4.立体几何传统解法
立体几何角度求解全攻略

立体几何中的角度问题攻略新东方孟祥飞异面直线角:采用平移法,或者向量线面角:(1)当射影线好找时采用定义法,(2)当射影线不好找时建议采用向量法,但是等体积法也是不错的选择二面角:(1)当二面角的二面为双等腰图形或者全等对称或者二面交线垂线相对好平移的情况,采用定义法即可(2)当二面交线垂线不好平移(主要原因为计算量太大)建议直接采用向量法,但是三垂线法也是不错的选择,可以减少平移运算。
(3)三垂线法也会出现射影线不好找的情况,此时可以采用等体积转化。
S 中,E,F为中点,求异面直线BE,SF所称角度例题:1.正四面体ABCSEA CFB异面直线角的求法只需记住平移和向量即可,但是有些小题考查可能不好建系,所以需要大家对平移好好掌握,而平移其实就是构建辅助线,辅助线的构造基本和证明线面平行时的构造相同,即平行四边形构造和中位线构造,相对而言中位线可能够难想一点,中位线构造常常出现在三棱锥中。
SEPA CPF和SF所成平面角即所求FBSE这样的构建也是不错的选择EQ 和EB 所成角为所求A CQF B求三边套余弦定理即可,令正四面体边长为2,则EB=3,EQ=23,QB=27 所以32323247343cos =⨯⨯-+=QEB 此题还可以采用五坐标向量法来求解,2.三棱锥A BCD -,且,,,)(,>=<+===AC EF f DFCFBE AE λλλαβαλλ>=<BD EF ,λβ,求)(λf 的单调性 A EQB DFC此题的方法也为平移转化,由于是三棱锥,所以采用中位线(等比例线)方式平移,如图,不难发现,其实题目设计成求和角单调性,由于内角和为定值π,其实就是求角EQF 的单调性,而角EQF 为棱AC 和BD 之间角,是为定值的3.正方体1111D C B A ABCD -,E 是1BC 中点,求DE 与ABCD 所成角。
D 1 C 1 A 1 B 1 ED C Q A B线面角在求解时,我们觉得可能难度略大于异面直线,但是同学们注意其实把方法掌握,一样是很简单的,因为立体几何的特点是规律性非常强!我们看此题,线面角的定义是射影和斜线的成角,所以我们要先找DE 直线的射影,不难发现DE 的射影即为DQ ,所以所求线面角的平面角即为∠EDQ ,只需求解直角三角形EDQ 即可求出线面角的三角函数值。
高考数学立体几何多种解法

高考数学立体几何多种解法高考数学立体几何题目通常有多种解法,这取决于问题的具体形式和你所掌握的工具。
以下是一些常见的立体几何问题和它们的多种解法:问题1:求多面体的体积解法1:直接计算如果题目给出了多面体的底面积和高,可以直接使用体积公式 V=底面积×高来计算。
解法2:分割法如果多面体可以被分割成几个简单的几何体(如长方体、三棱锥等),可以先计算每个简单几何体的体积,然后求和。
解法3:向量法如果题目中涉及到了向量的知识,可以通过计算底面的法向量和顶点到底面的距离(即高),然后使用向量体积公式V=1/3 A⋅(B×C)来计算体积。
问题2:求多面体的表面积解法1:直接计算如果题目给出了多面体的各个面的面积,可以直接求和得到总表面积。
解法2:分割法如果多面体可以被分割成几个简单的几何体,可以先计算每个简单几何体的表面积,然后求和。
解法3:向量法对于某些复杂的多面体,可以通过计算各个面的法向量和对应的面积向量,然后使用向量点积来计算每个面的面积,最后求和得到总表面积。
问题3:证明线面平行或垂直解法1:定义法直接使用线面平行或垂直的定义来证明。
解法2:判定定理使用线面平行或垂直的判定定理来证明。
解法3:向量法通过计算向量之间的点积或叉积来证明线面平行或垂直。
问题4:求点到平面的距离解法1:公式法如果知道点到平面的垂线段的长度和垂足在平面上的坐标,可以使用距离公式 d=(x2−x1)2+(y2−y1)2+(z2−z1)2 来计算。
解法2:向量法通过计算点到平面上任意一点的向量和平面的法向量,然后使用向量点积和模长来计算距离。
问题5:求二面角的平面角解法1:定义法直接在图形中找出二面角的平面角,然后计算。
