2008年东西湖区教师专业知识竞赛试题初中数学试卷
全国初中数学联赛试题及答案(2008年).doc

2008年全国初中数学联合竞赛试题参考答案第一试一、选择题1.设213a a +=,213b b +=,且a b ≠,则代数式2211a b+的值为 ( B ) )(A 5. )(B 7. )(C 9. )(D 11.提示:,a b 是方程2310x x -+=两个不同根,故3,1a b ab +==.2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为 ( D ) )(A 185. )(B 4. )(C 215. )(D 245. 提示:AEF ABC ∆∆,可得185AE =,故AEB ∆中由勾股定理得245BE = 3.从分别写有数字1,2,3,4,5的5张卡片中依次取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( C ))(A 15. )(B 310. )(C 25. )(D 12. 提示:卡片一共有20种取法,其中123,15246,459+=+=+=+=,满足条件的有428⨯=种.4.在△ABC 中,12ABC ∠=︒,132ACB ∠=︒,BM 和CN 分别是这两个角的外角平分线,且点,M N 分别在直线AC 和直线AB 上,则 ( B ))(A BM CN >. )(B BM CN =.)(C BM CN <. )(D BM 和CN 的大小关系不确定.提示:,BCM BCN ∆∆都是等腰三角形.5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为( B ))(A 39()8. )(B 49()8. )(C 59()8. )(D 98. 提示:将价格从高到低排列,相邻价格之间的比值至少是986. 已知实数,x y 满足(2008x y =,则2232x y -+3x3y -2007-的值为 ( D ))(A 2008-. )(B 2008. )(C 1-. )(D 1.提示:y x y x =-=,同理x y -=x y ==.二、填空题1.设12a =,则5432322a a a a a a a+---+=-_________.-2 提示:210a a +-=2.如图,正方形ABCD 的边长为1,,M N 为BD 所在直线上的两点,且AM =135MAN ∠=︒,则四边形AMCN 的面积为___________.25 提示:DNA ABM ∆∆3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q +=__________. 提示:22111,,444b mn y x x y x =≤=++=-满足条件. 4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是___________.1提示:平方数为一位数的有3个,平方数为两位数的有6个,依此类推.第二试(A )一、已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式 (1)(1)()0a x x ax bx b x bx ------≥恒成立.当乘积ab 取最小值时,求,a b 的值.解:设)()1)(1()(bx x b bx ax x x a x f ------=,则)1()1()1()(2222x x b bx x x a x a x f --+---==)1()()1(2222x x b a bx x a -+-+-=)1()1(22x x bx x a --+-当0=x 时,0)0(≥=a f ,当1=x 时,0)1(≥=b f ,故0,0≥≥b a .若0=a ,则1=b ,x x x f -=22)(,不恒大于等于0,故,0≠a 即0>a ,同理0>b .当10<<x 时,)1()12(])1([)(2x x ab x b x a x f --+--= (1) 当x b x a =-)1(,即)1,0(∈+=b a ax 时,0)1()12()(≥--=x x ab x f ,故012≥-ab ,即41≥ab . (2) 当41≥ab ,即012≥-ab 时, 0)1()12(])1([)(2≥--+--=x x ab x b x a x f综上所述,ab 最小值是41,此时⎪⎪⎩⎪⎪⎨⎧-=+=426426b a 或⎪⎪⎩⎪⎪⎨⎧+=-=426426b a . 二、如图,圆O 与圆D 相交于,A B 两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.(1)证明:点O 在圆D 的圆周上.(2)设△ABC 的面积为S ,求圆D 的的半径r 的最小值.解:(1)连接OC OB OA ,,,则OC OB OA ==,又AC AB =,故等腰BCO ABO ∆≅∆,CBO ABO ∠=∠.由于BC 为圆D 的切线,故弦切角ABC ∠所夹劣弧长为OBC ∠所夹劣弧长的2倍,即半径BO 所在直径通过弧AB 的中点,即点O 在圆D 上.(2)连接BD AD ,,则AB BD AD r ≥+=2,故AC AB AB r ⋅=≥224,又S AC AB 2≥⋅,故S r 242≥,即22S r ≥,且当AB 为圆D 的直径时可以取等号,故r 的最小值是22S.三、设a 为质数,b 为正整数,且29(2)509(4511)a b a b +=+ 求a ,b 的值.解:将原等式整理为关于b 的一元二次方程: 0509436)51150936(922=⨯-+⨯-+a a b a b ,由于b 为正整数,则方程判别式)72511(509)509436(94)51150936(2222a a a a -=⨯-⨯⨯-⨯-=∆是完全平方数,即a 725112-为完全平方数,设)(7251122N t t a ∈=-,则a t 7251122=-,即a t t 72)511)(511(=+-,由于1022)511()511(=++-t t ,故)511(),511(t t +-同为奇数或者同为偶数,且不同是被3整除.当2=a 时,检验得2725112⨯-不是完全平方数当3=a 时,检验得3725112⨯-不是完全平方数当5≥a 时,由上面分析可知18436218436272⨯=⨯=⨯=⨯=a a a a a 共4种分解方式可能满足条件.当⎩⎨⎧=+=-a t t 365112511时,385=a 不是整数,当⎩⎨⎧=+=-a t t 185114511时,9509=a 不是整数, 当⎩⎨⎧=+=-365112511t a t 或⎩⎨⎧=+=-at t 251136511时,2917493⨯==a 不是质数,当⎩⎨⎧=+=-a t t 451118511时,251=a 是质数,此时只有7=b 满足条件, 综上所述,251=a ,7=b . 附:一。
2008年初二数学竞赛试题(定稿)

2008年初二数学竞赛试题答题时注意;1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.可以用计算器一、选择题(共8小题,每小题5分,满分40分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分)1.设x =x 的值为 ( ) A .正数 B .负数 C .非负数 D .零 2.已知312=-yx ,则x y xy xy y x 3652-+--的值 ( )A .71 B . 71- C . 72 D . 72- 3.方程(1)132=--+x x x 的所有整数解的个数是 ( )A .2B .3C .4D .5 4.若直线b ax y +=与直线2521+=x y 关于x 轴对称,则b a +的值是 ( ) A .-3 B .-2 C .2 D .35.口袋中有20个球,其中白球9个,红球5个,黑球6个,现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是 ( ) A .14 B .16 C . 18 D .206. 如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是 ( )主视图 左视图 俯视图 A.7个 B.8个 C.9个 D.10个7.在凸四边形ABCD 中,∠C=1200, ∠B=∠D=900,AB=6,BC=23,则AD= ( ) A. 23 B.6 C. 43 D.638.设n(n ≥2)个正整数1a ,2a ,…,n a ,任意改变它们的顺序后,记作1b ,2b ,…,n b ,若P=(1a -1b )(2a -2b )(33b a -)…(n a 一n b ),则 ( ) A . P 一定是奇数. B .P 一定是偶数.C .