旋转液体物理特性的测量

旋转液体物理特性的测量
旋转液体物理特性的测量

旋转液体物理特性的测量

1.背景及应用

早在力学创建之初,就有牛顿的水桶实验,牛顿发现,当水桶中的水旋转时,水会沿着桶壁上升。旋转的液体有一些独特的物理特征。如盛有液体的圆柱形容器绕其圆柱面的对称轴匀速转动时,旋转液体的表面将成为抛物面;通过旋转液体,可以分

离不同比重的液体等等。

根据旋转液体的这些特性,产生了一系列的应用。如目前广泛应用的分离机等。图1给出了一种液体镜头,它在一个大容器里旋转水银。由于旋转液体的表面是一个理想的抛物面,同时水银能很好地反射光线,所以能起反射镜的作用。通常这样一个光滑的曲面,完全可以代替需要大量复杂工艺并且价格昂贵的玻璃镜头,从而可以有效地降低大型望远镜的制造成本。

2.实验原理

盛有液体的圆柱形容器绕其圆柱面的对称轴匀速转动时,旋转液体的表面将成为抛物面。抛物面的参数与重力加速度和旋转角速度有关,利用此性质可以测重力加速度;旋转液体的上凹面可作为光学系统加以研究,还可测定液体折射率等。

1)旋转液体表面公式

????牛顿发现,当圆柱体中的水旋转时,水会沿着圆柱体壁上升。定量计算时,选取随圆柱形容器旋转的参考系,这是一个转动的非惯性参考系。液体相对于参考系静止,任选一小块液体P ,其受力如图2。i F 为沿径向向外的惯性离心力,mg 为重力,N 为这一小块液体周围液体对它的作用力的合力,由对称性可知,N 必然垂直于液体表面。在Y X -坐标下),(y x P 则有:

根据图2有:022

2y x g

y +=

ω(1)

图1大型望远镜的液体镜片

图2实验原理图

ω为旋转角速度,0y 为0=x 处的y 值。此为抛物线方程,可见液面为旋转抛物面。 2)用旋转液体测量重力加速度原理

在实验系统中,一个盛有液体半径为R 的圆柱形容器绕该圆柱体的对称轴以角速度ω匀速稳定转动时,液体的表面形成抛物面,如图3。 设液体未旋转时液面高度为h ,液体的体积为:

h R V 2π=(2)

因液体旋转前后体积保持不变,旋转时液体体积可表示为:

x x y g

x dx x y V R

d )2(

π2)π2(02

20+==??ω(3)

由(2)、(3)式得:

g

R h y 42

20ω-

=(4)

联立(1)、(4)可得,当2/0R x x ==时,h x y =)(0,即液面在0x 处的高度是恒定值。 (1)用旋转液体液面最高与最低处的高度差测量重力加速度

如图2所示,设旋转液面最高与最低处的高度差为h ?,点(h y R ?+0,)在(1)式的抛物线上,有02

202y g

R h y +=

?+ω,

得:h

R g ?=

22

2ω又60

π2n

=

ω,则 h

n D g ??=7200π2

22(5)

式中D 为圆筒直径,n 为旋转速度(转/分)。

(2)斜率法测重力加速度

如图3所示,激光束平行转轴入射,经

过BC 透

明屏幕,打在20R

x =的液面A 点上,反射光点为C ,A 处切线与x 方向的夹角为θ,则

θ2=∠BAC ,测出透明屏幕至圆桶底部的距离H 、液面静止时高度h ,以及两光点BC 间距离d ,则h

H d

-=

θ2tan ,求出θ值。 因为g

x x y 2d d tan ωθ==,在20R x =处有g

R

?=

2tan 2ωθ

因为60

π2n

=

ω,则 θ

tan 23600π22?=D

g (6)

或可作2

~tan n θ曲线,求斜率k ,可得g

D

k ?=23600π22,求出k D g ?=23600π22

3)抛物面焦距与转速的关系

旋转液体表面形成的抛物面可看作一个凹面镜,符合光学成像系统的规律,若光线平行于曲面对称轴入射,反射光将全部会聚于抛物面的焦点。 根据抛物线方程(1),抛物面的焦距

2

g f =

(7)

可以看到,不同的转速的抛物面的焦距是不同的。

3.实验目的

了解旋转液体测量重力加速度的基本原理,通过实验学习用旋转液体最高处与最低

处高度差测量重力加速度和激光束平行转轴入射测斜率法求重力加速度的方法,并测量转速和液面形状及液面光学特性的关系。

4.实验仪器

FB805型旋转液体综合实验仪 仪器配备了半导体激光器、霍尔传感器结合单片机测量转动周期等技术。可用于测重加速度;测量焦距与液体折射率;研究测量转速和液面形状及

液面光学特性的关系等。 实验仪器如图4所示。

1.激光器

2.毫米刻度水平屏幕

3.水平标线

4.水平仪

5.激光器电源插孔

图3实验示意图

6.调速开关

7.速度显示窗

8.圆柱形实验容器

9.水平量角器

10.毫米刻度垂直屏幕 11.张丝悬挂圆柱体 12.实验容器内径2/

R 刻线

(见底盘色点)(可自行标注)

5.实验内容与操作要点

1)调整旋转液体综合实验仪仪器调整

调整旋转液体综合实验仪仪器底座旋钮,观察水平仪,调整仪器的水平。 利用自准直法,调整激光器方向和位置,使其垂直指向实验容器内径2/R 刻线。 2)高度差法测量重力加速度

改变圆桶转速n (转/分)6次,待液面稳定后,测量液面最高与最低处的高度。用旋转液体液面最高与最低处的高度差测量重力加速度g

3)斜率法测重力加速度

将透明屏幕(1)置于圆桶上方,用自准直法调整激光束平行转轴入射,经过透明屏幕,对准桶底20R x =处的记号,测出透明屏幕至圆筒底部的距离H 、液面静止时高度h 。

改变圆桶转速n (转/分)6次,待液面稳定后,在透明屏幕上读出入射光与反射光点BC 间距离d ,根据公式h

H d

-=

θ2tan ,求出θtan 值。 4)验证抛物面焦距与转速的关系

将毫米刻度垂直屏幕过转轴放入实验容器中央,激光束平行转轴入射至液面,后聚焦在屏幕上,可改变入射位置观察聚焦情况。改变圆桶转速n (转/分)6次,记录聚焦点及液面最低点位置。

5)研究旋转液体表面成像规律(选做) 给激光器装上有箭头状光阑的帽盖,使其光束略有发散且在屏幕上成箭头状像。光束平行光轴在偏离光轴处射向旋转液体,经液面反射后,在水平屏幕上也留下了箭头。固定转速,上下移动屏幕的位置,观察像箭头的方向及大小变化。

