多因素方差分析公式了解多因素方差分析的计算公式
方差分析(ANOVA)使用

均数两两比较方法
LSD法:最灵敏,会犯假阳性错误; Sidak法:比LSD法保守;
Bonferroni法:比Sidak法更为保守一些;
Scheffe法:多用于进行比较的两组间样本含量不等时; Dunnet法:常用于多个试验组与一个对照组的比较; S-N-K法:寻找同质亚组的方法; Turkey法:最迟钝,要求各组样本含量相同; Duncan法:与Sidak法类似。
F 5.564
Sig . .008
第1列为变异来源,第2、3、4列分别为离均差平方和、自 由度、均方,检验统计量F值为5.564,P=0.008,组间均数 差别统计学意义,可认为各组的NO不同。
单因素方差分析 (3) 各组样本均数折线图
结果分析
Means plots 选项给出,更直观。 注意:当分组变量体现出顺序的趋势时,绘制这种折线图可以提示
同剂量的部分凝血活酶时间有无不同?
方差分析步骤
:
(1)提出检验假设,确定检验水准
H0:μ1=μ2=μ3 H1:μ1,μ2,μ3不全相同 a=0.05
(2)计算检验统计量F 值
(3)确定P值,做出推断结论 F0.05(2,26) =2.52,F>F0.05(2,26) ,P<0.05,拒绝 H0。 三种不同剂量48小时部分凝血活酶时间 不全相同。
样本量 平均值 标准差
基本步骤
(1)建立假设,确定检验水准
H0:三个总体均数相等,即三组工作人员
的体重指数总体均数相等 H1:三个总体均数不等或不全相等 a=0.05
(2)计算检验统计量F值
变异来源 组间 组内 总变异 SS 自由度(df) 143.406 363.86 507.36 2 45 47 MS 71.703 8.09 F 8.87
多因素试验的方差分析

家兔神经损伤缝合后的轴突通过率(%)
A(缝合方法) B(缝合后时间)
外膜缝合(a1)
1月(b1) 10
2月(b2) 30
10
30
40
70
50
60
10
30
束膜缝合(a2)
1月(b1) 10
2月(b2) 50
20
50
30
70
50
60
30
30
合计
x
24
44
28
52
X
120
220
140
260
740
X2
二、完全随机分组 两因素析因设计与方差分析
例 分析A、B两种镇痛药物联合运用在产妇分 娩时的镇痛效果: A药取3个剂量:1.0mg,2.5mg,5.0mg B药取3个剂量:5μg,15μg,30μg 共9个处理组。将27名产妇随机等分为9组,每 组3名产妇,记录每名产妇分娩时镇痛时间。
组 F
间 S变 组 S/间 异 组 间 M 组S 间 1
组内S 变 组 S/内 异 组 内 M 组S 内
8
3. 计算
k ni
2
X ij
C i 1 j 1
876 . 42
N
k ni
SS 总
X
2 ij
C
82
. 10
i 1 j 1
组间
3 32.16 10.72
组内
116 49.94 0.43
FP 24.93 <0.01
F0.01(3, 116)=3.96
11
5. 作结论
按 0.05水准,拒绝H0,接受H1,认为
统计学第九章双因素和多因素方差分析

F0.95(4,27)≈F0.95(4,30)=2.690, F0.99(4,27)≈F0.99(4,30)=4.018,
∴FA,FB均达极显著,标上“* *”,FAB只达显著,标上 “*”。因此酒精产量不仅与原料和温度的关系极显著,与它 们的交互作用也有显著关系。即对不同原料应选用不同的发酵 温度。
发酵实验方差分析表
变差来源 平方和
原料A 温度B
AB 误差
总和
1554.18 3150.50 808.82 1656.50
7170.00
自由度
2 2 4 27
35
均方
777.09 1575.25 202.21 61.35
F
12.67** 25.68** 3.30*
F测验
查 F 分 布 表 , 得 : F0.95(2,27)≈F0.95(2,30)=3.316, F0.99(2,27)≈F0.99(2,30)=5.390,
┆
…
┆
Aa 和
ya11 ya12 ┆ ya1n
y.1.
ya21 ya22 ┆ ya2n
y.2.
… …
yab1 yab2 ┆ yabn
y.b.
和 y1..
y2.. ┆ ya.. y…
(二)观测值的描述
对于上表中的每一个观测值可用线性统计模型描述
方差分析公式单因素方差分析多因素方差分析的计算公式

