极限思想在高中数学解题中的应用
浅析极限思想在高中数学客观题中的应用

浅析极限思想在高中数学客观题中的应用【摘要】随着高中数学解题思路的不断优化,尤其是新课程要求下的素质训练与知识构成之间的关联性逐渐增强,从多方面加强高中数学的解题能力,有很大的作用.在高考竞争激烈的情形下,如何在有限的时间内,高效率地解客观题是高考取胜的一种策略.本文通过对极限的概念分析,并从多方面概述极限在高中数学客观题解答中的应用,通过多个实例分析极限思想在数列中的应用以及在三角形问题、解析几何中的具体应用.【关键词】极限思想;高中数学;客观题;应用极限思想是用极限概念分析问题和解决问题的一种数学思想,通过对问题的极端状态的讨论,避开了抽象复杂的演算,优化了解题过程和解题方法,降低了解题难度.本文以运动变化的观点讨论了极限思想在高中客观题解答中的应用,以开阔学生的视野,提高学生解题的技巧.一、简述极限思想的相关概念(一)极限思想的概念分析极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科.所谓极限思想,是指用极限概念分析问题和解决问题的一种数学思想.用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法构思一个与它有关的变量,确认这变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到这结果.极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限来定义的.(二)建立概念的极限思想极限的思想方法贯穿于数学分析课程的始终.可以说数学分析中的几乎所有的概念都离不开极限.在几乎所有的数学分析著作中,都是先介绍函数理论和极限的思想方法,然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数、广义积分的敛散性、重积分和曲线积分与曲面积分的概念.譬如函数在点连续的定义,是当自变量的增量时,函数值的增量趋于零的极限;函数在点导数的定义,是函数值的增量与自变量的增量之比,当时的极限.二、分析极限思想解题的作用(一)简化解题,深化思维在求不等式的解集和变量的取值范围问题中,利用极限思想来寻求解题的途径,常常能达到简化计算过程,化难为易,深化思维,使问题轻松获解的效果.譬如:不等式+logx+2>0的解集是().A.[2,3)B.(2,3]C.[2,4)D.(2,4].本题为不等式解集问题,通常考查变数字母取其区间的端点和端点的极限情况.当x趋近2时,左边结果趋近,且当x=2时,不等式有意义,排除B、D,又当x趋近于4时,不等式成立,排除A,因此答案选C.(二)优化解题,活化思维在立体几何问题中,利用运动变化的观点对最大、最小、最近、最远等特殊位置进行极端位置的考察,以达到发现问题的解题思路和问题结果的目的,活化思维,培养思维的灵活性.譬如在对教材中许多公式、定理等的发现,采取“题型+方法”教学方式,让启发式教学进入数学教学活动,选择自觉渗透数学思想方法,利用概念、公式、定理教学,培养学生思维的概括性和创造性;通过应用教学,培养学生思维的连续性和广阔性.(一)极限思想在数列中的应用通过采用极限思想的运用,结合数列的特点,极限思想是一种重要的数学思想,灵活地借助极限思想,可以避免复杂运算,探索解题新思路.例△ABC的各边中点得到一个新的△A1B1C1,又连接△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2、‥‥这一系列三角形趋向于一个点M,已知A(0,0),B(3,0),C(2,2),则点M的坐标是:分析易知A,A1,A2,A3‥‥都在直线AA1上,且A2为AA1的中点,A3为AA2的中点,依法类推,设AA1=a,则AAn=a-1/2a-1/4a-1/8a…,当n趋向于无穷大的时候,这一系列三角形无限趋近于△ABC的重心,从而由重心的坐标计算公式,可求得M513,213.(二)极限思想在解析几何中的运用极限是微积分中最基本、最主要的概念,它从数量上描述变量在变化过程中的变化趋势,而在无限变化过程中考察变量的变化趋势的思想就是极限思想.在高中数学中,极限思想深入渗透到解析几何章节中,并且又衔接高等数学,起着承上启下的作用.