6.数据记录及处理

图4实验仪器

屏幕高度

cm

=

H ,液面高度

cm =h

7.分析与思考

如何对实验

用的旋转液体综合实验

仪改进,来实现液体折射率的测量。

8.附录 液体镜头

液体镜头可以按照不同方式进行分类,如有使用一种液体的,也有使用发射率不同的完全不能融合

的两种液体的。目前,液体镜头按照实现方式的不同可以分成传导型和反射型两类。反射式液体镜头在大型望远镜中得到了应用。2000年以前,天文望远镜的造价都高达数千万美元,个人几乎是不可能拥有的,只能共享。天文学家何其多也,而天文望远镜何其少也。2000年后,只用100多万美元,科学家就

表2斜率法测重力加速度数据记录表格

表3验证抛物面焦距与转速关系数据记录表格

图6传统镜头的剖面图

造成了一个巨大的天文望远镜。成本降低的关键是首次采用了液体镜头,而不是传统采用的磨光金属、坚硬的玻璃和大型的镜面。反射望远镜上的反射镜,最好是抛物面的,也就是液体在旋转的容器里形成的那种表面的形状。制造望远镜的人要付出大量辛勤的劳动才能使反射镜有这样的表面。打磨望远镜用的反射镜的工作常常要延续好几年。美国的物理学家乌德为了解决这个困难,创造了液体镜面:他在一个大容器里旋转水银,得到一个理想的抛物面,由于水银能很好地反射光线,所以能起反射镜的作用。

反射式液体镜头已经在大型望远镜中得到了应用,代替传统望远镜中使用的玻璃反射境。当盛满液体(通常采用水银)的容器旋转时,向心力会产生一个光滑的用于望远镜的反射凹面。通常这样一个光滑的曲面,完全可以代替需要大量复杂工艺并且价格昂贵的玻璃镜头,而哈勃空间望远镜的失败也让我们了解了玻璃镜头何等脆弱。

反射型液体镜头绝对不会存在易碎这样的问题,通过改变液体容器的旋转速度,可以形成曲率不同的发射曲面。英国Columbia大学(UBC)的科学家已经研制了一架直径236英寸(6米)液体发射境面望远镜(LMT)。作为全球第13大的望远镜,其反射曲面是由一个盛满水银的容器以5RPM的速度旋转形成的。而这架望远镜的造价仅为100万美元左右,而用传统技术建造同样大小的一架望远镜约需1亿美元。

现在,随着拍照手机等的流行,人们对微型变焦镜头的需求持续膨胀,让原本在2000年就已经在天文望远镜中成功实现的液体镜头受到人们的密切关注。目前人们着重于传导型液体镜头的研究。

传导型液体镜头使用两种不能融合的液体,每一种液体拥有不同的折射率,生成一种与传统的高质量的光学镜头一样的可变聚焦镜头,而镜头大小却可以减少到10mm(图5)。两种液体,其中一种是导电的水性溶液,另一种是不导电的油。这两种液体被装在一个加有弹簧装置的很小的管子里,管子的内部和弹簧装置涂上防水材料,通过弹簧装置加压和调整在管子两端的直流电电压,在管子的一端形成相当与玻璃镜头的月牙型的曲面,曲面的曲率就是液体镜头的焦距。根据相关测试,每次的变焦过程所消耗的能量仅为0.1微焦耳(mJ),而变焦所用的时间从最极端的凸面到凹面也仅需几毫秒。另外,两种液体的边界非常光滑和规整,使得液体镜头可用于诸如医学上用的内窥镜成像系统,也可以应用在空间狭小的其他领域,如显微镜照相机。

而传统的变焦镜头是通过调整两个固定焦距的镜头之间的距离来实现变焦(图6)。而液体镜头则通过改变液体的压力来调整焦距。这样设备可以在一个很小的固定距离范围内实现变焦系统。根据加利福尼亚大学的科学家的试验,这种液体镜头非常容易批量生产,而且成本将大幅度下降。

传导型液体镜头已经走出实验室。法国的Varioptic公司在2004年年底发布了一项用于手机的采用了电子技术的液体镜头专利。使用这种镜头的手机,只要在镜头中加入几滴油或者水,就可以让镜头实现自动变焦,并且准确地把焦点放在需要拍照的物体上。该液体镜头的变焦速度非常快,即使从最极端的凸面到凹面也仅需几毫秒的时间。韩国、德国、日本等国家也液体镜头方面进行了研究,并公布了量产计划。

实验2--液体药剂的制备

实验2--液体药剂的制备 实验五液体药剂的制备 I真溶液型液体药剂的制备 一、实验目的要求 1 ?掌握溶液型液体药剂的制备方法及操作要点。 2 ?熟悉制备液体药剂常用的称量、量取等器具的正确使用方法。 3?了解增加药物溶解度的方法。 二、实验指导 1 ?溶液型液体药剂是指药物以分子或离子(直径在1nm以下)状态溶解在 液体分散媒中,制成供内服或外用的单相澄明的液体药剂。可以口服,也可以外用。溶液型液体药剂常用的溶剂有水、乙醇、丙二醇、甘油、液体石蜡、植物油等。属于真溶液型药剂的有药露与芳香水剂、溶液剂、甘油剂、醑剂等。溶液型液体药剂就分散系统而言,主要为低分子溶液,其分散相(药物)小于lnm, 常以分子或离子状态溶解在分散媒中,外观均匀、澄明。 2 ?溶液型液体药剂其制法有溶解法、稀释法、化学反应法、水蒸气蒸馏法等,以溶解法应用最多。其一般工艺流程为称重一溶解一滤过一质量检查一包装等 衣寸0 3. 溶解法操作注意: (1)药物的称量和量取固体药物常以克为单位,应根据药物的轻重,选 用不同的称器进行称量。液体药物常以毫升为单位,选用不同的量器进行量取。用量少的液体药物,可采用滴管计滴数量取(标准滴管在20C时,Iml蒸馏水 应为20滴,其重量误差在土0.10g之间)。

