07.0+-=x x (6)y y 535.244.2=-- 4.列方程求解:(1)已知6--x 的值与71互为倒数,求x ; (2)x 等于什么数时,133-+x 等于1752++x 的值? (3)x 取何值时,235x -和[])53(521--x x 互为相反数? (4)a 为何值时,关于x 的方程03=+a x 的解比方程0432=--x 的解大2? 5.已知2021at t v S +=,如果81,4,13===a t S ,求0v . 6.若4=y 是方程)(532m y m y -=-+的解,求13-m 的值.参考答案1.(1)两边乘以10得)2(210)1(52++=--y y y去括号,得95-=y 所以,59-=y (2)转化为1312182612=-+-x x 简化为14636=-+-x x 解得32=x (3)转化为5162.153********+-=--+x x x 去分母,得)16(212)3010(2)8010(5+-=--+x x x去括号整理得48032-=x ,解得15-=x(4)两边同乘以3,去掉中括号得632412334=-⎪⎭⎫ ⎝⎛-x 32-移到右边再乘以43,去掉小括号得 54123=-x 解得27=x 2.(1)10-=x (2)6=x (3)72-=x (4)4=x (5)8.1=m (6)314=t (7)5-=x (8)511=x 3.(1)10-=x (2)3=y (3)61=x (4)0=x (5)1714=x (6)4=y 4.(1)13,1)6(71-==--x x (2)36,1752133=++=-+x x x (3)10,0)]53(5[21235==--+-x x x x (4)解03=+a x 得,3a x -=,解0432=--x 得,6-=x ,依题意得2)6(3=---a ,∴12=a 5.3,48121413020=⨯⨯+=v v 6.将4=y 代入方程得)4(5324m m -=-+ 整理得m m 5202-=-,所以,29=m , 则22513=-m关于解方程中去括号和去分母的应用题1.小王在超市中买了单价是2.8元的某品牌鲜奶若干袋,过了一段时间再去超市,发现这种鲜奶正进行让利销售,每袋让利0.3元,于是他比上次多买了2袋,却只比上次多花了2元钱,问上次买了多少袋这样的鲜奶?2.冷饮厅中A 种冰激凌比B 种冰激凌贵1元,小明和同学要了3个B 种冰激凌、2个A 种冰激凌,一共花了16元.两种冰激凌每个多少钱?3.班级的书架宽88厘米,某一层上摆满一种历史书和一种文学书,共90本.小明量得一本历史书厚0.8厘米,一本文学书厚1.2厘米.你知道这层书架上历史书和文学书各有多少本吗?4.一个两位数,十位上的数比个位上的数小1,十位与个位上的数的和是这个两位数的51,求这个两位数.5.元旦期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到7折和9折,共付款386元,这两种商品的原销售价之和为500元.问,这两种商品的原销售价分别为多少钱?6.一个蓄水池装有甲、乙、丙三个进水管.单独开放甲管,45分钟可以注满全池;单独开放乙管,60分钟可以注满全池;单独开放丙管,90分钟可以注满全池.现将三管一齐开放,多少分钟可以注满水池?7.某中学开展校外植树活动,六年级学生单独种植,需要7.5小时完成;七年级学生单独种植,需要5小时完成.现在六年级、七年级学生先一起种植1小时,再由七年级学生单独完成剩余部分.共需多少时间完成?8.朝阳中学在预防“非典”的活动中,初二(2)班45名同学被平均分配到甲、乙、丙三处打扫环境卫生.甲处的同学最先完成打扫任务,班卫生委员根据实际情况及时把甲处的同学全部调到乙、丙两处支援,调动后乙处的人数恰好为丙处人数的1.5倍.问从甲处调往乙、丙两处各多少人?9.国家从多方面保障农民的根本利益,重视农业的发展.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,共用去了44 000元.其中种茄子每亩用了1700元,获纯利2 400元;种西红柿每亩用了1800元,获纯利2 600元.你知道王大伯今年一共获纯利多少元吗?10.我国古代数学问题:有大小两种盛米的桶,已经知道5个大桶加上1个小桶可以盛3斛米,1个大桶加上5个小桶可以盛2斛米.问1个大桶、1个小桶分别可以盛多少斛米?选自《九章算术》卷七“盈不足”.“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”11.我国古代数学问题:好马每天走240里,劣马每天走150里.