(三)数学应用意识的提高从当前数学教学的实际特点出发,围绕素质教育的要求,让学生在掌握知识的同时,也能更好地展现出自我思考、自我探究的方式,与数学的应用价值结合在一起,并实现构建数学模型的能力.通过对概念的理解,积极寻求思维突破口,并敢于应用.例如这样一个题目:已知是定义域为R的奇函数,当时,,求的表达式.这是一个很常规的问题.在教学中,不应仅仅看重获得结果,更应定位在通过问题的解决过程加深对函数符号、函数概念与函数图像的对称性的理解.如:有的学生在求的对应解析式时,有种解法很困惑:设,则,,所以当时,解析式为.出现这个问题的原因在于没有理解抽象符号的含义.四、结语对于某些客观题,如果我们能灵活地运用极限思想去解,不仅可以避开抽象复杂的运算,大大降低解题难度,还可以优化解题思路,达到事半功倍之效;当然,对于一些其他类型的题目,运用极限思想也可达到拓展思路、辅助解题的作用.。
极限思想在高中数学中的应用

教学实践JIAOXUESHIJIAN极限思想在高中数学中的应用广西壮族自治区北海市北海中学宁德芬【摘要】极限思想作为社会实践的产物,其渊源甚至可以追溯到古代。
用极限思想解决问题的一般步骤可概括为:对被考察的未知量,先设法构思一个与它有关的变量,再确认这个变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到结果。
在高中数学的学习过程中,极限思想可以给学生提供一条意想不到的解题思路,让原本烦琐的题目以相对简易的方式求得答案。
本文将围绕可以运用极限思想的几道例题阐述极限思想在高中数学中的妙用。
【关键词】极限思想高中数学解题思路一、极限思想对部分求范围的题目有奇效在解决高中数学选择题时,极限思想是必须掌握的一种解题技巧,它本质上是特殊值法的延伸,利用极限思想来解决小题不仅可以透析题目的深刻本质,还可以达到化繁为简的目的。
1.已知定义在(-8,+8)上的函数/(%) = [(3;1)%-4:严<1,是减函数,那么a的取值范围是Uog,%),%>1()。
A.(0,1)B.(0,1/3)C.(1/7,1/3)D.(1/7,1)解析:本题的关键在于讨论函数在分界点x=l的领域内,使得(3a-l)%-4a>log必,即前者图象在后者之上,然后再结合图象去求a的取值范围。
此时,利用极限思想就可以很快地确定满足这一条件下的a的取值范围,之后交集范围便是题目所求。
而又因为/(%)在R 上的减函数,所以解得l/7<a<l/3,故选择C o从这道题中,我们显然可以看到极限思想帮助我们省去不少烦琐的计算过程,而是透析这道题所求范围的本质,从而达到了快速高效解题的目的。
所以,充分掌握极限思想,并在做题时时刻保持对数学思想的“敏锐嗅觉”,将会成为解题制胜的一大法宝。
二、极限思想能处理复杂的无穷等比数列问题极限本质上是从微积分中剥离出来的基本概念,它从数量上描述变量在变化过程中的一种状态或者趋势,而我们知道无穷等比数列中,g代表了该数列的变化规律,所以克制无穷等比数列是按照特定规律g变化的一种不定状态。
高中数学中的极限概念是如何应用的

高中数学中的极限概念是如何应用的在高中数学的学习中,极限概念是一个极为重要的知识点。
它不仅是数学分析的基础,还在众多领域有着广泛而深刻的应用。
首先,让我们来理解一下什么是极限。
简单来说,极限描述的是当自变量无限趋近于某个值时,函数所趋近的一个确定的值。
比如说,当 x 无限趋近于 0 时,函数 f(x) = sin(x) / x 的极限是 1 。
这就是极限的一个简单例子。
那么,极限在高中数学中有哪些具体的应用呢?在函数的研究中,极限发挥着关键作用。
通过求函数在某一点的极限,我们可以判断函数在该点的连续性。
如果函数在某点的极限值等于该点的函数值,那么函数在这一点就是连续的。
连续性是函数的一个重要性质,它对于我们理解函数的变化规律非常有帮助。
例如,对于函数 f(x) = x + 1 ,当 x 趋近于 1 时,f(x) 的极限就是2 ,而且 f(1) 也等于 2 ,所以这个函数在 x = 1 处是连续的。
极限还用于求函数的导数。
导数反映了函数在某一点的变化率。
通过极限的方法,我们可以求出函数在某一点的导数。
比如,对于函数 f(x) = x²,它在点 x 处的导数 f'(x) 可以通过极限来计算,即 f'(x) = lim (h→0) ((x + h)² x²)/ h ,经过计算可以得到 f'(x) = 2x 。