(2)取处方总量1/2?3/4的溶媒,加入固体药物,搅拌溶解。处方中如有附加剂或溶解度较小的药物,宜先将其溶解后再加入其他药物,也可加入适量助溶剂或采用复合溶剂,帮助溶解。易溶解的药物、液体药物及挥发性药物 最后加入。酊剂、流浸膏加入水溶液中时,速度要慢,且应边加边搅拌。 (3)根据药物性质,可将固体先行粉碎或加热助溶,某些难溶性药物可适当增加其溶解度。 (4)将溶液用适宜的滤器过滤后,再适量添加溶媒至需要量。过滤可选用的滤器有玻璃漏斗、布氏漏斗、垂熔玻璃漏斗等。常用滤材有滤纸、脱脂棉、纱布、绢布等。 (5)如处方中含有糖浆、甘油等粘稠液体时,用量器量取液体药物后,将粘附在容器壁上的液体应用少量溶剂洗涤器具。洗液合并于容器中,以减少药物的损失。溶剂为油、乙醇、液体石蜡时,容器与器材均应干燥。 (6)制得的溶液应及时分装于容器内,加塞后擦净器壁再贴瓶签。 三、实验设备器皿、药品与材料 设备器皿:普通天平、量杯、量筒、烧杯、玻璃漏斗、磨塞小口玻璃瓶、玻棒、试剂瓶等。 药品与材料:碘、碘化钾、硼砂、甘油、碳酸氢钠、液化苯酚、薄荷油、乙醇,蒸馏水等。 四、实验内容 (一)薄荷水 【处方】薄荷油2ml滑石粉15g蒸馏水加至1 000ml 【制法】称取精制滑石粉15g,置干燥乳钵中,将薄荷油2ml加到滑石粉上,充分研匀。量取蒸馏水9 500ml,分次加到乳钵中,先加少量,研匀后再逐渐加入其余部分的蒸馏水,每次都要研匀,最后留下少量蒸馏水。将上述混合液移至有塞玻璃瓶中,余下的蒸馏水将研钵中的滑石粉冲洗入玻璃瓶,加塞用力振摇10mi n,用湿润过的滤纸反复滤过,直至滤液澄明。再从自滤器上添加蒸馏水至1 000m1,摇匀,即得。 【功能与主治】祛风,矫味。用于胃肠胀气和作矫味剂,或作溶剂。 【用法与用量】口服,一次10?15ml, —日3次。 【注】1 ?因挥发油和挥发性物质在水中的溶解度均很少(约0. 05%, 为了增加其溶解度,必须尽可能增加溶质与水的接触面积。因此一般多采用振摇法和加分散剂法制备芳香水剂。 2?常用的固体分散剂有滑石粉、滤纸浆等;液体分散剂有乙醇和聚山梨酯-80等。制备时

《大学物理》课后解答题 第三章刚体定轴转动

第三章 刚体定轴转动 一、思考讨论题 1、刚体转动时,若它的角速度很大,那么作用它上面的力是否一定很大?作用在它上面的力矩是否一定很大? 解:刚体转动时,它的角速度很大,作用在它上面的力不一定大,作用在它上面的力矩也不 一定大。 ω增大,则增大增大, M , βω I dt d I ==, 又?= 更无直接关系。 与无直接关系,则有关,与与ωωβF M 2、质量为m =4kg 的小球,在任一时刻的矢径j t i t r 2)1(2 +-=,则t s =3时, 小球对原点的角动量=?从t =1s 到t s =3的过程中,小球角动量的增量=?。 解:角动量)22(]2)1[(2 t m j t i t dt d m m +?+-=?=?= t s =3 j i t m j t i t 80)26(4)68()22(]2)1[(2 3-=+?+=+?+-== j t m j t i t 16)22(42)22(]2)1[(2 1 -=+?=+?+-== 64)16(8013-=---==?== 3、如图5.1,一圆形台面可绕中心轴无摩擦地转动,有一辆玩具小汽车相对于台面由静止开始启动,绕作圆周运动,问平台面如何运动?若经过一段时间后小汽车突然刹车,则圆台和小汽车怎样运动?此过程中,对于不同的系统,下列表中的物理哪些是守恒量,受外力,合外力矩情况如何? 解:平台绕中心轴转动,方向与小车转动方向相反。 小车突然刹车,圆台和小车同时减速、同时静止。 分别考虑小车和圆台在垂直和水平方向的受力。 图 5.1 t f n 小车 圆台

4、绕固定轴作匀变速转动的刚体,其中各点都绕轴作圆周运动,试问刚体上任一点是否具有切向加速度?是否具有法向加速度?法向加速度和切向加速度大小是否变化? 解:刚体上的任何一点都有切向加速度。也有法向加速度。大小不发生变化。 5、在一物体系中,如果其角动量守恒,动量是否也一定守恒?反之,如果该系统的动量守恒,角动量是否也一定守恒? 解:在一物体系中,角动量守恒,动量不一定守恒。例如题4中的小车与圆台组成的系统。 反之,系统的动量守恒,角动量也不一定守恒,除非是单个质点。 二、课堂练习 1、如图5.2所示,一轻绳绕过一质量为m/4,半径为R 的滑轮(质量分布均匀),一质量为m 的人抓住绳子的一端A ,绳子的另一端系一个质量为m/2的重物B ,绳子与滑轮无相对滑动,试求: (1 ) 当人对绳子相对静止时,B 物上升的加速度; (2) 当人相对于绳子以匀速u 上爬时,B 物上升的加速度; (3) 当人相对于绳子以加速度a 0上爬时,B 上升的加速度。 解: 方法一、用隔离体法,分别研究人、物和滑轮的运动。 (1)分别受力分析 A 、 B 、 a a a ==21 1T f =1 a mg 2 2a 1T 2 R a 2=

综合实验(答案)

一、知识脉络 二、 实验方案的设计 1.设计、探究实验题的特点 2.设计实验方案的一般思路 综合实验 试题创设的情景、设问比较新颖,但又贴近学习与日常生活,趣味性较浓。选择的情景往往紧扣生活或工业生产。 学生版 教师版

3.实验 设计的步骤 明确目的、原理 选择仪器、药品 设计装置步骤 记录现象、数据 分析得出结论 4.对于实验设计与评价的原则和方法 科学性 首先必须认真审题,明确目的、要求,读懂题目提供的信息,综合已学过的知识及化学反应原理,通过类比、迁移、分析,从而明确实验原理。 根据实验目的和原理,以及反应物和生成物的性质、反应条件,如反应物和生成物的状态、能否腐蚀仪器、反应是否需要加热及温度是否能控制在一定范围内,从而选择合理的化学仪器和药品。 根据实验目的和原理,以及所选用的仪器和药品,设计出合理的实验装置和实验操作步骤。学生应具备识别和绘制典型的实验仪器装置图的能力,实验步骤应完整简明。认真观察,全面准确的记录实验过程中的现象和数据。 根据观察出的现象和记录的数据,通过分析、计算、图表、推理等方法,得出正确的结论。 (1)制备具有还原性的物质时,不能使用强氧化性酸。 (2)注意某些会使反应停滞的问题。如,浓硫酸会使铝金属钝化、制不能使用与稀等问题。 (3)酸性废气一般使用溶液或碱石灰吸收,而不使用澄清石灰水,原因是是微溶物,在石灰水中的量极少。 (4)检查多个连续装置的气密性时,一般不要用手捂法,手掌热量有限。可以使用酒精灯加热或利用其他的方式。 (5)对于排水法测定气体体积时,一定要注意量气装置的内外压强要相等,也就是各液面在相同水平线上(详见气体制备部分)。 CO 2CaCO 3S H 2O 4NaOH Ca(OH)2