当n 是偶数时,P 是奇数.D .当n 是奇数时,P 是偶数二、填空题(共6小题,每小题5分,满分30分)9.已知20082006,20082007,20082008a x b x c x =+=+=+,则多项式222a b c ab bc ca ++---的值 .10.将5个整数从大到小排列,中位数是4,如果这个样本中的唯一众数是7,则这5个整数的和的最大值是 . 11.在图8中每个小方格内填入一个数,使每一行、每一列都有1、 2、3、4、5,那么,右上角的小方格内填入x 的数应是 .12.在△ABC 中,AB =15cm ,AC =13cm ,BC 边上高A D =12cm ,则三角形ABC 的面积为 .132353145x13.如图,有一种动画程序,屏幕上方正方形区域ABCD表示黑色物体甲,其中A ( 1,1 ) B ( 2,1 ) C ( 2,2 )D ( 1,2 ),用信号枪沿直线b x y +=3发射信号,当信号遇到区域甲时,甲由黑变白,则当b 的取值范围为 ______时,甲能由黑变白.14.如果正整数n 有以下性质:n 的八分之一是平方数,n 的九分之一是立方数,n 的二十五分之一是五次方数,那么n 就称为“希望数”,则最小的希望数是 .三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分) 15.已知四个实数,,,a b c d ,且,a b c d ≠≠.若四个关系式:24a ac +=,2224,8,8b bc c ac d ad +=+=+= 同时成立,(1)求c a +的值; (2)分别求d c b a ,,,的值.每辆车乘坐28名人,出发开出一段时间后,发现有一学生迟到没上车.现决定开一辆空车去接他,接回后为赶时间就把这辆空车开走,让所有的人员重新分配,则刚好平均分乘余下的汽车,已知每辆车的载客量不能多于32人,那么原有几辆汽车,这批春游的学生共有多少人?图1FEDC BA图2FEABCD 17.在△ABC 中,∠C=90︒,D 是AB 的中点,E 、F 分别在BC 、AC 上,且∠EDF=90︒.(1)如图1,若E 是BC 的中点,,EF 与AF 、BE 有怎样的数量关系?并说明理由;(2)如图2,当F 在AC 上运动时,点E 在BC 上随之运动,问在运动过程中,EF 与AF 、BE 有怎样的数量关系?并说明理由.18.已知直线)1(142k y ≠--+=k k k x(1)说明无论k 取不等于1并求出此定点的坐标;(2)若点B(5,0) , 点P 在y 轴上,点A 为(1)中确定的定点,要使△PAB 为等腰三角形,求直线PA 的解析式.2008年初二数学数学竞赛试题参考答案及评分建议二、填空题(共6小题,每小题5分,满分30分)9. 3 10.23 11. 1 12.84cm 2或24 cm 2(答对一个得2分) 13. -5≤b ≤-1 14. 215·320·512三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分) 15.(12分)解:(1)由)(2ac a ++)(2ac c +=4+8=12,得12)(2=+c a ,∴ 32±=+c a . …… 4分(2)由)(2ac a +(-)2bc b +=4-4=0,-+)(2ac c )(2ad d +=8-8=0得 0))((=++-c b a b a ,)((d c -0)=++d c a ∵b a ≠,d c ≠,∴0=++c b a ,0=++d c a . ∴)(c a d b +-==. …… 2分 又)(2ac a +-)(2ac c +=4-8=-4, 得,4))((-=+-c a c a . …… 2分 当32=+c a 时,332-=-c a , 解得334=a ,332=c , 32-==d b . …… 2分当32-=+c a ,332=-c a , 解得334,332-=-=c a , 32==d b . …… 2分16.(12分)解:设原有k 辆汽车,开走一辆空车后,留下的每辆车乘坐n 个人,显然k ≥2,GFEABC Dn ≤32.易知旅客人数等于128+k ,当一辆空车开走以后,这批春游的学生的人数可以表示为)1(-k n ,由此列出方程)1(128-=+k n k . …… 2分所以 12928129)1(221128-+=-+-=-+=k k k k k n . …… 4分 因为n 为正整数数,所以129-k 必为正整数,但由于29是质数,因数只有1和29两个,且k ≥2,所以11=-k ,或291=-k . …… 2分如果11=-k ,则2=k ,57=n ,不满足n ≤32的条件. 如果291=-k ,则30=k ,29=n ,符合题意. …… 2分 所以旅客人数等于)1(-k n =29×29=841(人). …… 2分 答:原有车辆30辆,这批春游的学生共有841人.17.(12分)解:(1)EF 2= AF 2+BE 2. …… 1分 ∵E D ,分别是AB,BC 的中点, ∴DE ∥AC ,且DE=21AC . ∵∠C=90︒,∠EDF=90︒, ∴ 四边形CFDE 是矩形, ∴DE=CF=AF,DF=CE=BE. …… 3分又∵∠EDF=90︒,∴EF 2=DF 2+DE 2=AF 2+BE 2. …… 1分 (2) EF 2= AF 2+BE 2. …… 1分延长FD 至G,使得DG=DF,连结BG,EG. 则△AFD ≌△BGD. …… 2分 ∴BG=AF=CF, DF=DG , ∠GBD=∠A . ∵∠EDF=90︒, ∴EF=EG. …… 1分 又∠GBD=∠A , ∴BG ∥AC,∴∠GBE=∠C=900, …… 1分 ∴EG 2=BE 2+BG 2=BE 2+AF 2∴ EF 2=AF 2+BE 2. …… 2分18.(14分)解:(1)由题意知1≠k ,若取,1-=k 得62=+-y x ①, 若取,2=k 得02=-y x ②. 解①②得⎩⎨⎧==42y x . 所以,不论k 取任何实数此直线都经过一定点,其坐标为(2,4). …… 5分 (2)分三种情况讨论:① 设P 1(0,m 1) ,满足P 1B=P 1A, 由勾股定理得, 2222)4(25m m -+=+,解得85-=m ,即P 1(0,85-),符合题意, 直线P 1A 的解析式: 851637-=x y . …… 2分② 设P 2(0,m 2),满足P 2B=AB, 易求得AB=5, 所以点P 2(0,0), 直线P 2A 的解析式: x y 2=. …… 2分 ③设P 3(0,m 3),满足P 1A=AB, 由勾股定理得,2225)4(2=-+m ,解得214±=m ,即P 3(0,)214+,P 4(0,)214-,直线P 3A 的解析式:214221++-=x y , …… 2分 直线P 3A 的解析式:214221-+=x y . …… 2分 综上所述,直线PA 的解析式为:851637-=x y ,或x y 2=,或214221++-=x y ,或214221-+=x y . …… 1分。
2008年全国初中数学联合竞赛试题参考答案

2008年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为D C B A ,,,的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1.设213a a +=,213b b +=,且a b ≠,则代数式2211a b+的值为 ( ) )(A 5. )(B 7. )(C 9. )(D 11.【答】B .解 由题设条件可知2310a a -+=,2310b b -+=,且a b ≠,所以,a b 是一元二次方程2310x x -+=的两根,故3a b +=,1ab =,因此222222222211()23217()1a b a b ab a b a b ab ++--⨯+====. 故选B . 2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为 ( ) )(A 185. )(B 4. )(C 215. )(D 245. 【答】D . 解 因为AD ,BE ,CF 为三角形ABC 的三条高,易知,,,B C E F 四点共圆,于是△AEF ∽△ABC ,故35AF EF AC BC ==,即3cos 5BAC ∠=,所以4sin 5BAC ∠=. 在Rt △ABE 中,424sin 655BE AB BAC =∠=⨯=. 故选D . 