解法2:向量法通过计算两个平面的法向量,然后计算这两个法向量的夹角,即为二面角的平面角。
问题6:判断几何体的形状解法1:直接观察通过观察几何体的形状和尺寸来判断。
解法2:计算法通过计算几何体的各个面的面积、边长、角度等来判断。
高中数学高考专题(5)立体几何的高考解答题型及求解策略

高中数学高考专题(5)立体几何的高考解答题型及求解策略立体几何的解答题型主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再计算几何体的体积.试题背景有折叠问题、探索性问题等,考查空间想象能力、逻辑思维能力及转化与化归思想的应用能力.题型一线面位置关系的证明题型概览:空间中线面的平行与垂直的证明有两种思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量法来论证,应用向量证明线、面的位置关系的关键是把空间线面位置关系的判定定理和性质定理与空间向量建立对应关系,把空间位置关系的证明转化为空间向量的运算,通过运算解决证明问题.这里以传统方法为例建立审题程序与答题模板,向量方法参照本专题题型二.如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN⊥平面ABCD,E、F分别为MA、DC的中点,求证:(1)EF∥平面MNCB;(2)平面MAC⊥平面BND.[审题程序]第一步:利用中位线、平行四边形的性质在四边形MNCB内确定与EF平行的直线;第二步:在平面MAC和平面BND中寻找与另一平面垂直的直线;第三步:应用面面垂直、菱形的性质,由线线垂直解决.[规范解答](1)如图,取NC的中点G,连接FG,MG.因为ME∥ND且ME=12ND,F、G分别为DC、NC的中点,FG∥ND且FG=12ND,所以FG与ME平行且相等,所以四边形MEFG是平行四边形,所以EF∥MG,又MG⊂平面MNCB,EF⊄平面MNCB,所以EF∥平面MNCB.(2)如图,连接BD、MC.因为四边形MADN是矩形,所以ND⊥AD.因为平面MADN⊥平面ABCD,平面ABCD∩平面MADN=AD,DN⊂平面MADN,所以ND⊥平面ABCD,所以ND⊥AC.因为四边形ABCD是菱形,所以AC⊥BD.因为BD∩ND=D,所以AC⊥平面BDN.又AC⊂平面MAC,所以平面MAC⊥平面BDN.[答题模板]解决这类问题的答题模板如下:1.(2016·北京西城区高三期末)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G,H分别是CE,CF的中点.(1)求证:AC⊥平面BDEF;(2)求证:平面BDGH∥平面AEF;(3)求多面体ABCDEF的体积.[解](1)证明:因为四边形ABCD是正方形,所以AC⊥BD.又平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,所以AC⊥平面BDEF.(2)证明:在△CEF中,因为G,H分别是CE,CF的中点,所以GH∥EF.又GH⊄平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC∩BD=O,连接OH.在△ACF中,因为OA=OC,CH=HF,所以OH∥AF.因为OH⊄平面AEF,AF⊂平面AEF,所以OH∥平面AEF.因为OH∩GH=H,OH,GH⊂平面BDGH,所以平面BDGH∥平面AEF.(3)由(1)得AC⊥平面BDEF.因为AO=2,四边形BDEF的面积S▱BDEF=3×22=62,=4.所以四棱锥A-BDEF的体积V1=13×AO×S▱BDEF同理,四棱锥C-BDEF的体积V2=4.所以多面体ABCDEF的体积V=V1+V2=8.题型二求空间几何体的体积题型概览:计算几何体的体积,关键是根据条件找出相应的底面和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题.(1)直接法:对于规则几何体,直接利用公式计算即可.