工程流体力学-流体物理特性_图文(精)

工程流体力学机械工程学院 主讲:杨阳(博士、副教授 2013年03月 本课程的性质和任务 《工程流体力学》是机械设计制造及自动化、车辆工程、材 料成形与控制工程等专业一门主要技术基础课程。它的主要任料成形与控制工程等专业门它的主要任 务是通过各教学环节,运用各种教学手段和方法,使学生掌握 流体运动的基本概念、基本原理、基本计算方法;培养学生分流体运动的基本概念基本原基本计算方法培养学生分析、解决问题的能力和实验技能,为学习后继课程、从事工程技术工作和科学研究以及开拓新技术领域打下坚实的基础。 总学时:32 总学时

教学方法: 课堂讲授与实验教学相结合,采用多媒体演示完成。 考试方式闭卷 考试方式:闭卷 第一章绪论 ?有关流体运动与流体力学的三个问题; ?流体力学的发展概况; ?流体力学的概念; ?流体力学的概述与应用; ?流体力学课程的性质、目的、基本要求; 流体力学课程的性质目的基本要求; ?流体力学的研究方法; ?流体的连续介质模型; ?流体的主要物理性质——惯性、粘性、压缩性; ?理想流体与实际流体、可压缩流体与不可压缩流体、牛顿流体与非牛顿流体概念

顿流体与非牛顿流体概念。 第一节流体力学及其发展概况 有关流体运动与流体力学的问题 人类虽然长期生活在空气和水环境中,对一些流体运动现象却缺乏认识,现举三例。 A.高尔夫球:表面光滑还是粗糙? B.汽车阻力:来自前部还是后部? C.机翼升力:来自下部还是上部? A.高尔夫球:表面光滑还是粗糙? 高尔夫球运动起源于15世纪的苏格兰,当时人们认为表面光滑的球飞行阻力小,因此用皮革制球。 表面光滑的球飞行阻力小因此用皮革制球

利用旋转液体测定重力加速度

利用旋转液体测定重力加速度及焦距 [实验目的] 研究旋转液体表面形状,并由此求出重力加速度; 将旋转液体看作光学成像系统,探求焦距与转速的关系。 [实验仪器] 甘油, 旋转液体物理特性测量仪,气泡式水平仪,直尺。 [实验原理] 当一个盛有液体的圆柱形容器绕其圆柱面的对称轴以角速度ω匀速转动时( max max ,ωωω<为液面的最低处与容器底部接触时的角速度),液体的表面将成为抛物面, 抛物面方程为:C x y y 42 0+= ,其顶点在),0(0y V ,焦点在F (0,C y +0)。入射光平行于该曲面对称轴(光轴)时,反射光将全部汇聚于F 点,如图2所示。 图1. 实验装置图 图2. 容器绕对称轴匀速 转动示意图 对液面上的一个质元, 如图3所示。 图3 质元受力示意图

当其处于平衡时有: mg N x m N ==θωθcos sin 2 故液面的形状可表示为 g x dx dy 2tan ωθ== 因而 0222y g x y += ω 式中y 0是在x=0时的高度. 设抛物面上一点(x 0,h 0) g x y h 220 200ω+= 20020)(2ωy h g x -= (1) 由于液体的体积不变,则 ()xdx g x y xdx y h R R R ????? ? ??+==0022002 222ωπππ y 0=g R h 4220ω- (2) 由方程(1),(2)可得 20R x = (3) 由(3)式可知液面在x 0处的高度是恒定的。 将激光垂直照射x=x 0处液面,在屏上读出反射光点与入射光点的距离x '。入射角为θ ,反射角为θ,入射光线与反射光线的夹角为2θ, 则 () 0)2tan(h H x -'=θ 。 [实验内容] 1. 利用气泡式水平仪将屏幕、转盘调至水平位置。 2. 测出)2(,,0R D H h = 3. 逐渐改变转动角速度,待液体处于平衡态时,将激光垂直照射x=x 0处液面,在屏 上读出反射光点与入射光点的距离x '。

2020高考化学二轮复习专题十二化学实验基础与综合实验探究教案

专题十二化学实验基础与综合实验探究 了解化学实验常用仪器的主要用途和使用方法。 掌握化学实验的基本操作和基本技能。 熟悉化学药品安全使用标识,知道常见废弃物的处理方法,知道实验室突发事件的应对措施,形成良好的实验工作习惯。 初步学会物质和离子检验的化学实验基础知识和基本技能。能根据物质的特征反应和干扰因素选取适当的检验试剂。 初步学会物质的分离、提纯的化学实验基础知识和基本技能。学习研究物质性质,探究反应规律,进行物质分离、检验和制备等不同类型化学实验及探究活动的核心思路与基本方法。 具有较强的问题意识,能提出化学探究问题,能做出预测和假设。 能依据实验目的和假设,设计解决简单问题的实验方案,能对实验方案进行评价。 能根据不同类型实验的特点,设计并实施实验。能根据反应原理选取实验装置制取物质。能预测物质的某些性质,并进行实验验证;能运用变量控制的方法初步探究反应规律。 实验常用的基本仪器及基本操作 1.识别四类仪器 (1)用作容器或反应器的仪器 ①试管②蒸发皿③坩埚④圆底烧瓶⑤平底烧瓶 ⑥烧杯⑦蒸馏烧瓶⑧锥形瓶⑨集气瓶⑩广口瓶 ?燃烧匙 坩埚和蒸发皿均可以直接加热,前者主要用于固体物质的灼烧,后者主要用于溶液的蒸

发、浓缩和结晶。 (2)用于提纯、分离和干燥的仪器 ①普通漏斗②分液漏斗③球形干燥管 (3)常用计量仪器 ①量筒②容量瓶③滴定管④温度计⑤托盘天平 滴定管的“0”刻度在上面。酸式滴定管(具有玻璃活塞)盛装酸液和强氧化性溶液,而不能盛装碱液;碱式滴定管盛装碱液,而不能盛装酸液和强氧化性溶液。 (4)其他仪器 ①球形冷凝管或直形冷凝管②表面皿③滴瓶④胶头滴管 2.常见仪器正确使用的九个注意事项 (1)容量瓶不能长期存放溶液,更不能作为反应容器,也不可加热,瓶塞不可互用。 (2)烧瓶、烧杯、锥形瓶不可直接加热。 (3)pH试纸不能直接蘸取待测液。 (4)药品不能入口和用手直接接触,实验剩余药品不能放回原处(K、Na等除外),不能随意丢弃,要放入指定容器中。 (5)中和滴定实验中锥形瓶不能用待测液润洗。 (6)温度计不能代替玻璃棒用于搅拌,测液体温度时不能与容器内壁接触。

(整理)实验讲义-液体表面张力-.9.