方差分析公式单因素方差分析多因素方差分析的计算公式方差分析公式计算单因素和多因素方差分析的方法是统计学中常用的数据分析技术。
方差分析可以用来比较两个或多个组之间的均值是否存在显著差异。
在本文中,将介绍单因素方差分析和多因素方差分析的计算公式和步骤。
一、单因素方差分析的计算公式单因素方差分析适用于只有一个自变量(因素)的情况下比较多个组的均值是否存在差异。
在进行单因素方差分析时,需要计算以下几个统计量。
1. 总平方和(SST):总平方和表示各组数据与整体均值之间的偏差总和。
其计算公式如下:SST = Σ(xi - x)²其中,xi为每个观察值,x为所有观察值的均值。
2. 组内平方和(SSW):组内平方和表示各组数据与各组均值之间的偏差总和。
其计算公式如下:SSW = Σ(xi - x i)²其中,xi为每个观察值,x i为各组观察值的均值。
3. 组间平方和(SSB):组间平方和表示各组均值与整体均值之间的偏差总和。
其计算公式如下:SSB = Σ(ni * (x i - x)²)其中,ni为每个组的观察次数,x i为各组观察值的均值,x为所有观察值的均值。
4. 平均平方和(MSW和MSB):平均平方和表示各组之间的平均差异程度。
其计算公式如下:MSW = SSW / (n - k)MSB = SSB / (k - 1)其中,n为总观察次数,k为组的个数。
5. F统计量:F统计量用于检验组间均值是否存在显著差异。
其计算公式如下:F = MSB / MSW二、多因素方差分析的计算公式多因素方差分析适用于两个或更多个自变量(因素)的情况下比较多个组的均值是否存在差异,并确定各因素之间的交互影响。
在进行多因素方差分析时,需要计算以下几个统计量。
1. 总平方和(SST):总平方和的计算方式与单因素方差分析相同。
2. 组内平方和(SSW):组内平方和的计算方式与单因素方差分析相同。
第6讲多因素试验资料的方差分析

第六讲 多因素试验资料的方差分析M ULTIFACTOR ANALYSIS OF V ARIANCE多因素试验是指同时研究n 个因素对试验指标的作用,以及它们的共同作用。
多因素试验的最大优点首先在于除了一次试验可以同时明确多个因素的效应,还可以分析出因素间的相互作用(互作),便于选定最优处理组合。
其次,多因素试验可增加误差项的自由度,降低试验误差。
因此比单因素试验精确度更高。
最后,多因素实验所得的结论确切、具体、论据充足。
如单独进行品种对比试验,结果只能粗略地明确品种间的优劣,如果与饲料水平、饲喂方式结合进行三因素试验,可具体明确用一定的饲喂方式在特定的饲料水平下,哪个品种优于哪个品种。
论据、内容都比单因素试验结果丰富。
田间试验中也常要考察哪个品种在何时播种以及在何种密度下的产量表现,同时还可以采用区组设计来安排重复,以便控制系统误差,提高试验的准确性。
现以三因素试验的资料介绍其方差分析方法。
第一节 线性模型与期望均方一、线性数学模型设A 、B 、C 三个因素各含a 、b 、c 个水平,共abc 个处理组合,每个处理组合重复数为r 。
则其任一观察值的线性数学模型为:kl j i l ijk jk ik j i k j i kl j i e y +++++++++=ραβγβγαγαβγβαμ)()()()(其中kl j i l ijk jk ik j i k j i e ,,)(,)(,)(,)(,,,,ραβγβγαγαβγβαμ依次表示总体平均数、A 、B 、C 主效应, A ×B 、A ×B 、B ×C 、A ×B ×C 互作效应,重复(区组)效应和随机误差。
在样本资料中依次分别由),(,x x x A -)(x x B -,)(x x C -,)(x x x x B A AB +--,)(x x x x C A AC +--,)(x x x x C B BC +--,)(x x x x x x x x BC AC AB C B A ABC ----+++,)(x x R -,)(x x x x R ABC ijkl +--进行估计。
多因素分析