(2)割补法:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.(3)等体积法:一般利用三棱锥的“等积性”求三棱锥体积,可以把任何一个面作为三棱锥的底面.注意两点:一是求体积时,可选择“容易计算”的方式来计算;二是利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.(2016·全国卷Ⅲ)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求四面体N-BCM的体积.[审题程序]第一步:由线线平行或面面平行证明(1);第二步:由N 为PC 中点,推证四面体N -BCM 的高与P A 的关系; 第三步:利用直接法求四面体的体积.[规范解答] (1)由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形, 于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. [答题模板] 解决这类问题的答题模板如下:2.(2016·深圳一模)如图所示,在四棱锥S-ABCD中,底面ABCD是平行四边形,侧面SBC是正三角形,E是SB的中点,且AE⊥平面SBC.(1)证明:SD∥平面ACE;(2)若AB⊥AS,BC=2,求点S到平面ABC的距离.[解](1)证明:连接BD,交AC于点F,连接EF.∵四边形ABCD是平行四边形,∴F是BD的中点,又∵E是SB的中点,∴EF∥SD.∵SD⊄平面ACE,EF⊂平面ACE,∴SD∥平面ACE.(2)∵AB⊥AS,BC=BS=2,且E是SB的中点,∴AE=1.∵AE⊥平面SBC,BS、CE⊂平面SBC,∴AE⊥BS,AE⊥CE.∴AB=AE2+BE2= 2.又侧面SBC 是正三角形,∴CE =3, ∴AC =AE 2+CE 2=2,∴△ABC 是底边长为2,腰长为2的等腰三角形, ∴S △ABC =12×2×4-12=72.设点S 到平面ABC 的距离为h .由V 三棱锥S -ABC =V 三棱锥A -SBC ,得13h ·S △ABC =13AE ·S △SBC ,∴h =AE ·S △SBC S △ABC =237=2217.题型三 立体几何中的探索性问题题型概览:如果知道的是试题的结论,而要求的却是试题的某一个存在性条件(如存在某个定点、定直线、定值等),这种试题称为存在探索型试题.解题策略一般是先假设结论成立,然后以该结论作为一个已知条件,再结合题目中的其他已知条件,逆推(即从后往前推),一步一步推出所要求的特殊条件,即要求的存在性条件.若能求出,则存在;若不能求出,则不存在.(2016·石家庄调研)如图,在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,AC ⊥BC ,E 在线段B 1C 1上,B 1E =3EC 1,AC =BC =CC 1=4.(1)求证:BC ⊥AC 1;(2)试探究:在AC 上是否存在点F ,满足EF ∥平面A 1ABB 1?若存在,请指出点F 的位置,并给出证明;若不存在,请说明理由.[审题程序]第一步:由B 1E =3EC 1及EF ∥平面A 1ABB 1猜想点F 的位置;第二步:在平面A 1ABB 1内探求与EF 平行的直线或寻找经过EF 与平面A 1ABB 1平行的平面; 第三步:由线线平行或面面平行推理论证.[规范解答] (1)证明:∵AA 1⊥平面ABC ,BC ⊂平面ABC ,∴BC ⊥AA 1. 又∵BC ⊥AC ,AA 1∩AC =A ,∴BC ⊥平面AA 1C 1C . 又AC 1⊂平面AA 1C 1C ,∴BC ⊥AC 1.(2)解法一:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图1,在平面A1B1C1内过点E作EG∥A1C1交A1B1于点G,连接AG.∵B1E=3EC1,∴EG=34A1C1.