液体表面张力系数的测量 表面现象广泛见诸于钢铁生产,焊接,印刷,复合材料的制备等过程中。液体表面张力系数是表征液体性质的一个重要参数。测量液体表面张力系数有多种方法,如最大泡压法,毛细管法,拉脱法。 许多现象表明液体表面具有收缩到尽可能小的趋势,这是液体分子间存在相互作用力的宏观表现。从微观角度看,液体表面具有厚度为分子吸引力有效半径的表面层,处于表面层内的分子比液体内部的分子少了一部分能与之吸引的分子,因此出现了一个指向液体内部的吸引力,使得这些分子具有向液体内部收缩的趋势。而从能度看,任何内部分子欲进入表面层就要克服这个吸引力而做功。显见,表面层有着比液体内部更大的势能(表面能),且液体表面积越大,表面能也越大。而任何体系总以势能最小的状态最为稳定,所以液体要处于稳定状态,液面就必须缩小,以使其表面能尽可能小,宏观上就表现为液体表面层内的表面张力。 我们想象在液体表面画一条直线,表面张力就表现为线段两边的液面以一定的拉力α相互作用,而力的方向与线段垂直,力的大小与该段直线的长度L成正比,即f L =(1) a 其中,比例系数α称为液体的表面张力系数,单位为N/m。当液体表面与其蒸汽或空气相接触时,表面张力仅与液体本身的性质及其温度有关。一般情况下,密度小、容易蒸发的液体,其α较小;而熔融金属的α则很大。对于同种液体,温度越高,其α越小。当液体与固体相接触时,不仅取决于液体自身的内聚力,而且取决于液体分子与其接触的固体分子之间的吸引力(称为附着力)。当这个附着力大于内聚力时,液体就会沿固体表面扩展,这种现象称为润湿。当这个附着力小于内聚力时,液体就不会在固体表面扩展,称为不润湿。润湿与不润湿取决于液体、固体的性质,如纯水能完全润湿干净的玻璃,但不能润湿石蜡;水银不能润湿玻璃,却能润湿干净的铜、铁等。润

大学物理-刚体的定轴转动-习题及答案

第4章 刚体的定轴转动 习题及答案 1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化? 答:当刚体作匀变速转动时,角加速度β不变。刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。又因该点速度的方向变化, 所以一定有法向加速度2 n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。 2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系? 答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为z z dL M dt = ,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以 ()z z dL d d M I I I dt dt dt ω ωβ= ===。既 z M I β=。 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式, 及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大? 答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快; (2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒? 答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。 5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求: (1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度。 解:(1)由题意飞轮的初角速度为 0240()n rad s ωππ== 飞轮作均减速转动,其角加速度为 20 0404/10 rad s t ωωπ βπ--= = =-? 故从开始制动到停止转动,飞轮转过的角位移为 201 2002 t t rad θωβπ?=?+?= 因此,飞轮转过圈数为

流体力学实验

局部水头损失实验 一.实验目的和要求 1. 掌握三点法、四点法测量局部水头损失与局部阻力系数的技能。,并将突扩管的实测值与理论值比较,将突缩管的实验值与经验值比较。 2. 通过阀门局部阻力因素测量的设计性实验,学习二点法测量局部阻力因素的方法。 二.实验原理 1.由于流动边界急剧变化所产生的阻力称局部阻力,克服局部阻力引起的水头损失称局部水头损失。 2.从内部机理上,局部阻力或是由于边界面积大小变化引起的边界层分离现象产生 ,或是流动方向改变时形成的螺旋流动造成,或者两者都存在造成的局部阻力因此,很难能用一个公式表示。通常 ,局部水头损失用局部阻力系数ξ和流速水头的乘积表示,即 g v h f 22 ξ = 绝大多数的局部阻力系数ξ只能通过实验测定,不同的边界开关局部阻力系数ξ不同,只有少数局部阻力系数可以用理论分析得出。 如突然扩大的局部水头损失与阻力系数:g v v h f 2)(2 21-= 或 g v g v A A h f 22)1(2 2 222212ξ=-= 或 g v g v A A h f 22)1(2 1 12 1221ξ=-= 对于突然缩小的局部阻力系数为: )1(5.012 A A - =ξ 三、实验内容与方法 1、测量突然扩大局部水头损失与突然缩小局部水头损失,并测定相应的局部水头损失因数。 参照实验基本操作方法,在恒定流条件下改变流量2-3次,其中一次为最大流量,待流量稳定后,测记各测压管液面读数,同时侧记实验流量。 2、 设计性实验:利用实验装置,设计某开度下阀门的局部阻力因数的测量实验。要求:用二点法测量,设计实验装置改造简图,制定实验方案,并结合CAI 软件(已随仪器配置),进行计算机仿真实验。 四.实验步骤

全国大学生化学实验竞赛操作A试题

第六届全国大学生化学实验邀请赛 实 验 试 卷 2008.7.6 1-癸烯-4-醇的制备与表征 选手编号: 第一部分 第二部分 第三部分 总分 评分 实验操作 实验记录 实验报告 分数 62 10 28 100 得分 重要说明: 1. 实验竞赛时间(包括完成实验报告)为8 小时。请认真仔细阅读实验内容及操作步骤,合理安排时间, 超时扣分, 每超时 5 分钟扣 1 分, 最多不得超过 30 分钟。 实验过程中须经监考教师认可, 方能离开位置。 2. 满分为 100分,要求: (1)按照给定实验步骤合成并表征目标化合物;(2)提交完成实验的原始记录; (3)提交实验报告。 3. 实验室提供的所有玻璃仪器均已洗干净并干燥。实验室备有丁腈手套和一次性手套供选手使用。正确使 用化学品及其实验用品,废液回收到指定容器中。 4. 小心使用化学试剂。避免化学药品溅撒,避免皮肤接触化学药品。一旦将化学药品溅撒到皮肤上,应立 即进行适当处理。 5. 正庚醛和烯丙基溴有强刺激性和腐蚀性,使用时要求在通风橱内用注射器量取,动作要迅速。称量正庚 醛时请盖上橡皮塞。 6. 任何有关实验安全的问题皆可询问监考教师。一旦发生安全事故,必须立即报告监考教师。 7. 若在实验开始 2.5 小时之内遇到实验失败,可向监考教师索取原料和仪器重做,但要扣 5 分。若在 2.5 小时之后失败,不能申请重做,选手可以向监考教师索取粗产品或产品以继续完成实验,但要扣 10分。 若产品不够其表征所需要的量,也可向监考教师索取产品,但要扣 2 分。 8. 选手在测定红外光谱图和气相色谱分析时必须对样品进行编号(选手编号),上交的产品也必须进行编 号(选手编号)。 9. 实验室提供的 1 H NMR 谱是在 300 MHz核磁共振仪测定的,溶剂为 CDCl3(含 TMS)。 10. 详细、如实并实时记录实验步骤及数据,并提交本次实验的原始记录。 11. 实验结束后,完成并提交实验报告。 12. 实验结束后,选手将所有材料装入试卷袋,并经监考教师认可、取得收条,方可离开考场。