3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( ))(A 15. )(B 310. )(C 25. )(D 12. 【答】C . 解 能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个. 所以所组成的数是3的倍数的概率是82205=. 故选C .4.在△ABC 中,12ABC ∠=︒,132ACB ∠=︒,BM 和CN 分别是这两个角的外角平分线,且点,M N 分别在直线AC 和直线AB 上,则 ( ))(A BM CN >. )(B BM CN =.)(C BM CN <. )(D BM 和CN 的大小关系不确定.【答】B .解 ∵12ABC ∠=︒,BM 为ABC ∠的外角平分线,∴1(18012)842MBC ∠=︒-︒=︒. 又180********BCM ACB ∠=︒-∠=︒-︒=︒,∴180844848BMC ∠=︒-︒-︒=︒,∴BM BC =. 又11(180)(180132)2422ACN ACB ∠=︒-∠=︒-︒=︒, ∴18018012()BNC ABC BCN ACB ACN ∠=︒-∠-∠=︒-︒-∠+∠168(13224)=︒-︒+︒12ABC =︒=∠,∴CN CB =. 因此,BM BC CN ==.故选B .5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为 ( ))(A 39()8. )(B 49()8. )(C 59()8. )(D 98. 【答】 B .解 容易知道,4天之后就可以出现5种商品的价格互不相同的情况.设5种商品降价前的价格为a ,过了n 天. n 天后每种商品的价格一定可以表示为98(110%)(120%)()()1010k n k k n k a a --⋅-⋅-=⋅⋅,其中k 为自然数,且0k n ≤≤. 要使r 的值最小,五种商品的价格应该分别为:98()()1010i n i a -⋅⋅,1198()()1010i n i a +--⋅⋅, 2298()()1010i n i a +--⋅⋅,3398()()1010i n i a +--⋅⋅,4498()()1010i n i a +--⋅⋅,其中i 为不超过n 的自然数. 所以r 的最小值为44498()()91010()988()()1010i n i i n ia a +---⋅⋅=⋅⋅. 故选B . 6. 已知实数,x y满足(2008x y =,则223233x y x y -+-2007-的值为 ( ))(A 2008-. )(B 2008. )(C 1-. )(D 1.【答】D .解 ∵(2008x y =,∴x y -==y x -==由以上两式可得x y =. 所以2(2008x =,解得22008x =,所以22222323320073233200720071x y x y x x x x x -+--=-+--=-=.故选D .二、填空题(本题满分28分,每小题7分)1.设12a -=,则5432322a a a a a a a+---+=-2-.解 ∵221a a ===-,∴21a a +=, ∴543232323222()2()2a a a a a a a a a a a a a a a a+---++--++=-⋅- 33332221211(1)(11)2(1)1a a a a a a a a a a a--+--===-=-++=-+=-⋅----.2.如图,正方形ABCD 的边长为1,,M N 为BD 所在直线上的两点,且AM =135MAN ∠=︒,则四边形AMCN 的面积为52解 设正方形ABCD 的中心为O ,连AO ,则AO BD ⊥,2AO OB ==,2MO ===, ∴MB MO OB =-=又135ABM NDA ∠=∠=︒, 13590NAD MAN DAB MAB MAB ∠=∠-∠-∠=︒-︒-∠45=︒-MAB AMB ∠=∠,所以△ADN ∽△MBA ,故AD DNMB BA =,从而12AD DN BA MB =⋅==. 根据对称性可知,四边形AMCN 的面积115222222MAN S S MN AO ==⨯⨯⨯=⨯⨯=△. 3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q +=12解 根据题意,,m n 是一元二次方程20x ax b ++=的两根,所以m n a +=-,mn b =. ∵1m n +≤,∴1m n m n +≤+≤,1m n m n -≤+≤. ∵方程20x ax b ++=的判别式240a b ∆=-≥,∴22()1444a m n b +≤=≤. 22244()()()11b mn m n m n m n ==+--≥+-≥-,故14b ≥-,等号当且仅当12m n =-=时取得; 22244()()1()1b mn m n m n m n ==+--≤--≤,故14b ≤,等号当且仅当12m n ==时取得. 所以14p =,14q =-,于是12p q +=. 4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 1 .解 21到23,结果都只各占1个数位,共占133⨯=个数位; 24到29,结果都只各占2个数位,共占2612⨯=个数位;210到231,结果都只各占3个数位,共占32266⨯=个数位;232到299,结果都只各占4个数位,共占468272⨯=个数位;2100到2316,结果都只各占5个数位,共占52171085⨯=个数位;此时还差2008(312662721085)570-++++=个数位.2317到2411,结果都只各占6个数位,共占695570⨯=个数位.所以,排在第2008个位置的数字恰好应该是2411的个位数字,即为1.第二试 (A )一.(本题满分20分) 已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式 (1)(1)()0a x x ax bx b x bx ------≥ (1)恒成立.当乘积ab 取最小值时,求,a b 的值.解 整理不等式(1)并将221a b +=代入,得 2(1)(21)0a b x a x a ++-++≥ (2)在不等式(2)中,令0x =,得0a ≥;令1x =,得0b ≥.易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式(2)对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥. 由方程组 221,14a b ab ⎧+=⎪⎨=⎪⎩ (3) 消去b ,得42161610a a -+=,所以224a -=或224a +=. 又因为0a ≥,所以a =a =, 于是方程组(3)的解为4,4a b ⎧=⎪⎪⎨⎪=⎪⎩或,44a b ⎧=⎪⎪⎨⎪=⎪⎩所以ab 的最小值为14,此时,a b 的值有两组,分别为a b ==a b ==二.(本题满分25分) 如图,圆O 与圆D 相交于,A B 两点,BC为圆D 的切线,点C 在圆O 上,且AB BC =.(1)证明:点O 在圆D 的圆周上.(2)设△ABC 的面积为S ,求圆D 的的半径r 的最小值.解 (1)连,,,OA OB OC AC ,因为O 为圆心,AB BC =,所以△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为,OD AB DB BC ⊥⊥,所以9090DOB OBA OBC DBO ∠=︒-∠=︒-∠=∠,所以DB DO =,因此点O 在圆D 的圆周上.(2)设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,则222a x y =+,()S y a x =+,22222222()2222()aS l y a x y a ax x a ax a a x y=++=+++=+=+=. 因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,所以△BDO ∽△ABC ,所以BD BO AB AC=,即2r a l y =,故2al r y =.所以22223222()4422a l a aS S a S r y y y y ==⋅=⋅≥,即2r ≥其中等号当a y =时成立,这时AC 是圆O 的直径.所以圆D 的的半径r 三.(本题满分25分)设a 为质数,b 为正整数,且29(2)509(4511)a b a b +=+ (1)求a ,b 的值.