导数的应用非常广泛,它可以帮助我们解决诸如求函数的单调性、极值和最值等问题。
在数列中,极限也有着重要的地位。
对于一个数列,如果它存在极限,我们就说这个数列是收敛的;如果不存在极限,就说它是发散的。
比如,数列 1/2, 1/4, 1/8, 1/16,…… 它的通项公式是 aₙ =(1/2)ⁿ 。
当 n 趋向于无穷大时,这个数列的极限是 0 ,所以这个数列是收敛的。
而数列 1, 2, 3, 4,…… 通项公式是 aₙ = n ,当 n 趋向于无穷大时,这个数列的值也趋向于无穷大,不存在极限,所以这个数列是发散的。
极限思想在高中数学解题中的应用

极限思想在高中数学解题中的应用摘要:极限思想在函数、方程、不等式、三角函数﹑数列、立体几何等众多问题中都可巧妙运用。
在高中数学解题中,教师应渗透有关极限思想的教学,让极限思想进入学生数学思维领域,其次学生需善于总结发现运用极限思想解决相关题型。
下面就如何让极限思想应用于解高中几大类型题目,展开叙述。
关键词:极限思想;解题;应用;一、在日常教学中渗透,逐步形成认知在高中阶段,许多知识和方法和“无限趋近”相关﹐如区间的无穷远处、数列的项数﹑柱锥台之间的关系、函数图像的渐进线、曲边图形的面积及曲线的切线等。
因此,教师要在日常教学中进行渗透,让学生逐步形成对它的认知。
教科书这样呈现区间表示:实数集可以用区间表示为。
我们可以把满足, ,,的实数的集合分别表示为,,,。
二、在概念教学中渗透,深化理解与认识教科书虽然没有正面提及极限的概念,但是在导数的定义中,已经很紧密地把导数和极限概念关联在一起了。
当时,(为常数),把称为在点的导数,记作。
在这里,“无限趋近”的实质就是高等数学中的极限概念﹐实际教学中教师通常是借助导数的几何意义来帮助学生理解“无限趋近”,让学生直观地体验“无限趋近”,然后引导学生逐步认识“无限趋近”在解题中的作用。
三、在优化解题中渗透,体验巧妙解题的魅力数学思想的魅力在于能巧妙运用,优化解题思路,提升解题效率。
极限思想也不例外,它在函数、方程、不等式、三角函数﹑数列、立体几何等众多问题中都可巧妙运用。
尤其在解决带参数的超越函数的零点问题上,可利用参变量分离方法和极限思想对所构造超越函数的图像进行定位,从而避开繁杂的讨论,大大优化解题过程。
1.极限思想在立体几何中的应用立体几何很考验同学们的空间想象和计算能力,同学们一般会花费大量时间解答这类题,但如果能够恰当地运用极限思想,就可以将复杂图形简单化,计算也随之变得容易。
例1、圆台的上底面和下底面的半径分别是和,作一个平行于圆台底面的截面将圆台分为体积相等的两部分,则截面圆的半径为()。
极限思想在中学数学中的应用研究

极限思想在中学数学中的应用研究
极限思想是以极限的概念来分析数学问题,它提供了一种有效的方
法来研究函数、曲线、表面以及对这些图形和曲线进行计算和分析。
极限思想可以帮助人们更深入地理解数学知识,了解并分析数学中的
现象,并使用极限的思想来解决数学问题。
极限思想在中学数学中有着广泛的应用。
在微积分中,通过极限的思
想可以求得函数在某点附近的解析解及导数;在代数学中,极限思想
可以用来计算多项式的极值;在解析几何中,可以利用极限思想求出
圆周上某点到圆心的距离;在概率论与数理统计中,用极限思想可以
研究正态分布的形成。
此外,极限思想也用于优化问题中,帮助研究者设计出最优的解决方案;在几何图形中,极点的概念也可以用极限思想判断;在动力学和
运动中,可以利用极限思想找到运动物体的运行轨迹。
总之,极限思
想在中学数学中的应用非常广泛,可以帮助学生更好地理解数学公式,更加深入地剖析数学问题,有效地解决实际问题,为数学有着重要作用。
极限思想在高中数学解题中的应用

极限思想在高中数学解题中的应用极限思想在高中数学解题中的应用极限思想作为一个重要的数学概念在高中数学教学中得到了培训,影响着后来数学解题的过程,也对提升高中数学解题水平比较有意义。
因此,如何应用极限思想在高中数学解题中显得尤为重要。
首先,要认识到极限中的关系。
极限的基本概念是“当x的值逐渐接近某个特定的值,y的值也会逐渐靠近某个特定的值”,换句话说,所谓的“靠近”,就是指每次减小x的值时,y的值也会靠近某个极限值。
根据极限的定义,某一极限存在时,x的关系可以抽象成一个方程,即极限=f(x)。