大学物理上练习册 第2章《刚体定轴转动》答案-2013

第2章 刚体定轴转动 一、选择题 1(B),2(B),3(C),4(C),5(C) 二、填空题 (1). 62.5 1.67s (2). 4.0 rad/ (3). 0.25 kg ·m 2 (4). mgl μ21参考解:M =?M d =()mgl r r l gm l μμ2 1 d /0=? (5). 2E 0 三、计算题 1. 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度π rad /s 2由静止起动,轮与皮带间无滑动发生.试求A 轮达到转速3000 rev/min 所需要的时间. 解:设A 、B 轮的角加速度分别为βA 和βB ,由于两轮边缘的切向加速度相同, a t = βA r 1 = βB r 2 则 βA = βB r 2 / r 1 A 轮角速度达到ω所需时间为 ()75 .03.060/2300021?π?π?=== r r t B A βωβωs =40 s 2.一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为 2 1 mR 2,其中m 和R 分别为砂轮的质量和半径). 解:R = 0.5 m ,ω0 = 900 rev/min = 30π rad/s , 根据转动定律 M = -J β ① 这里 M = -μNR ② μ为摩擦系数,N 为正压力,22 1 mR J = . ③ 设在时刻t 砂轮开始停转,则有: 00=+=t t βωω 从而得 β=-ω0 / t ④ 将②、③、④式代入①式,得 )/(2 1 02t mR NR ωμ-= - ∴ m =μR ω0 / (2Nt )≈0.5 r

有机化学实验指导

有机化学实验指导 《有机化学实验》是食品科学与工程、生物工程和环境工程等专业一门重要的实验课程,是实践教学不可缺少的一个重要环节。 其主要内容包括有机化学实验的一般知识、基本操作和实验技术、有机化合物的制备及有机化合物的性质实验,天然产物的分离提取等。 实验课的任务不仅是验证、巩固和加深理论性教学所学到的基本理论知识,更重要的是培养学生实验操作能力,综合分析问题和解决问题的能力,养成严肃认真、事实求是的科学态度和严谨的工作作风,从而使学生在科学方法上得到初步的训练。 一、有机化学实验课程的目的要求 1、有机化学实验的目的: 通过实验,获得感性认识,以建立对有机化学中某些基本概念,基本理论的深入理解;掌握有机实验的基本知识和操作技能;掌握重要有机化合物的制备方法;培养严谨的科学态度,良好的实验素养,以及分析问题和解决问题的能力,并为有关的后续课和将来走上工作岗位奠定良好的基础。 2、有机化学实验的要求: 通过实验要求学生较牢固地掌握常见有机化合物的主要性质;掌握主要有机化合物的制备原理、方法和技能;掌握有机实验中的一些基本操作,正确使用某些玻璃仪器和测量仪器,具备安装实验装置和使用精密仪器的初步能力;了解重要天然有机物的提取、纯化技术。加深对有机化学中的一些基本概念和基本原理的理解。 3、开设的实验个数与总教学时数: 总学时数:18学时 实验总数:6个 二、面向专业、年级

有机化学实验面向食品科学与工程、生物工程、环境工程等专业。在一年级的第二学期或二年级的第一学期与有机化学理论课同步开设。 三、实验内容和课时安排 四、教学原则和教学方法 有机化学实验课程在教师指导下进行。每位学生一套磨口仪器,各自独立完成实验内容。每个标准实验班人数为15人。 五、成绩考核方法 有机化学实验成绩实行等级制,考核方式合计分实行“基础化学实验课考试方法”。具体计分为: 平时实验成绩占40%,期末实验考核占30%,期末理论知识考核占30%。 实验考核主要包括以下几个部分:实验预习、实验操作、实验结果、实验报告。 六、实验教材及主要参考书目 教材: 兰州大学、复旦大学有机化学教研室主编《有机化学实验》,高等教育出版社,1994年版。 主要参考书: (1)曾昭琼主编《有机化学实验》,高等教育出版社,1987年4月第二版。 (2)高复兴等主编《有机化学实验》,河南大学出版社,1999年第一版。 (3)刘约权李贵深主编《实验化学》,高教出版社、1999年10月第一版

利用旋转液体测重力加速度

利用旋转液体测重力加速度

————————————————————————————————作者:————————————————————————————————日期:

利用旋转液体测定重力加速度及焦距 [实验目的] 研究旋转液体表面形状,并由此求出重力加速度; 将旋转液体看作光学成像系统,探求焦距与转速的关系。 [实验仪器] 甘油, 旋转液体物理特性测量仪,气泡式水平仪,直尺。 [实验原理] 当一个盛有液体的圆柱形容器绕其圆柱面的对称轴以角速度ω匀速转动时( max max ,ωωω<为液面的最低处与容器底部接触时的角速度),液体的表面将成为抛物面, 抛物面方程为:C x y y 42 0+= ,其顶点在),0(0y V ,焦点在F (0,C y +0)。入射光平行于该曲面对称轴(光轴)时,反射光将全部汇聚于F 点,如图2所示。 图1. 实验装置图 图2. 容器绕对称轴 匀 速 对液面上的一个质元, 如图3所示。

图3 质元受力示意图 当其处于平衡时有: mg N x m N ==θωθcos sin 2 故液面的形状可表示为 g x dx dy 2tan ωθ== 因而 0222y g x y += ω 式中y 0是在x=0时的高度. 设抛物面上一点(x 0,h 0) g x y h 220 200ω+= 20020)(2ωy h g x -= (1) 由于液体的体积不变,则 ()xdx g x y xdx y h R R R ????? ? ??+==0022002 222ωπππ y 0=g R h 4220ω- (2) 由方程(1),(2)可得 20R x = (3) 由(3)式可知液面在x 0处的高度是恒定的。 将激光垂直照射x=x 0处液面,在屏上读出反射光点与入射光点的距离x '。入射角为θ ,反射角为θ,入射光线与反射光线的夹角为2θ,