又AF∥A1C1且AF=3,4A1C1∴AF∥EG且AF=EG,∴四边形AFEG为平行四边形,∴EF∥AG.又EF⊄平面A1ABB1,AG⊂平面A1ABB1,∴EF∥平面A1ABB1.解法二:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图2,在平面BCC1B1内过点E作EG∥BB1交BC于点G,连接FG. ∵EG∥BB1,EG⊄平面A1ABB1,BB1⊂平面A1ABB1,∴EG∥平面A1ABB1.∵B1E=3EC1,∴BG=3GC,∴FG∥AB.又AB⊂平面A1ABB1,FG⊄平面A1ABB1,∴FG∥平面A1ABB1.又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面A1ABB1.∵EF⊂平面EFG,∴EF∥平面A1ABB1.[答题模板]解决这类问题的答题模板如下:3.如图,三棱柱ABC-A1B1C1的底面是边长为4的正三角形,侧棱AA1⊥底面ABC,M为A1B1的中点.(1)证明:MC⊥AB;(2)若AA1=26,侧棱CC1上是否存在点P,使得MC⊥平面ABP?若存在,求PC的长;若不存在,请说明理由.[解](1)证明:取AB的中点N,连接MN,CN,则MN⊥底面ABC,MN⊥AB.因为△ABC是正三角形,所以NC⊥AB.因为MN∩NC=N,MN⊂平面MNC,NC⊂平面MNC,所以AB⊥平面MNC,所以AB⊥MC.(2)由(1)知MC⊥AB,若存在点P使得MC⊥平面ABP,则必有MC⊥BP.过M作MQ⊥B1C1,垂足为Q,连接QC,则QC是MC在平面BCC1B1内的射影,只需QC⊥BP即可,此时Rt△QC1C与Rt△PCB相似,QC1C1C =PCCB,所以PC=QC1·CBC1C=3×426=6,点P恰好是CC1的中点.。
第5讲--立体几何问题传统证法的模式

第三讲 立体几何问题传统证法的模式学习立体几何的观点(学习中逐渐落实)1、在平面内如何表示空间图形(画图、空间想象);2、数学语言转换(文字、图形、符号语言间)3、逻辑关系(正确、恰当地表述定理);4、证明模式方法 一、知识梳理⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎧⎪⎨⎨⎩⎪⎪⎧⎪⎨⎪⎩⎪⎪⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎪⎨⎪⎩线质线线线质性质线关线性质条线两个关义线线线线线线质义关线线质义平行公理面平行性定理平行面垂直性定理面面平行定理面平行判定定理平行系面平行面面平行定理面面平行的判定定理面面平行同垂直一直的平面平行位置系定三垂定理(异面直垂直)垂直三垂定理的逆定理面垂直的性定理定垂直系面垂直面垂直的判定定理面面垂直的性定理定面面垂直⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩面面垂直的判定定理⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩线线线点线度量关系线线点线角角面角面面角距距距离面距面距面面距二、知识整合:有关平行与垂直(线线、线面及面面)的问题,在解决立体几何问题过程中大量的、反复遇到,而且是各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在立体几何的学习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.立体几何中平行、垂直关系证明思路明确了吗?各种平行、垂直转换的条件是什么?一起总结. 1、空间元素基本位置关系:①空间两直线:平行、相交、异面;判定异面直线用定义或反证法或判定定理. ②直线与平面: a ∥α、a ∩α=A (a ⊄α) 、a ⊂α ③平面与平面:α∥β、α∩β=a 2、常用定理及结论:“线线平行线面平行面面平行”,“线线垂直线面垂直面面垂直”是立几中所表现出的线面的平行与垂直关系互相转化的基本思路,掌握了这种转化思路,也就掌握了用传统方法解答立体几何问题的钥匙,切记证题时不能越级. 