解 (1)式即2634511()509509a b a b ++=,设634511,509509a b a b m n ++==,则 509650943511m a n a b --== (2) 故351160n m a -+=,又2n m =,所以2351160m m a -+= (3)由(1)式可知,2(2)a b +能被509整除,而509是质数,于是2a b +能被509整除,故m 为整数,即关于m 的一元二次方程(3)有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-. 由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解. ②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解.③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =.⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去. 综合可知251a =.此时方程(3)的解为3m =或5023m =(舍去). 把251a =,3m =代入(2)式,得5093625173b ⨯-⨯==. 第二试 (B )一.(本题满分20分)已知221a b +=,对于满足条件1,0x y xy +=≥的一切实数对(,)x y ,不等式 220ay xy bx -+≥ (1)恒成立.当乘积ab 取最小值时,求,a b 的值.解 由1,0x y xy +=≥可知01,01x y ≤≤≤≤.在(1)式中,令0,1x y ==,得0a ≥;令1,0x y ==,得0b ≥.将1y x =-代入(1)式,得22(1)(1)0a x x x bx ---+≥,即2(1)(21)0a b x a x a ++-++≥ (2)易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式(2)对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥. 由方程组 221,14a b ab ⎧+=⎪⎨=⎪⎩ (3) 消去b ,得42161610a a -+=,所以2a =2a =0a ≥,所以a =或4a =. 于是方程组(3)的解为,4a b ⎧=⎪⎪⎨⎪=⎪⎩或4a b ⎧=⎪⎪⎨⎪=⎪⎩所以满足条件的,a b 的值有两组,分别为44a b ==44a b == 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设a 为质数,,b c 为正整数,且满足29(22)509(41022511)2a b c a b c b c ⎧+-=+-⎨-=⎩ (1)(2) 求()a b c +的值.解 (1)式即266341022511()509509a b c a b c +-+-=, 设66341022511,509509a b c a b c m n +-+-==,则 5096509423511m a n a b c ---== (3) 故351160n m a -+=,又2n m =,所以 2351160m m a -+= (4)由(1)式可知,2(22)a b c +-能被509整除,而509是质数,于是22a b c +-能被509整除,故m 为整数,即关于m 的一元二次方程(4)有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-. 由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解.②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解. ③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解.④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解. ⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =.⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =,此时方程(4)的解为3m =或5023m =(舍去). 把251a =,3m =代入(3)式,得50936251273b c ⨯-⨯-==,即27c b =-. 代入(2)式得(27)2b b --=,所以5b =,3c =,因此()251(53)2008a b c +=⨯+=.。
八年级数学竞赛试题及答案

鸣玉中学校2008年上期八年级数学竞赛试题(本试卷共6页,满分150分,考试时间:120分钟)一、选择题(本大题满分50分,每小题5分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母 代号填写在下表相应题号下的方格内1. 若a 为实数,则化简2a 的结果是A . -aB . aC . ±aD . |a | 2.如果1)1(2++-x m x 是完全平方式,则m 的值为A .-1B .1C .1或-1D . 1或-3 3. 如图1,点A 、B 、C 顺次在直线l 上,点M 是线段AC 的中点,点N 是线段BC 的中点.若想求出MN 的长度,那么只需条件A .AB =12 B .BC =4 C .AM =5D . CN =24.在平面直角坐标系y o x 内,已知A (3,-3),点P 是y 轴上一点,则使△AOP 为等腰三角形的点P 共有A .2个B .3个C .4个D . 5个5.已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是A .负数B .正数C .非负数D .非正数 6.一次函数)1(-=x k y 的图像经过点M (-1,-2),则其图像与y 轴的交点是 A .(0,-1) B .(1,0) C .(0,0) D .(0,1)图1N MCB l7.如图2,在线段AE 同侧作两个等边三角形△ABC 和△CDE (∠ACE <120°),点P 与点M 分别是线段BE 和AD 的中点,则△CPM 是A .钝角三角形B .直角三角形C .等边三角形D .非等腰三角形8.某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该队伍有20名同学,统计表如下表.由于不小心弄脏了表格,有两个数据看不到.下列说法中正确的是A .这组数据的中位数是40,众数是39B .这组数据的中位数与众数一定相等C .这组数据的平均数P 满足39<P <40D .以上说法都不对9. 已知△ABC 的三个内角的比是m ∶(m +1) ∶(m +2),其中是m 大于1的正整数,那么△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形10. 某商店有5袋面粉,各袋重量在25~30公斤之间,店里有一磅秤,但只有能称50~70公斤重量的秤砣,现要确定各袋面粉的重量,至少要称A .4次B .5次C .6次D . 7次二、填空题(本大题共7小题,每小题5分,满分45分)11.如果不等式组⎩⎨⎧<->-001a x x 无解,则a 的取值范围是____________.12.已知1=-b a ,122-=-b a ,则=-20082008b a_________.13.分解因式:=+++++2)6)(3)(2)(1(x x x x x . 14.小丁、小明、小倩在一起做游戏时,需要确定做游戏的先后顺序.他们约定用“剪子、布、锤子”的方式确定.那么在一个回合中三个人都出“布”的概率是_________.15.已知a 、b 为实数,且1=b a ,1≠a ,设11+++=b b a a M ,1111+++=b a N ,则N M -的值等于________.图2 ABCDPM16. 已知511=+y x ,则y xy x y xy x +++-2252= .17. 一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图6所示,要摆成这样的图形,至少需用______块小正方体18. 若在凸n (n 为大于3的自然数)边形的内角中,最多有M 个锐角,最少有m 个锐角,则M= ; m= .19.计算机将信息转换成二进制数来处理.二进制是“逢二进一”,如二进制数(1101)2转换成十进制数是1³23+1³22+0³21+1³20=13,那么二进制数212005)111111( 个转换成十进制数是 ___________.