化工原理实验思考题参考答案2017

实验一:流体流动形态的观察与测定 1、影响流体流动型态的因素有哪些? 主要有流体的物理性质如密度、粘度、流速和流体的温度,管子的直径、形状和粗糙度等。 2、如果管子不是透明的,不能直接观察来判断管中的流体流动型态,你认为可以用什么办法来判断? 可通过测试流体的流量求出其平均流速,然后求出Re ,根据Re 的大小范围来判断。 3、有人说可以只用流速来判断管中流体流动型态,流速低于某一具体数值时是层流,否则是湍流,你认为这种看法对否?在什么条件下可以由流速的数值来判断流动型态? 这种看法不确切,因为只有管子的尺寸和流体的基本形状确定不变的情况下,此时Re 的大小只与流速有关,可以直接采用流速来判断。 实验二 柏努利方程实验 1、 关闭阀A ,各测压管旋转时,液位高度有无变化?这一现象说明什么? 这一高度的物理意义又是什么? 关闭阀A ,各测压管旋转时,液位高度无变化;液位高度代表各测压点的总能量,即位压头、静压头之和,这一现象说明,流速为0,各点总能量不变,守恒. 2、 点4的静压头为什么比点3大? 点3的位置较点4高一些,即H 3位>H 4位, 两点的总压头相等, H 3静H '?为什么距离水槽越远,(H -H ')的差值越大?这一差值的物理意义是什么? H 代表阀门关闭时(u=0)时的液位高度,即为该测压点的总压头,为高位槽的高度H 0(基准面的总压头),H’为阀门打开时(u>0)时测压孔正对水流方向的液位高度,H‘=静压头+动压头+位压头,由于流体的流动产生一定的阻力损失H f ,造成总压头的降低,因此H >H’。 H-H ’=H f ,即为损失压头,阻力损失与管子的长度成正比,因此距离水槽越远,(H -H ')的差值越大。 5、测压孔正对水流方向,开大阀A 流速增大,动压头增大,为什么测压管的液位反而下降? 测压孔正对水流方向,H”=静压头+动压头+位压头=H 0-H f ,开大阀A 流速增大,动压头增加,由于H f 与流速的平方成正比,流速增加,H f 增加,即部分静压头转化为阻力损失,H 0(基准面的总压头)不变时,测压点总压头减少,测压管的液位反而下降. 6、将测压孔由正对水流方向转至与水流方向垂直,为什么各测压管液位下降? 下降的液位代表什么压头?1、3两点及2、3两点下降的液位是否相等?这一现象说明什么? 测压孔正对水流方向,H”=静压头+动压头+位压头;将测压孔与水流方向垂直,H”’=静压头+位压头, 测压管液位下降。 H”-H ’’’=H 动,下降的液位代表该测压点的动压头。 1、3两点下降的液位高度相等, 2、3两点下降的液位不相等,因为管1和3的直径相等,H 动相等;而管2,3的直径不相等,H 动不相等。 说明采用上述方法可以测试管内某点的动压头,从而测试其点速度。 7、在不改变阀A 开度的情况下,(1 H '''-3H ''')表示什么?(2H '''-3H ''')表示什么? H '''为测压孔与水流方向垂直,液位高度,H '''=静压头+位压头=动动H --H H ''f 0=-H H ;H 1动=H 3动,因 此,1 H '''-3H '''=H f1-3,代表从1点到3点的阻力损失。 (2 H '''-3H ''')=(H 0-H 0-2-H 2动)-(H 0-H 0-3-H 3动)=H f2-3+(H 3动-H 2动)

大学物理同步训练第 版 刚体定轴转动详解

第三章 刚体定轴转动 一、选择题 1. 两个匀质圆盘A 和B 相对于过盘心且垂直于盘面的轴的转动惯量分别为A J 和B J ,若B A J J >,但两圆盘的质量与厚度相同,如两盘的密度各为A ρ和B ρ,则 (A )A B ρρ> (B )B A ρρ> (C )A B ρρ= (D )不能确定A ρ和B ρ哪个大 答案:A 分析:22m m R R h h ρππρ=→=,221122m J mR h πρ==,故转动惯量小的密度大。 2. 有两个半径相同、质量相等的细圆环。1环的质量分布均匀,2环的质量分布不均匀。它们对通过环心并与环面垂直的轴的转动惯量分别为1J 和2J ,则 (A )12J J > (B )12J J < (C )12J J = (D )不能确定1J 和2J 哪个大 答案:C 分析:22J R dm mR ==? ,与密度无关,故C 选项正确。 3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度1ω按图1 所示方向转动。将两个大小相等、方向相反的力F 沿盘面同时作用到 圆盘上,则圆盘的角速度变为2ω,则 (A )12ωω> (B )12ωω= (C )12ωω< (D )不能确定如何变化 答案:C 分析:左边的力对应的力臂大,故产生的(顺时针)力矩大于右边的力所产生的力矩,即合外力距(及其所产生的角加速度)为顺时针方向,故圆盘加速,角速度变大。 4. 均匀细棒OA 的质量为M ,长为L ,可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图2所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述 说法哪一种是正确的? (A )合外力矩从大到小,角速度从小到大,角加速度从大到小 (B )合外力矩从大到小,角速度从小到大,角加速度从小到大 (C )合外力矩从大到小,角速度从大到小,角加速度从大到小 (D )合外力矩从大到小,角速度从大到小,角加速度从小到大 答案:A 分析:(定性)由转动定律M I β=可知,角加速度与力矩成正比,故B 、D 错误;由机械

旋转液体物理特性的测量

旋转液体物理特性的测量 1.背景及应用 早在力学创建之初,就有牛顿的水桶实验,牛顿发现,当水桶中的水旋转时,水会沿着桶壁上升。旋转的液体有一些独特的物理特征。如盛有液体的圆柱形容器绕其圆柱面的对称轴匀速转动时,旋转液体的表面将成为抛物面;通过旋转液体,可以分离不同比重的液体等等。 根据旋转液体的这些特性,产生了一系列的应用。如目前广泛应用的分离机等。图1给出了一种液体镜头,它在一个大容器里旋转水银。由于旋转液体的表面是一个理想的抛物面,同时水银能很好地反射光线,所以能起反射镜的作用。通常这样一个光滑的曲面,完全可以代替需要大量复杂工艺并且价格昂贵的玻璃镜头,从而可以有效地降低大型望远镜的制造成本。 2. 实验原理 盛有液体的圆柱形容器绕其圆柱面的对称轴匀速转动时,旋转液体的表面将成为抛物面。抛物面的参数与重力加速度和旋转角速度有关,利用此性质可以测重力加速度;旋转液体的上凹面可作为光学系统加以研究,还可测定液体折射率等。 1)旋转液体表面公式 牛顿发现,当圆柱体中的水旋转时,水会沿着圆柱体壁上升。定量计算时,选取随圆柱形容器旋转的参考系,这是一个转动的非惯性参考系。液体相对于参考系静止,任选一小块液体P ,其受力如图2。F 为沿径向向外的惯性离心力,mg 为重力,N 为这一小块液 体周围液体对它的作用力的合力,由对称性可知,N 必然垂直于液体表面。在Y X 坐标 下),(y x P 则有: 图1 大型望远镜的液体镜片 图2 实验原理图