其次,要学会把握极限的推导过程,比如一些分式除以越来越小的常数,我们往往会把这样的分式将其多次连乘,并且把和分母相特殊的项放到分母里,最终将这样的分式简化成一个极限式。
再次,要学会利用极限的思想来解决实际问题,比如高中生求解一元二次方程,可以先进行联立方程求值,再使用极限的思想,当a,b极限的值为1的时候,极限的解为2a+db。
这样就可以轻松求出一元二次方程的解。
比如,当方程为:ax2+bx+c=0时,极限值为2a+db,从而得到方程的解。
最后,要保持极限思想的正确认识和理解,比如说,在一般条件下,极限的值及其对应的x的值是有限的,而不是无穷的,那么也就意味着,在一定的条件范围下,有些函数的极限就是有限的,所以,当c取不同值时,极限也就有所变化,从而达到解决数学问题的目的。
极限思想作为一个数学思想,最重要的还是要正确理解和运用。
极限思想是对极端情况的分析,也可以帮助我们在解决数学问题中节省不少时间和精力。
因此,广大高中生要加强极限思想的学习,用正确的思想来解决高中数学中的各种问题,从而提高数学解题的水平。
最新极限思想在高中数学解题中的应用

极限思想在高中解题中的运用 多伦县第三中学 刘洪庆极限的思想是近代数学的一种重要思想,我们在大学所学的数学分析就是以极限概念为基础、极限理论为主要工具来研究函数的一门学科。
而在高中一些数学问题的解答上如运用极限的思想,会使我们的解答简单而高效。
所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。
下面将用例题举出极限思想的妙处。
尝试将极限思想和方法渗透、融合在解题教学中,实现方法与内容的整合实践,以期引起广大师生的广泛关注和高度重视。
数学思想方法是数学的灵魂,没有数学思维就没有真正的数学学习。
要让学生学好数学,用好数学,就要让学生走进数学的“灵魂深处”。
给大家介绍说明本文要用到的数学符号:”。
“负向趋近于”表示③“”。
“正向趋近于”表示②““趋近于”。
”表示①“a :a a :a :-→+→→ 举例: 大”。
且比“正向趋近于”表示“11:1+→小”。
且比“负向趋近于”表示“11:1-→例1、函数xx xx e e e e y ---+=的图象大致为( )解析:x x x x x x x x e e e e e e ee y 11-+=-+=--当 +→0x 时,+→1x e ,-→11x e ,∴+→-0)1(x x e e 、2)1(→+x x e e , +∞→+=∴02y 。
故排除B 、C 、D 。
选A 例2、函数x x x y --=226cos 的图象大致为( )解析:当 +→0x 时,+→12x ,-→121x ,∴+→-0)212(x x ,16cos →x , ∴+∞→+=01y 。
当 -→0x 时,-→12x ,+→121x ,∴-→-0)212(x x ,16cos →x , ∴-∞→-=01y 。
排除A 、B 又应为x 6cos 是值域[]1,1-上的周期函数,所以选D例3、函数x x x f tan 2)(-=在⎪⎭⎫ ⎝⎛-2,2ππ上的图象大致为( )解析: 当-→2πx 时,+∞→x tan ,-∞→-x tan ,-∞→-x x tan 2,-∞→∴)(x f ,排除B 、D 选项当 +-→)2(πx 时, -∞→x tan ,+∞→-x tan ,+∞→-x x tan 2,+∞→∴)(x f 排除A 选项故选C例4、函数x e e y x x sin )(--=的图象(部分)大致是( )解析:当+→0x 时,+→1x e ,-→11x e ,∴+→-0)1(xx e e ,+→0sin x , +→+⨯+=∴0)0()0(y 。
浅谈极限思想在数学解题中的应用_0

浅谈极限思想在数学解题中的应用极限思想是一种重要的数学思想,它是一种用有限认识无限,从近似认识精确,从量变认識质变的思想。
灵活地借助极限思想,可以简化计算过程,优化解题方案,探索解题新方法。
标签:极限思想;数学解题;应用极限思想是社会实践的产物。
早在远古已经萌芽,从我国古代名言:“一尺之棰,日取其半,万世不竭”中渗透着的极限思想,到刘徽的‘割圆术’,再到法国数学家柯西对极限做出的明确定义。
极限思想逐渐成为一种重要的数学工具,它能突破解题常规,巧解数学问题,因此被广泛应用于解决函数、线性代数、平面几何、立体几何等问题,以达到化难为简,节省时间的效果。