三、解答题(本大题满分45分,每小题15分)20. 某大型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠;超过100元而不超过300时,按该次购物全额9折优惠;超过300元的其中300元仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美分两次购买的同样的物品,则小丽应该付款多少元?图6主视图左视图21. 如图7,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分∠BAF 交BC 边于点E .(1)求证: AF =DF +BE .(2)设DF =x (0≤x ≤1),△ADF 与△ABE 的面积和S 是否存在最大值?若存在,求出此时x 的值及S . 若不存在,请说明理由.图7ABC DEF22、⑴如果a 是小于20的质数,且a 1可化为一个循环小数,那么a 的取值有哪几个? ⑵如果a 是小于20的合数,且a 1可化为一个循环小数,那么a 的取值有哪几个?参考答案一、1. D 2. D 3. A 4. C 5. D 6. A 7. C 8. C 9.A 10. B二、11. a ≤1 12. -1 13. 14.271 15. 0 16. 75 17. 5218.3 ; 0 19. 22005-1 解答提示:1.∵ 当a <0时,2a =|a |=-a . 故选D . 2.21±=+m ,解得1=m 或3-=m . 故选D .3.()AB BC AC BC AC NC MC MN 21212121=-=-=-=,∴只要已知AB 即可.故选A . 4. 分别以点A 、O 、P 三点为等腰三角形的顶点三种情况考虑.5. 关于x 的方程01)2(=-+x b a 无解,则02=+b a . ∴有0==b a 或者a 、b 异号,故选D .6. ∵一次函数)1(-=x k y 的图像经过点M (-1,-2),则有()211-=--k ,解得1=k .所以函数解析式为1-=x y .令0=x 代入得1-=y .故其图像与y 轴的交点是(0,-1).故选A .7.易得△ACD ≌△BCE .所以△BCE 可以看成是△ACD 绕着点C 顺时针旋转60°而得到的.又M 为线段AD 中点,P 为线段BE 中点,故CP 就是CM 绕着点C 顺时针旋转60°而得.所以CP =CM 且,∠PCM =60°,故△CPM 是等边三角形,选C .8.(1)由中位数及众数的意义以及表格可知当这组数据的中位数是40时,众数必然是40,所以A 错误.(2)当39码与40码的人数都是5时,中位数与众数不等,所以B 错误.(3)假设剩余10人全部穿39码鞋,可得平均数为39.35;假设剩余10人全部穿40码鞋,可得平均数为39.85.可以判断C 正确.(或者设穿39码鞋的有x 人,且由0≤x ≤10也可得解) 故选C .9. ∵ 62121OC OD 21OCAD ==⋅=⋅=k y x S A A 正方形,∴ 62121OF OE 21B B OCAD ==⋅=⋅=k y x S 长方形 ,故选B . 10.拿出任意三袋,假设它们的重量分别为x 千克、y 千克、z 千克,两两一称,记录下相应的重量,若分别等于a 千克、b 千克、c 千克,则有方程组⎪⎩⎪⎨⎧=+=+=+c x z b z y ay x 容易求出x 、y 、z ;另外两袋分别与已知重量的其中一袋一起称,即可求出其重量.所以需要称5次,故选B .11.解不等式组⎩⎨⎧<->-01a x x 得⎩⎨⎧<>a x x 1,因为原不等式组无解,所以必有a ≤1.12.∵ ()()122-=-+=-b a b a b a ,又1=-b a ,则1-=+b a∴ ⎩⎨⎧=--=+11b a b a ,解得⎩⎨⎧-==1b a . 故()1102008200820082008-=--=-b a .13. 设菱形ABCD 的边长为x ,则AB =BC =x ,又EC =2,所以BE =x -2,因为AE ⊥BC 于E ,所以在Rt △ABE 中, cosB x x 2-=,又cosB 54=,于是542=-x x ,解得x =10,即AB =10.所以易求BE =8,AE =6,当EP ⊥AB 时,PE 取得最小值. 故由三角形面积公式有:21AB ²PE =21BE ²AE ,求得PE 的最小值为4.8 .14.用树状图列出一个回合中三个人所出手势的各种结果.上面只画出树状图的一部分(列出9种结果),把图中小丁的“剪”改为“布”重复上述画法,可再列出9种结果,最后改为“锤”同样也列出9种结果,所以共有27种结果,故求得P (布,布,布)=27115.∵1=b a ,1≠a ,∴ =+++=+++=+++=)1()1(11a b b b a a b a b b b a a a b b a a M N b a =+++1111. ∴ N M -=0.17.小正方体个数最少情况如图所示(图中数字表示该位置小正方体的个数)所以最少为5块.三、19.因为100³0.9=90<94.5<100,300³0.9=270<282.8,所以有两种情况:设小美第二次购物的原价为x 元,则(x -300)³0.8+300³0.9=282.8解得,x =316 情况1: 小美第一次购物没有优惠,第二次购物原价超过300元 则小丽应付(316+94.5-300)³0.8+300³0.9=358.4(元)情况2: 小美第一次购物原价超过100元,第二次购物原价超过300元; 则第一次购物原价为:94.5÷0.9=105(元)所以小丽应付(316+105-300)³0.8+300³0.9=362.8(元).20.(1)证明: 如图,延长CB 至点G ,使得BG =DF ,连结AG . 因为ABCD 是正方形,所以在Rt △ADF 和Rt △ABG 中,AD =AB ,∠ADF =∠ABG =90°,DF =BG . ∴ Rt △ADF ≌Rt △ABG (SAS ),∴AF =AG ,∠DAF =∠BAG . 又 ∵ AE 是∠BAF 的平分线俯视图 2 1 2剪 剪 剪 布 锤布 剪 布 锤 锤 剪 布 锤 小丁 小明 小倩 A B CE P∴∠EAF =∠BAE , ∴ ∠DAF +∠EAF =∠BAG +∠BAE 即∠EAD =∠GAE .∵ AD ∥BC ,∴∠GEA =∠EAD ,∴∠GEA =∠GAE ,∴ AG =GE . 即AG =BG +BE .∴ AF =DF +BE ,得证.(2)AB BE AD DF S S S ABE ADF ⋅+⋅=+=∆∆2121∵ AD =AB =1, ∴ )(21BE DF S +=由(1)知,AF =DF +BE , 所以AF S 21=.在Rt △ADF 中,AD =1,DF =x , ∴12+=x AF ,∴1212+=x S .由上式可知,当x 2达到最大值时,S 最大.而0≤x ≤1,所以,当x =1时,S 最大值为2211212=+x .22、⑴小于20的质数有2,3,5,7,11,13,17,19 (2分) 除了2和5以外,其余各数的倒数均可化为循环小数, (4分) 所以a 可以取:3,5,7,11,13,17,19。
中小学教师专业素质考试初中数学试题及答案

中小学教师专业素质考试注意事项:1.本试卷答题时间120分钟,满分100分。
2.本试卷包括课程标准、课改理论和学科专业知识三部分内容,请把学科专业知识部分的选择题答案填在答题栏内。
得 分 栏课程标准部分(5分)填空题(每空1分,共3分)1.数学是研究和 的科学。
2.《数学课程标准(2011版)》中所提出的“四基”是指:基础知识、基本技能、基本思想、 。
选择题(每小题1分,共2分)3.对于教学中应当注意的几个关系,下列说法中错误的是( ) A 、面向全体学生与关注学生个体差异的关系。
B 、“预设”与“生成”的关系。
C 、合情推理与演绎推理的关系。
D 、使用现代信息技术与教学思想多样化的关系。
4.( )是对教材编写的基本要求。
A 、直观性B 、科学性C 、教育性D 、合理性课改理论部分(10分)填空题(每题1分,共4分)5.新课改倡导的自主、 、探究三种学习方式,能够最大限度地调动学生学习的积极性和主动性。
6.新课程“新”在观念创新、 和评价创新。
7.新课程的三维目标是知识与技能目标、 、情感态度与价值观目标。
8.新课程要求我们要树立 、交往与互动的教学观、开放与生成的教学观。