3、立体几何问题处理思路:若是单纯的判断题,通常是结合图形(或另作,或想象)将三种语言(文字、符号、图形)互译互助,利用判定定理或性质定理解决;若是线面平行、垂直关系的证明问题,基本思路是:由“已知”用性质推“可知”,看“欲证”想“要证”用判断,并借助图形直观,添加必要的辅助线(面);若是角、距离的计算问题,首先是在原有图形上千方百计地找到(或作出)符合相关定义的角、距离,然后加以论证,最后是计算角或距离的大小. 4、重要定理和命题:①线面平行////a b b a a ααα⎫⎪⊂⇒⎬⎪⊄⎭;////a a αβαβ⎫⇒⎬⊂⎭;ααββα//a a a ⇒⎪⎭⎪⎬⎫⊄⊥⊥ ②线线平行:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪⋂=⎭;b a b a //⇒⎭⎬⎫⊥⊥αα;b a b a ////⇒⎪⎭⎪⎬⎫=⋂=⋂γβγαβα;b c c a b a //////⇒⎭⎬⎫ ③面面平行:βαββαα////,//,⇒⎪⎭⎪⎬⎫=⋂⊂⊂b a O b a b a ;βαβα//⇒⎭⎬⎫⊥⊥a a ;γαβγβα//////⇒⎭⎬⎫ ④线线垂直:b a b a ⊥⇒⎭⎬⎫⊂⊥αα;所成角900;PA a AO a a PO ⊥⇒⎪⎭⎪⎬⎫⊥⊂⊥αα(三垂线定理);逆定理呢? ⑤线面垂直:ααα⊥⇒⎪⎭⎪⎬⎫⊥⊥=⋂⊂⊂l b l a l O b a b a ,,;βαβαβα⊥⇒⎪⎭⎪⎬⎫⊥⊂=⋂⊥a l a a l ,;βαβα⊥⇒⎭⎬⎫⊥a a //;αα⊥⇒⎭⎬⎫⊥b a b a //⑥面面垂直:二面角900; βααβ⊥⇒⎭⎬⎫⊥⊂a a ;βααβ⊥⇒⎭⎬⎫⊥a a // 根据新课程标准要求,平行与垂直的证明是立体几何知识模块的核心内容,其中难点是线面平行和面面垂直证明问题,我们知道,要证线面平行,常需要朝线线平行转化;要证面面垂直,常需要朝线面垂直转化.而这两种转化关键是如何从复杂的几何图形中寻求到需要的那条直线.在证题过程中如何快速准确地寻求到那条直线而减少偶然性和盲目性呢?例如:已知矩形ABCD 所在的平面外一点 P , PA ⊥平面ABCD , E 、F分别是AB 、PC 的中点,求证:EF //平面PAD解法一:取PD 的中点G ,连接FG , AG 则四边形AEFG 是平行四边形,所以EF //AG ,从而结论得证解法二:通过构造含EF 的平面与平面PAD 平行.再利用面面平行的性质定理证得.解法三:利用空间向量的方法,找平面PAD 的法向量(AB ),再证AB EF ⊥解法四:利用空间向量的方法,证AD AP EF μλ+=再说明点E (或直线EF )在平面PAD 外即可证得. 三、典例分析:例1、 (08·安徽理18改编)如图,在四棱锥O -ABCD 中,底面ABCD是边长为1的菱形,∠ABC = 45,OA ⊥底面ABCD ,OA = 2,M 为OA 的中点,N 为BC 的中点.(1)证明:直线MN ∥平面OCD ;(2)指出异面直线AB 与MD 所成的角; 思路分析:(1)要证直线MN ∥平面OCD ,只需在平面OCD 内找到(若无现成的则需另作)一条直线,证明它与MN 平行(这条思路本题不太容易);或者证明直线MN 所在的某个平面(常常需要另作)∥平面BACDP F EN M A B D C OOCD ,注意到题设中有两个中点,于是再取AD 或OB 的中点(如下图),则问题立即解决.(2)异面直线所成的角需要转化成两条相交直线所成的锐角或直角.所以平行移动AB 或MD ,使它们相交,结合图形,发现AB ∥CD ,而CD ∩MD = D ,所以∠MDC 就是异面直线AB 与MD 所成的角(或其补角).连结CM ,在△CDM 中,不难得出DM =2,CM 2= 3-2,而CD = 1,AC 2 = 2-2,进而由余弦定理,得21212)23(21cos =⋅⋅--+=∠MDC ,得∠MDC = 60.所以AB 与MD 所成的角为60.说明:充分利用“线线、线面、面面平行(垂直)的转化关系”进行分析,是顺利解答立体几何试题的重要思路.例2、(2009江苏卷)如图,在直三棱柱111ABC A B C -中,E 、F 分别是1A B 、1AC 的中点,点D 在11B C 上,11A D B C ⊥。