0cos =-mg N θ 0sin =-i F N θ x m F i 2 ω= g x x y 2 d d tan ωθ= = 根据图2有: 02 2 2y x g y += ω (1) ω为旋转角速度,0y 为 0=x 处的y 值。此为抛物线方程,可见液面为旋转抛物面。 2)用旋转液体测量重力加速度原理 在实验系统中,一个盛有液体半径为R 的圆柱形容器绕该圆柱体的对称轴以角速度ω匀速稳定转动时,液体的表面形成抛物面,如图3。 设液体未旋转时液面高度为h ,液体的体积为: h R V 2π= (2) 因液体旋转前后体积保持不变,旋转时液体体积可表示为: x x y g x dx x y V R d )2( π2)π2(02 20 +== ?? ω (3) 由(2)、(3)式得: g R h y 42 20ω- = (4) 联立(1)、(4)可得,当2/0R x x ==时,h x y =)(0,即液面在0x 处的高度是恒定值。 (1)用旋转液体液面最高与最低处的高度差测量重力加速度 如图2所示,设旋转液面最高与最低处的高度差为h ?,点(h y R ?+0,)在(1)式的抛物 线上,有02 202y g R h y += ?+ω, 得:h R g ?= 22 2ω 又60 π2n = ω ,则

大学物理_刚体的定轴转动_习题及答案

第4章 刚体的定轴转动 习题及答案 1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度是否有法向加速度切向和法向加速度的大小是否随时间变化 答:当刚体作匀变速转动时,角加速度β不变。刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。又因该点速度的方向变化, 所以一定有法向加速度2 n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。 2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系 答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为z z dL M dt = ,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以 ()z z dL d d M I I I dt dt dt ω ωβ= ===。既 z M I β=。 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式, 及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快(2)如果它们的角速度相同,哪个轮子的角动量大 答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快; (2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动如小汽车突然刹车,此过程角动量是否守恒动量是否守恒能量是否守恒 答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。 5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求: (1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度。 解:(1)由题意飞轮的初角速度为 0240()n rad s ωππ== 飞轮作均减速转动,其角加速度为 20 0404/10 rad s t ωωπ βπ--= = =-? 故从开始制动到停止转动,飞轮转过的角位移为 201 2002 t t rad θωβπ?=?+?= 因此,飞轮转过圈数为

旋转液体综合实验实验报告

竭诚为您提供优质文档/双击可除旋转液体综合实验实验报告 篇一:旋转液体综合实验 旋转液体综合实验 浙江大学物理实验教学中心 20XX-11 旋转液体综合实验 在力学创建之初,牛顿的水桶实验就发现,当水桶中的水旋转时,水会沿着桶壁上升。旋转的液体其表面形状为一个抛物面,可利用这点测量重力加速度;旋转液体的抛物面也是一个很好的光学元件。美国的物理学家乌德创造了液体镜面,他在一个大容器里旋转水银,得到一个理想的抛物面,由于水银能很好地反射光线,所以能起反射镜的作用。 随着现代技术的发展液体镜头正在向一“大”一“小”两极发展。大,可以作为大型天文望远镜的镜头;反射式液体镜头已经在大型望远镜中得到了应用,代替传统望远镜中使用的玻璃反射境。当盛满液体(通常采用水银)的容器旋转时,向心力会产生一个光滑的用于望远镜的反射凹面。通

常这样一个光滑的曲面,完全可以代替需要大量复杂工艺并且价格昂贵的玻璃镜头,而哈勃空间望远镜的失败也让我们了解了玻璃镜头何等脆弱。 小,则可以作为拍照手机的变焦镜头。美国加利福尼亚大学的科学家发明了液体镜头,它通过改变厚度仅为8mm的两种不同的液体交接处月牙形表面的形状,实现焦距的变化。这种液体镜头相对于传统的变焦系统而言,兼顾了紧凑的结构和低成本两方面的优势。 旋转液体的综合实验可利用抛物面的参数与重力加速 度关系,测量重力加速度,另外,液面凹面镜成像与转速的关系也可研究凹面镜焦距的变化情况。还可通过旋转液体研究牛顿流体力学,分析流层之间的运动,测量液体的粘滞系数。 【实验原理】 一、旋转液体抛物面公式推导 定量计算时,选取随圆柱形容器旋转的参考系,这是一个转动的非惯性参考系。液相对于参考系静止,任选一小块液体p,其受力如图1。Fi为沿径向向外的惯性离心力,mg 为重力,n为这一小块液体周围液体对它的作用力的合力, 由对称性可知,n必然垂直于液体表面。在x-Y坐标下p(x,y)则有: 图1原理图

旋转液体物理特性的测量

旋转液体物理特性的测量1.背景及应用 顿发现,当水桶中的水旋转时,水会沿着桶壁上 升。旋转的液体有一些独特的物理特征。如盛有 液体的圆柱形容器绕其圆柱面的对称轴匀速转动 时,旋转液体的表面将成为抛物面;通过旋转液 体,可以分离不同比重的液体等等。 根据旋转液体的这些特性,产生了一系列的 图2 实验原理图

根据图2有: 022 2y x g y += ω (1) ω为旋转角速度,0y 为 0=x 处的y 值。此为抛物线方程,可见液面为旋转抛物面。 2)用旋转液体测量重力加速度原理 在实验系统中,一个盛有液体半径为R 的圆柱形容器绕该圆柱体的对称轴以角速度ω 匀速稳定转动时,液体的表面形成抛物面,如图3。 设液体未旋转时液面高度为h ,液体的体积为: 2) 3) 4) h n D g ??=7200π2 22 (5) 式中D 为圆筒直径,n 为旋转速度(转/分)。 (2)斜率法测重力加速度 如图3所示,激光束平行转轴入射,经过BC 透明屏幕,打在20R x =的液面A 点上,反射光点为C ,A 处切线与x 方向的

夹角为θ,则θ2=∠BAC ,测出透明屏幕至圆桶底部的距离H 、液面静止时高度h ,以及两光点BC 间距离d ,则h H d -= θ2tan ,求出θ值。 因为 g x x y 2d d tan ωθ== ,在20R x =处有g R ?= 2tan 2ωθ 因为60 π2n = ω,则 θ tan 23600π22?=D g (6) 可用于测重加速度;测量焦距与液体折射率;研究测量转速和液面形状及液面光学特性的关系等。 实验仪器如图4所示。 1.激光器 2. 毫米刻度水平屏幕 3. 水平标线 4. 水平仪 5. 激光器电源插孔 6. 调速开关 7. 速度显示窗 图3 实验示意图

相关文档
最新文档