单项选择题(每题2分,共6分)9.新课程背景下的教学模式应尽可能尊重( ) A.教学内容 B.教师 C.每个学生 D.每个人 10.创新教育的核心是培养( )A.创新态度B.创新方法C.创新思维D.创新精神 11.新课程所倡导的评价理念是( )A.发展性评价观B.过程性评价观C.结果性评价观D.激励性评价观(一)单项选择题(每小题2分,共10分) 12.下列运算正确的是( )A .3x 2+4x 2=7x 4B .2x 3·3x 3=6x 3C .x 6x 3==x 2D .(x 2)4=x 813. 不等式组的解集在数轴上表示为 ( )A.B.C.D.14.如图,在△ABC 中,∠ABC =50°,∠ACB =60°,点E 在BC 的延长线上,∠ABC 的平分线BD 与∠ACE 的平分线CD 相交于点D ,连结AD .下列结论不正确的是 ( )A .∠BAC =70°B .∠DOC =90°C .∠BDC =35°D .∠DCE =60° 15. 如图是一个正方体截去一角后得到的几何体,它的主视图是( )16.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,且关于x 的一元二次方程ax 2+bx+c ﹣m=0没有实数根,有下列结论: ①b 2﹣4ac >0;②abc<0;③m>2. ÷10840x x -⎧⎨-⎩>≤AB DE O(第14题图)17. 计算:= .18.若在实数范围内有意义,则x 的取值范围是 .20. 某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产 台机器. 21. 设点和是反比例函数图象上的两个点,当<<时,<,则一次函数的图象不经过的象限是第 象限.22.如图,AD 是正五边形ABCDE 的一条对角线,则∠BAD =___________°. 23. 如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△,连接,则长度的最小值是___________.24. 如图,在平面直角坐标系中,点A,B,C 的坐标分别为(1,0),(0,1),(-1,0).一个电动玩具从坐标原点O 出发, 第一次跳跃到点P 1,使得点P 1与点O 关于点A 成中心对称; 第二次跳跃到点P 2,使得点P 2与点P 1关于点B 成中心对称; 第三次跳跃到点P 3,使得点P 3与点P 2关于点C 成中心对称; 第四次跳跃到点P 4,使得点P 4与点P 3关于点A 成中心对称; 第五次跳跃到点P 5,使得点P 5与点P 4关于点B 成中心对称;.…照此规律重复下去,则点P 2015的坐标为____________.2016sin30(2)22-⎛⎫-+-+ ⎪⎝⎭°x 31-()11,y x A ()22,y x B xky =1x 2x 01y 2y k x y +-=2MN A 'C A 'C A '(第16题图)(第24题图) (第23题图)(第22题图)(三)解答题(共22分)25.(5分)先化简,再求值:,其中,满足26.(5分) 如图,在边长为9的正三角形中,,,求的长.22226951222a ab b b a b a aba b a ⎛⎫-+÷--- ⎪--⎝⎭a b 42.a b a b +=⎧⎨-=⎩,ABC 3BD =60ADE ∠=°AE27.(6分)如图,小山顶上有一信号塔,山坡的倾角为,现为了测量塔高,测量人员选择山脚处为一测量点,测得塔顶仰角为,然后顺山坡向上行走100米到达处,再测得塔顶仰角为,求塔高.(结果保留整数,)28.(6分)某镇统计了该镇今年1~5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1~5月新注册小型企业一共有________家,请将折线图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.AB BC 30°AB C 45°E 60°AB 1.73 1.41今年1~5月各月新注册小型企业数量占今年前五月新注册小型企业总量的百分比扇形统计图今年1~5月各月新注册小型企业数量折线统计图(四)解答题(共16分)29.(8分)某景区的三个景点A ,B ,C 在同一线路上,甲、乙两名游客从景点A 出发,甲步行到景点C ,乙乘景区观光车先到景点B ,在B 处停留一段时间后,再步行到景点C . 甲、乙两人离开景点A 后的路程S (米)关于时间t (分钟)的函数图象如图所示.根据以上信息回答下列问题: (1)乙出发后多长时间与甲第一次相遇?(2)要使甲到达景点C 时,乙与C 的路程不超过400米,则乙从景点B 步行到景点C 的速度至少为多少?(结果精确到0.1米/分钟)第29题图甲30.(8分)如图,⊙O是△ABC的外接圆,AC是直径。
初中数学老师专业考试卷

一、选择题(每题2分,共20分)1. 下列各数中,不是有理数的是()A. -2.5B. 0.6C. $\sqrt{3}$D. $\frac{5}{6}$2. 下列各式中,正确的是()A. $3^2=9$B. $(-3)^2=9$C. $(3)^2=9$D. $-3^2=9$3. 已知 a、b 是实数,若 $a+b=0$,则下列说法正确的是()A. a、b 一定都是非正数B. a、b 一定都是非负数C. a、b 一定互为相反数D. a、b 一定相等4. 下列函数中,是二次函数的是()A. $y=x^2+2x+1$B. $y=x^2-3x+4$C. $y=2x^2-5$D. $y=x^2-2x-1$5. 下列各式中,正确的是()A. $a^2=a$B. $(-a)^2=a^2$C. $a^2=(-a)^2$D. $a^2=-(a^2)$6. 已知等腰三角形 ABC 中,AB=AC,若 $BC=8$,则底角 A 的度数是()A. $30^\circ$B. $45^\circ$C. $60^\circ$D. $90^\circ$7. 下列各式中,正确的是()A. $x^2=4$ 的解为x=±2B. $x^2=9$ 的解为x=±3C. $x^2=16$ 的解为x=±4D. $x^2=25$ 的解为x=±58. 下列函数中,是正比例函数的是()A. $y=2x+1$B. $y=\frac{3}{x}$C. $y=x^2$D. $y=2x$9. 下列各式中,正确的是()A. $x^3=-8$ 的解为 x=-2B. $x^3=27$ 的解为 x=3C. $x^3=-27$ 的解为 x=-3D. $x^3=64$ 的解为 x=410. 下列各式中,正确的是()A. $x^4=16$ 的解为x=±2B. $x^4=81$ 的解为x=±3C. $x^4=-64$ 的解为x=±4D. $x^4=256$ 的解为x=±8二、填空题(每题3分,共30分)11. 已知 a、b 是实数,若 $a+b=0$,则 $ab=$__________。
2008年八年级数学竞赛模拟试卷(含答案)
2008年八年级数学竞赛模拟试卷(新星)班级: 姓名: 得分:一、选择题(每小题5分,共30分) 1、已知b a ,为实数,且1=ab ,设11+++=b b a a M ,1111+++=b a N ,则N M ,的大小关系是( )A 、N M >B 、N M =C 、N M <D 、无法确定2、下列名人中:①比尔∙盖茨 ②高斯 ③刘翔 ④诺贝尔 ⑤陈景润 ⑥陈省身 ⑦高尔基 ⑧爱因斯坦,其中是数学家的是( )A 、①④⑦B 、②④⑧C 、②⑥⑧D 、②⑤⑥3、甲,乙,丙,丁,戊与小强六位同学参加乒乓球比赛,每两人都要比赛一场,到现在为止,甲已经赛了5场,乙已经赛了4场,丙已经赛了3场,丁已经赛了2场,戊已经赛了1场,小强已经赛了( )A 、1场B 、2场C 、3场D 、4场4、张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示:请帮张阿姨分析一下,选择一个最省钱的购买方案。
此时,张阿姨购买这三件物品实际所付出的钱的总数为( )A 、500元B 、600元C 、700元D 、800元5、将自然数1至6分别写在一个正方体的6个面上,然后把任意相邻两个面上的数之和写在这两个面的公共棱上.则在这个正方体中所有棱上不同..数的个数的最小值和最大值分别是( )A 、7,9B 、6,9C 、7,10D 、6,106、已知12310,,,...,x x x x 都是正整数,12101210......x x x x x x +++=,且其中一个取得最大值,则1210...x x x +++的值等于( )A 、19B 、20C 、21D 、22二、填空题(每小题5分,共30分) 7、对正实数b a ,作定义b a ab b a +-=*,若444=*x ,则x 的值是 。
8、已知22560x xy y --=,则yx的值为 。
9、设平方数2y 是11个相继整数的平方和,则自然数y 的最小值是 。
东西湖区2008-2009学年度八年级(上)数学期末调考试卷(含答案).