Sig. .000 .000 .000 .000 .000
注意:当因子A与B间的交互作用有统计学意 义时,对A(或B)的单独作用的解释须小心。 本例,用B药时,用A药病人比不同时用A药的 病人的红细胞数均数大,不用B药时,用A药 病人比不同时用A药的病人的红细胞数均数也 大,故可说明A药有效。但有时可能出现这种 情况,用B药时,用A药病人比不同时用A药的 病人的红细胞数均数大,不用B药时,用A药 病人比不同时用A药的病人的红细胞数均数小, 此时就不能简单地说A药有利于病人红细胞数 增加,需分别就用B药和不用B药两种情况说 明A药的作用。对B作用的作用的解释也是如 此。
三因子方差分析
例题 某研究者以大白鼠作试验, 观察指标是肝重与体重之比(5%), 主要想了解正氟醚对观察指标的作用, 同时要考察用生理盐水和用戊巴比妥 作为诱导药对正氟醚毒性作用有无影 响,对不同性别大白鼠诱导的作用有 何不同,以及对不同性别大白鼠正氟 醚的作用是否相同。
A因子
不用 不用 不用 不用 用 用 用 用
总体均数
111 112 Байду номын сангаас21 122 211 212 221 222
Tes ts o f Bet ween -Subj ects Effe cts Dependent Variable: Y Type III Sum Source of Squares df Mean Square Corrected Model 4.218 a 7 .603 Intercept 769.081 1 769.081 A 2.017E-03 1 2.017E-03 B 7.707E-02 1 7.707E-02 C .799 1 .799 A * B 1.904 1 1.904 B * C 5.227E-02 1 5.227E-02 A * C 1.335 1 1.335 A * B * C 4.860E-02 1 4.860E-02 Error 2.685 16 .168 Total 775.984 24 Corrected Total 6.903 23 a. R Squared = .611 (Adjusted R Squared = .441)
多因素方差分析的重要公式解析

多因素方差分析的重要公式解析在统计学中,方差分析是一种重要的统计分析方法,用于检验多个变量对于一个因变量的影响是否显著。
而多因素方差分析则是对多个自变量对因变量产生的影响进行分析和比较。
在进行多因素方差分析时,我们需要了解和掌握一些重要的公式,以便正确、准确地进行分析和研究。
一、总平方和(SS_T)总平方和是指因变量的总变异程度,它包括各个观测值与所有观测值的平均值之差的平方和。
总平方和可以用以下公式来计算:SS_T = Σ((X_ij - X_bar)^2)其中,X_ij表示第i个处理条件下的第j个观测值,X_bar表示全部观测值的平均值,Σ表示求和。
二、因素平方和(SS_A、SS_B、SS_AB、SS_E)在多因素方差分析中,我们通常需要考虑多个因素对因变量的影响。
因素平方和是指各个因素对总平方和的贡献,可以用以下公式来计算:SS_A = n * Σ((X_bar_i - X_bar)^2)SS_B = m * Σ((X_bar_j - X_bar)^2)SS_AB = Σ((X_ij - X_bar_i - X_bar_j + X_bar)^2)SS_E = SS_T - SS_A - SS_B - SS_AB其中,n表示第一个自变量的水平数,m表示第二个自变量的水平数。
三、均方(MS_A、MS_B、MS_AB、MS_E)均方是指因素平方和除以相应的自由度。
均方可以用以下公式来计算:MS_A = SS_A / df_AMS_B = SS_B / df_BMS_AB = SS_AB / df_ABMS_E = SS_E / df_E其中,df_A、df_B、df_AB、df_E分别代表因素A、因素B、交互作用AB和误差的自由度。
四、F值(F_A、F_B、F_AB)F值是用来判断各个因素是否对因变量的影响具有统计显著性。
F 值可以用以下公式来计算:F_A = MS_A / MS_EF_B = MS_B / MS_EF_AB = MS_AB / MS_E根据所得的F值,我们可以参照F分布表,找出对应的临界值,从而判断因素的显著性。
多因素方差分析的重要公式详解