劣马先走12天,好马几天可以追上劣马?选自《算学启蒙》.“良马日行二百四十里,劣马日行一百五十里.努马先行一十二日,问良马几何日追及之.”12.在城市中公交车的发车间隔时间是一定的.小明放学后走在回家的路上,他发现每隔6分钟从后面开来一辆公交车,每隔2分钟从前面开来一辆公交车,他想,公交车到底是几分钟发车一辆呢?你能帮他计算一下吗?13.某工程队每天安排120个劳力修建水库,平均每天每个劳力能挖土5方或运土3方,为了使挖出的土及时运走,问应如何安排挖土和运土的劳力?14.一个两位数,十位数字比个位数字的4倍多1,将两个数字调换顺序后所得数比原数小63,求原数.15.(宁波市,2000)某商店为了促销G牌空调机,2000年元旦那天购买该机可分期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5.6%)在2001年元旦付清,该空调机售价每台8224元.若两次付款数相同,问每次应付款多少元?16(2003年广东省中考题)某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元.问该文具每件的进货价是多少元?17.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.在安全检查中,对4道门进行了测试.当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,1分钟内可以通过200名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤(尽管有老师组织),出门的效率将降低10%;安全检查规定,在紧急情况下全大楼的师生应在5分钟内通过这4道门安全撤离.假设每间教室可容纳50名学生,此校教师是学生数的10%,教师通过门的速度快于学生,问:建造的这4道门是否符合安全规定?参考答案:1.设上次买了x 袋鲜奶,则128.2)2)(3.08.2(=+=+-x x x 2.设A 种冰激凌每个x 元,则8.3=x3.设书有x 本,则5088)90(2.18.0==-+x x x4.设个位数字为x ,则5])1(10[511=+-=-+x x x x x ,此数为45 5.设甲种商品的原售价为x 元,则320%38)500%(90%70==-+x x x 6.设x 分可以注满水池,则201904560==++x x x x 7.设共需x 小时完成,则313)1(51515.711=-=⎪⎭⎫ ⎝⎛+-x x 8.设甲种调往乙处x 人,则12)1515(5.115=-+=+x x x9.设种茄子x 亩,则1044000)5(18001700==-+x x x ,总获利为:630002600)1025(240010=⨯-+⨯10.设1个小桶盛y 斛米,则247,3)52(5==+-y y y ,大桶可盛米:241352=-y 11.设好马x 天可以追上劣马,则1.20240)12(150==+⨯x xx 12.设公交车x 分钟发车一辆,则32266=-=-x x x13.设安排x 人挖土,则安排)120(x -人运土,则75120,45),120(35=-=-=x x x x (人)14.设个位数字为x ,则十位数字为14+x .2,63])14(10[1410=-=++-++x x x x x ,所以原数是92.15.分析:设第一次付款x 元,则第二次付款%)6.51)(8224(+-x 元,由两次付款数相同,可得 %)6.51)(8224(+-=x x .解:设第一次付款x 元,则%)6.51)(8224(+-=x x解得4224=x答:每次应付款4224元.说明:本题是分期付款问题,是一道紧扣生活实际和社会热点的好题.16.分析:利用等量关系盈利=售价-进价.解:设每件文具进货价为x 元,则标价为)2(+x 元,则x x -⨯+=%70)2(2.0, 整理后,2.13.0=x ,所以,4=x (元).因此,该文具每件的进价为4元.17.(1)设平均每分钟一道正门可以通过x 名学生,则一道侧门可以通过)200(x -名学生,则560)]200(2[2=-+x x解得120=x (名) 80200=-x 名所以,平均每分钟一道正门可以通过120名学生,一道侧门可以通过80名学生(2)这栋楼可容纳50×8×4=1 600(名)师生总和为1 600+1 600×10%=1 760(名)5分钟4道门能通过(120+80)×2×5=2 000(名)拥护时可通过2 000×(1-10%)=1 800(名)而17601800>且教师出门又快于学生所以,建造的4道门符合规定.。