2008~2009学年度上学期八年级数学期末调考试卷第 Ⅰ 卷一、选一选, 比比谁细心(本大题共12小题, 每小题3分, 共36分, 在每小题给出的四个选项中, 只有一项是符合题目要求的) 1.的结果是( )A.2B.±2C.-2D.4 2.计算23()ab 的结果是( ) A.5abB.6abC.35a bD.36a b3在实数范围内有意义,则x 的取值范围是( ) A.x >5 B.x ≥5 C.x ≠5 D.x ≥0 4.如图所示,在下列条件中,不能..判断△ABD ≌△BAC 的条件是( ) A.∠D =∠C ,∠BAD =∠ABC B.∠BAD =∠ABC ,∠ABD =∠BAC C.BD =AC ,∠BAD =∠ABC D.AD =BC ,BD =AC5.如图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴,若∠AFE+∠BCD =280°,则∠AFC+∠BCF 的大 小是( )A.80°B.140°C.160°D.180°6.下列图象中,以方程220y x --=的解为坐标的点组成的图象是( )7.任意给定一个非零实数,按下列程序计算,最后输出的结果是( )A.mB.1m +C.1m -D. 2mFEDCB A8.已知一次函数(1)y a x b =-+的图象如图所示,那么a 的取值范围是( )A.1a >B.1a <C.0a >D.0a <9.若0a >且2xa =,3ya =,则x ya -的值为( )A.1-B.1C.23D.3210.如图,已知△ABC 中,∠ABC=45°,AC=4,H 是高AD 和BE 的交点,则线段BH 的长度为( )B.C.5D.411.如图,是某工程队在“村村通”工程中修筑的公路长度y (米)与时间x (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是( )米.A.504B.432C.324D.72012.如图,∠BAC 与∠CBE 的平分线相交于点P ,BE=BC ,PB 与CE 交于点H ,PG ∥AD 交BC于F ,交AB 于G ,下列结论:①GA=GP ;②::PACPABSSAC AB =;③BP 垂直平分CE ;④FP=FC ;其中正确的判断有( )A.只有①②B.只有③④C.只有①③④D.①②③④二、填一填,看看谁仔细(本大题共4小题,每小题3分,共12分,请你将最简答案填在“ ”上)13.一个等腰三角形的一个底角为40°,则它的顶角的度数是 . 14.观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;……根据前面各式的规律可得到12(1)(1)nn n x x xx x ---+++++=… .15.如图,已知函数2y x b =+和3y ax =-的图象交于点(25)P --,,则根据图象可得不等式23x b ax +>-的解集是 .(第10题图) (第11题图)16.如图,在△ABC 中,∠C=25°,AD ⊥BC,垂足为D,且AB+BD=CD,则∠BAC 的度数是 .2008~2009学年度上学期八年级数学期末调考试卷第 Ⅱ 卷二、填一填, 看看谁仔细(每小题3分,共12分)13. . 14. . 15. . 16. .三、解一解,试试谁更棒(本大题共9小题,共72分.) 17.(本题6分)计算:(8)()x y x y --.AC B D(第15题图) (第16题图)18.(本题6分)分解因式:3269x x x -+.19.(本题6分)已知:如图,AB=AD,AC=AE,∠BAD=∠CAE.求证:BC=DE.20.(本题7分)先化简,再求值:()()()2,x y x y x y x ⎡⎤-+-+÷⎣⎦其中11,2x y =-=.ED CB A21.(本题8分)如图,在平面直角坐标系中,点P (),x y 是第一象限直线6y x =-+上的点,点A ()5,0,O 是坐标原点,△PAO 的面积为s .⑴求s 与x 的函数关系式,并写出x 的取值范围;⑵探究:当P 点运动到什么位置时△PAO 的面积为10.22.(本题8分)2008年6月1日起,我国实施“限塑令”,开始有偿使用环保购物袋.为了满足市场需求,某厂家生产A B ,两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A 种购物袋x 个,每天共获利y 元.(1)求出y 与x (2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?=的图象l是第一、三象限的角平分23.(本题9分)如图,在平面直角坐标系中,函数y x线.实验与探究:由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线l的对称点B'、C'的位置,并写出它们的坐标: B'、C';归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线l的对称点P'的坐标为;运用与拓广:已知两点D(0,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E 两点的距离之和最小,并求出Q点坐标.24.(本题10分)如图①,△ABC≌△DEF,将△ABC和△DEF的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E)、C、D在同一直线上时,∠AFD与∠DCA 的数量关系是.(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由.(3)在图③中,连接BO、AD,猜想BO与AD之间有怎样的位置关系?画出图形,写出结论,无需证明.25.(本题12分)如图①,直线AB 与x 轴负半轴、y 轴正半轴分别交于A 、B 两点.OA 、OB 的长度分别为a 和b ,且满足2220a ab b -+=. ⑴判断△AOB 的形状.⑵如图②,正比例函数(0)y kx k =<的图象与直线AB 交于点Q ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=9,BN=4,求MN 的长.⑶如图③,E 为AB 上一动点,以AE 为斜边作等腰直角△ADE ,P 为BE 的中点,连结PD 、PO ,试问:线段PD 、PO 是否存在某种确定的数量关系和位置关系?写出你的结论并证明.①2008~2009学年度上学期八年级数学期末调考参考答案及评分标准二、填一填, 看看谁仔细(每小题3分,共12分)13. 100°. 14.11n x+-. 15. x >-2 . 16.105°三、 解一解, 试试谁更棒(本大题共9小题,共72分)17.解:(8)()x y x y --=2288x xy xy y --+ ……………………………4分 =2298x xy y -+ ……………………………6分18.解:3269x x x -+=2(69)x x x -+ ……………………………3分 =2(3)x x - ……………………………6分 19.证明:∵∠BAD=∠CAE ∴∠BAC=∠DAE ……………………………1分在△BAC 和△DAE 中BA DA BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△BAC ≌△DAE …………………………………………………………4分 ∴BC=DE …………………………………………………………………6分20.解:原式22222x xy y x y x ⎡⎤=-++-÷⎣⎦222x xy x ⎡⎤=-÷⎣⎦22x y =- ………………………………………………5分当11,2x y =-=,原式=-3 ………………………………………………7分 21.解:⑴5152S x =-+ (06)x << ………………………………………4分⑵由515102x -+=,得x=2∴P 点坐标为(2,4) …………………………………………………8分22.解:(1)根据题意得:=(2.3-2)(3.53)(4500)y x x +--=0.2+2250x - ………………………………4分(2)根据题意得:23(4500)10000x x +-≤解得3500x ≥元0.20k =-<,y ∴随x 增大而减小∴当3500x =时,0.2350022501550y =-⨯+=答:该厂每天至多获利1550元. ………………………………………8分 23.解:(1)如图:(3,5)B ',(5,2)C '- …………………………………2分(2)(n,m) ………………………………………………………………3分(3)由(2)得,D(0,-3) 关于直线l 的对称点D '的坐标为(-3,0),连接D 'E 交直线l 于点Q ,此时点Q 到D 、E 两点的距离之和最小 …………………4分 设过D '(-3,0) 、E(-1,-4)的设直线的解析式为b y +=, 则304k b k b -+=⎧⎨-+=-⎩,. ∴26k b =-⎧⎨=-⎩,.∴26y x =--. 由26y x y x =--⎧⎨=⎩,. 得22x y =-⎧⎨=-⎩,.∴所求Q 点的坐标为(-2,-2)………………………………………9分24.