多因素方差分析的重要公式详解多因素方差分析是一种常用的统计分析方法,可以用于研究实验设计中多个自变量对因变量的影响。
它通过计算各种不同因素所引起的变异程度来确定因素之间的差异是否显著。
本文将详细解析多因素方差分析中的重要公式,帮助读者更好地理解和运用这一方法。
1. 总变异(SST)公式总变异是指因变量整体的变异情况,可以通过计算各观测值与总体均值之间的离差平方和来得到。
总变异公式如下:SST = Σ(yij - ȳ..)^2其中,yij表示第i个处理水平下的第j个观测值,ȳ..表示所有观测值的均值。
2. 处理效应(SSA)公式处理效应是指不同因素水平对因变量的影响程度,可以通过计算各处理水平下观测值与总体均值之间的离差平方和来得到。
处理效应公式如下:SSA = rΣ(ȳi. - ȳ..)^2其中,ȳi.表示第i个处理水平下的观测值均值,r表示每个处理水平下的观测次数。
3. 误差(SSW)公式误差是指无法被因素解释的随机因素引起的变异,可以通过计算各观测值与其所在处理水平均值之间的离差平方和来得到。
误差公式如下:S SW = Σ(yij - ȳi.)^24. 自由度(df)公式自由度是指数据集中独立变动的观测个数。
在多因素方差分析中,自由度的计算有以下几个关键公式:- 总自由度(dft) = 总处理次数 - 1 = I - 1- 处理自由度(dfa) = 处理水平数 - 1 = a - 1- 误差自由度(dfe) = 总观测次数 - 总处理次数 = N - I其中,I表示总处理次数,a表示处理水平数,N表示总观测次数。
5. 均方(MS)公式均方是指各来源变异的均值,可以通过总平方和除以相应的自由度来得到。
均方公式如下:- 处理均方(MSA) = SSA / dfa- 误差均方(MSE) = SSW / dfe6. F比值公式F比值是判断因素之间差异是否显著的依据,可以通过处理均方除以误差均方来计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多因素方差分析公式了解多因素方差分析的
计算公式
多因素方差分析公式——了解多因素方差分析的计算公式
多因素方差分析是一种统计方法,用于分析多个因素对观察结果的
影响。
它通过比较不同因素水平下的观察值差异来判断这些因素对实
验结果的影响程度。
在多因素方差分析中,我们需要了解与计算一些
重要的公式。
1. 多因素方差分析的总平方和(SS_total)公式:
SS_total = SS_between + SS_within
其中,SS_total是总平方和,表示所有观测值与总均值之间的偏
离程度;SS_between是组间平方和,表示不同因素水平下的观测值与
总均值之间的偏离程度;SS_within是组内平方和,表示同一因素水平
下的观测值与该水平下的均值之间的偏离程度。
2. 多因素方差分析的组间平方和(SS_between)公式:
SS_between = ∑(ni * (μi - μ)²)
其中,ni是第i组的观测值个数,μi是第i组观测值的均值,μ为
所有观测值的总均值。
3. 多因素方差分析的组内平方和(SS_within)公式:
SS_within = ∑∑((Xij - μi)²)
其中,Xij表示第i组的第j个观测值,μi为第i组观测值的均值。
4. 多因素方差分析的组间平均平方(MS_between)公式:
MS_between = SS_between / (k - 1)
其中,k为不同因素水平的个数。
5. 多因素方差分析的组内平均平方(MS_within)公式:
MS_within = SS_within / (N - k)
其中,N为总观测值的个数。
6. 多因素方差分析的F统计量公式:
F = MS_between / MS_within
F统计量用于判断不同因素水平的均值之间的差异是否显著。
若F 值大于某个临界值,则认为不同因素水平的均值存在显著差异。
通过以上公式,我们可以计算出组间平方和、组内平方和、组间平
均平方、组内平均平方和F统计量,从而进行多因素方差分析。
需要注意的是,在进行多因素方差分析之前,需要满足一些前提假设,例如观测值的总体分布为正态分布、各组观测值的方差齐性、观
测值之间相互独立等等,否则所得到的结果可能不准确。
总结起来,多因素方差分析可通过计算总平方和、组间平方和、组
内平方和以及相应的平均平方来分析多个因素对观测结果的影响程度。
通过F统计量的判断,可以确定不同因素水平的均值之间是否存在显
著差异。
然而,在使用多因素方差分析时,我们需要确保数据满足一
些前提假设。
只有在满足这些前提条件的情况下,才能得到可靠的分析结果。
以上是关于多因素方差分析的计算公式的简要介绍,希望能对你有所帮助。
祝你在实际应用中取得好的分析结果!。