一、利用极限思想判断参数的取值范围例1.已知不等式m2+(cos2θ-5)m+4sin2θ≥0恒成立,则实数m的取值范围()。
A.0≤m≤4B.1≤m≤4C.m≥4或m≤0D.m≥1或m≤0分析:当m趋于∞时,左边结果大于0,可以排除A,B;当m趋于1时,不等式不一定成立,排除D,因此答案为C。
由此可以看出极限思想是特殊值法的延伸。
该题利用极限思想,着眼于问题的极限状态,减少了计算量,迅速准确获解。
二、利用极限思想判断函数值的范围例 2.已知0<x<y<m<1,则有()。
三、利用极限思想求行列式的值通过验证,此结果与展开行列式所得的计算结果相同。
该题利用极限思想发掘问题中的有用信息,利用连续函数及函数极限的性质,避开了复杂的计算,优化了解题方案。
四、总结极限思想简而言之就是无限接近的思想。
它能够将复杂的数学问题简单化,具有较强的工具性和实用性。
要想学好数学并且能自如应对应试考试,深入了解和灵活应用极限思想是必要的。
数学的发展必须突破常量研究的传统范围,在曲与直,变与不变的问题上大胆运用极限思想。
在初等数学里,圆面积是用一系列边数无线增多的内接或外接正多边形面积的极限来定义的;在高等数学里,同样用类似的办法来定义曲边梯形的面积,并对其求极限,进而给出定积分的概念及几何意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极限思想在高中解题中的运用
多伦县第三中学 刘洪庆
极限的思想是近代数学的一种重要思想,我们在大学所学的数学分析就是以极限概念为基础、极限理论为主要工具来研究函数的一门学科。
而在高中一些数学问题的解答上如运用极限的思想,会使我们的解答简单而高效。
所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。
下面将用例题举出极限思想的妙处。
尝试将极限思想和方法渗透、融合在解题教学中,实现方法与内容的整合实践,以期引起广大师生的广泛关注和高度重视。
数学思想方法是数学的灵魂,没有数学思维就没有真正的数学学习。
要让学生学好数学,用好数学,就要让学生走进数学的“灵魂深处”。
给大家介绍说明本文要用到的数学符号:
”。
“负向趋近于”表示③“”。
“正向趋近于”表示②““趋近于”。
”表示①“a :a a :a :
-→+→→ 举例: 大”。
且比“正向趋近于”表示“11:1+→
小”。
且比“负向趋近于”表示“11:1-→
例1、函数x
x x
x e e e e y ---+=的图象大致为( )
解析: x x x x x x x x e e e e e e e
e y 11-+
=-+=--
当 +→0x 时,+→1x e ,
-→11x e ,∴+→-0)1(x x e e 、2)1(→+x x e e , +∞→+
=∴02y 。
故排除B 、C 、D 。
选A 例2、函数x x x y --=2
26cos 的图象大致为( )
解析:当 +→0x 时,+→12x ,
-→121x ,∴+→-0)212(x x ,16cos →x , ∴+∞→+
=01y 。
当 -→0x 时,-→12x ,
+→121x ,∴-→-0)212(x x ,16cos →x , ∴-∞→-
=01y 。
排除A 、B 又应为x 6cos 是值域[]1,1-上的周期函数,所以选D
例3、函数x x x f tan 2)(-=在⎪⎭
⎫ ⎝⎛-2,2ππ上的图象大致为( )
解析: 当-→2π
x 时, +∞→x tan ,-∞→-x tan ,-∞→-x x tan 2,
-∞→∴)(x f ,排除B 、D 选项
当 +-→)2
(π
x 时, -∞→x tan ,+∞→-x tan ,+∞→-x x tan 2,+∞→∴)(x f 排除A 选项 故选C
例4、函数x e e y x x sin )(--=的图象(部分)大致是( )
解析:当+→0x 时,+→1x e ,-→11x e ,∴+→-0)1(x
x e e ,+→0sin x , +→+⨯+=∴0)0()0(y 。
排除B 、D
当-→0x 时,-→1x e ,+→11x e ,∴-→-0)1(x x e
e ,-→0sin x , +→-⨯-=∴0)0()0(y 。
排除A
故选C
通过以上例题可以看出,让学生掌握和运用极限思想,不仅降低了某些问题的解题难度,而且在寻找解题思路、探索发现新结论有着重大作用。