解:⑴AFD DCA ∠=∠(或相等) ……………………………………2分 (2)AFD DCA ∠=∠(或成立) ……………………………………3分理由如下:由△ABC ≌△DEF∴AB DE BC EF ==,,ABC DEF BAC EDF ∠=∠∠=∠,ABC FBC DEF CBF ∴∠-∠=∠-∠ ABF DEC ∴∠=∠在ABF △和DEC △中,AB DE ABF DEC BF EC =⎧⎪∠=∠⎨⎪=⎩,,,ABF DEC BAF EDC ∴∠=∠△≌△,BAC BAF EDF EDC FAC CDF ∴∠-∠=∠-∠∠=∠, AOD FAC AFD CDF DCA ∠=∠+∠=∠+∠AFD DCA ∴∠=∠ ………………………………………………………8分 (3)如图,BO AD ⊥. …………………………………………………9分………………………………………………10分ADO F CB (E ) G区教研室命制 第 11 页 共 11 页 2009-01-0525.解:⑴等腰直角三角形 ………………………………………………1分∵2220a ab b -+=∴2()0a b -= ∴a b =∵∠AOB=90° ∴△AOB 为等腰直角三角形 …………………4分⑵∵∠MOA+∠MAO=90°,∠MOA+∠MOB=90°∴∠MAO=∠MOB∵AM ⊥OQ ,BN ⊥OQ ∴∠AMO=∠BNO=90° 在△MAO 和△BON 中MAO MOB AMO BNO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△MAO ≌△NOB∴OM=BN,AM=ON,OM=BN∴MN=ON-OM=AM-BN=5 ……………………………………8分⑶PO=PD 且PO ⊥PD如图,延长DP 到点C ,使DP=PC,连结OP 、OD 、OC 、BC在△DEP 和△CBP DP PC DPE CPB PE PB =⎧⎪∠=∠⎨⎪=⎩∴△DEP ≌△CBP ∴CB=DE=DA,∠DEP=∠CBP=135°在△OAD 和△OBC DA CB DAO CBO OA OB =⎧⎪∠=∠⎨⎪=⎩∴△OAD ≌△OBC∴OD=OC,∠AOD=∠COB∴△DOC 为等腰直角三角形∴PO=PD ,且PO ⊥PD. ……………………………………………12分。
奥数-2008学年第二学期八年级数学全科竞赛试卷(含答案)-
2008学年第二学期八年级数学全科竞赛试卷(满分120分,考试时间90分钟)一、仔细选一选 (共30分)1.下列计算正确的是( )A .(13-)2=-13B .32-22=1C .-35+5=-25 D.36=±62.李师傅在检验一座雕塑底座(如图)正面时,测得CD=AB=40cm, AD=BC=30cm,AC=DB=50cm,那么可以判断四边形ABCD 是( )A.平行四边形B.矩形C.菱形D.正方形3.下列命题中,真命题的是( )A.两条对角线相等的四边形是矩形;B.两条对角线垂直且相等的四边形是正方形;C.两条对角线垂直的四边形是菱形;D.两条对角线相等的平行四边形是矩形.4.剪纸是中国的民间艺术,剪纸方法很多,下面是一咱剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):下列四幅图案,不能用上述方法剪出的是:5.下面是李刚同学在一次测验中解答的填空题,其中答对的是( )A.若2,42==x x 则 B.方程()1212-=-x x x 的解是1=x C.若直角三角形有两边长分别是3和4,则第三边的长为5.D.若分式23221x x x x -+=-的值为零,则6.一次统计八(1)班若干名学生每分钟跳绳次数的频数分布直方图如上图所示.由这个直方图可知;这若干名学生平均每分钟跳绳的次数(结果精确到个位)是( ).个A.数据不全无法计算B.103C.104D.1057.如图,以正方形ABCD 的对角线AC 为边,延长AB 到E,使AE=AC,以AE 为一边作菱形AEFC,若正方形的边长为2,则菱形AEFC 的面积为( ).A.24B.4C.22D.28.用反证法证明:已知在Rt △ABC 中,∠C=90°,求证: ∠A, ∠B 中至少有一个角不大于45°,应假设 ( )A.∠A > 45°B.∠B > 45°C.∠A > 45°,∠B > 45°D.∠A< 45°,∠B <45°9.在平面直角坐标系中,直线l 分别交x 轴、y 轴的正半轴于点N 、M ,正方形ABCD 内接于 Rt △MON ,点A 、B 分别在线段MO 、NO 上,点C 、D 在线段MN 上。
初中数学教师职业测验试题(含解答)
初中数学教师职业测验试题(含解答)初中数学教师职业测验试题(含解答)一、选择题(每题5分,共25分)1. 下列关于实数的说法中,正确的是()A. 实数包括有理数和无理数B. 实数包括整数和分数C. 实数包括正数和负数D. 实数包括正有理数、负有理数和0{答案:A}2. 若两个实数满足 a+b=0,则这两个实数的关系是()A. a>bB. a=bC. a<bD. 不能确定{答案:B}3. 下列各数中是无理数的是()A. √9B. √16C. √3D. √1{答案:C}4. 若一个正方形的边长为a,则它的对角线的长度是()A. a√2B. a√3C. a√4D. a{答案:A}5. 已知一个等差数列的首项为2,公差为3,则第10项是()A. 29B. 30C. 31D. 32{答案:A}二、填空题(每题5分,共25分)6. 若一个三角形的两边长分别为3和4,则第三边的长度是____(用含根号的形式表示)。
{答案:5}7. 已知一个函数f(x)=2x+1,求f(-1)。
{答案:-1}8. 一个等差数列的前5项和为35,首项为2,求公差。
{答案:5}9. 若平行线l1:2x+3y+1=0,l2:2x-3y+c=0,求c的值。
{答案:-1}10. 求下列分式的值:$$\frac{3x-2}{x^2-5x+6}$$,其中x不等于2和3。
{答案:$$\frac{3}{x-2}$$}三、解答题(每题10分,共30分)11. 解方程:2x+5=3x-1。
{答案:x=6}12. 已知一个正方形的边长为10cm,求它的面积和周长。
{答案:面积为100cm²,周长为40cm。
}13. 某数的平方与该数的三倍之和等于28,求这个数。
{答案:4}四、应用题(每题10分,共20分)14. 小明的身高为1.6米,每年增长0.1米,小红的身高为1.5米,每年增长0.05米。
问5年后,两人的身高差是多少?{答案:1米}15. 某商品原价为200元,商店进行打折活动,打折后的价格是原价的80%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年东西湖区教师专业知识竞赛试题初中数学试卷
一、选择题(本大题共5小题,每小题5分,共25分)
1.改革开放以来,我国国内生产总值由1978年的3 645亿元增长到2008年的300 670亿元,将300 670用科学记数法表示应为()
A.0.300 67×106 B.3.006 7×105
C.3.006 7×104 D.30.067×104
2.若图1是某几何体的三视图,则这个几何体是()
A.圆柱B.正方体
C.球D.圆锥
3.若一个正多边形的一个外角是40°,则这个正多边形的边数是()
A.10 B.9 C.8 D.6
4.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()
A.0 B.141 C.241 D.1
5.观察下列各式:
(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72; ……
请你根据观察得到的规律判断下列各式正确的是()
A.1 005+1 006+1 007+…+3 016=2 0112
B.1 005+1 006+1 007+…+3 017=2 0112
C.1 006+1 007+1 008+…+3 016=2 0112
D.1 006+1 008+1 009+…+3 017=2 0112
二、填空题(本大题共5小题,每小题5分,共25分)
6.不等式3x+2≥5的解集是__________.
7.如图2,AB为⊙O的直径,弦CD⊥AB,E为上一点,若∠CEA=28°,则∠ABD=________°. 9.若双曲线y=2k-1x的图象经过第二、四象限,则k的取值范围是__________.
10.如图3,观察每一个图中黑色正六边形的排列规律,第10个图中黑色正六边形有____个.
三、解答题(本大题共5小题,每小题10分,共50分)
11.已知x2-5x=14,求(x-1)(2x-1)-(x+1)2+1的值.
12.已知:如图4,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.
求证:AB=FC.
13.如图5,在△ABC中,AB=BC=12 cm,∠ABC=80°,BD是∠ABC的平分线,DE∥BC.
(1)求∠EDB的度数;
(2)求DE的长.
14.有四张卡片(背面完全相同),分别写有数字1,2,-1,-2,把它们背面朝上洗匀后,甲同学抽取一张记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字,用字母b,c分别表示甲、乙两同学抽出的数字.
(1)用列表法求关于x的方程x2+bx+c=0有实数解的概率;
(2)求(1)中方程有两个相等实数解的概率.
15.如图6,已知二次函数y=-12x2+bx+c的图象经过A(2,0),B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.。