立体几何中组合问题的几种解法

立体几何中组合问题的几种解法解决几何组合问题时,应准确灵活使用加法原理和乘法原理,要分类分步进行,做到不重复不遗漏。
1 直接求解法例1:四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法有多少种?分析:正面考虑本题各步骤的方法比较复杂,计算困难,应运用逆向思维,即先考虑从10个点任意取出4个点的方法,再减去从10个点中取出4点共面的的方法即可。
解:从10个点中找出4个点的方法有C410=210种,其中在四面体的四个面内各有6个点,取出共面的4个点的方法有4C4■=60种;相邻面各棱的中点4点共C410面的有3种;一条棱上三点与其相对棱中点也共面,共6种。
∴所求方法N=210-60-3-6=141(种)本题应注意“哪些点共面?”共有几种情况?[1]例2:从平面Ⅱ上取6个点,再从平面B上取4个点,这10个点最多可确定多少个三棱锥?解法①:分三种情况考虑:第一种情况从平面a上的6个点中任取一个再与从平面β上的4个点中任取3个点构成的三棱锥有C1■C■■个;第二种情况,从平面a上的6个点中任取2个与平面13上的4个点中任取2个点构成的三棱锥有C2■C2■个;第三种情况,从平面a上的6个点中任取3个点与平面β上的4个点中任取1个点构成的三棱锥有C■■C1■个。
根据加法原理共有C1■C■■+C2■C2■ +C■■C1■ =24+90+80=194(个)。
解法②:逆向思维:从10个点中任取4个点的组合数C410中,去掉4个点共面的两种情况即4点在平面a上的C4■个,4点在平面β上的C4■个。
其余的任4点都能构成一个三棱锥。
因此,可构成三棱锥C410-C4■-C4■=210-15-1=194(个)。
2 从几何概念上求解[2]例3:空间10个点,无三点共线,其中有六个点共面,其余无四个点共面,则这些可以组成四棱锥的个数有多少个?此题易错解,仿上例。
错解一:从共面的6个点中任取1个、2个、3个、4个点,与从另外4个不共面的点中任取4个、3个、2个、1个点可构成的四棱锥有C1■C4■+C2■C■■+C■■C2■=6+60=120+60=246(个)。
高考数学中常见的立体几何题解法

高考数学中常见的立体几何题解法立体几何是高考数学中的一个重要考点,占据了相当大的比重。
在高考中,立体几何题题目种类繁多,解法也各不相同。
本文将介绍几种常见的立体几何题解法,帮助考生更好地应对高考数学考试。
一、平行线与平面在立体几何题中,常见的一种情况是给出一条直线与两个平面的关系,考生需要求出直线和平面的距离、直线在平面上的投影等。
解法一:利用平行线与平面的性质,可通过构造垂线的方式解决问题。
具体步骤如下:1. 画出所给直线,并用不同颜色标出与该直线平行的两个平面;2. 在其中一个平面上,任选一点作为垂足;3. 连接该垂足与直线上的任意一点,得到一条垂线;4. 由于垂线与所给直线平行,因此垂线与另一个平面的交点即为所求点;5. 根据题目要求,计算出所求点到直线的距离或直线在平面上的投影。
解法二:根据几何关系和性质,利用相似三角形的特点解决问题。
具体步骤如下:1. 在给出的图形中,观察并找出相似三角形的性质;2. 根据相似三角形的性质,得到各个线段之间的比例关系;3. 利用比例关系解方程,求解出所需长度或角度。
二、平面图形的投影在立体几何题中,常见的一种情况是给出一个平面图形在空间中的投影,考生需要还原出该平面图形或者确定其性质。
解法一:根据已知条件以及图形的特点,利用平行四边形、相似三角形等图形的性质解决问题。
具体步骤如下:1. 画出所给平面图形的投影,并标出已知条件;2. 观察并找出平行四边形、相似三角形等图形的性质;3. 根据性质,确定各个线段之间的比例关系;4. 利用比例关系解方程,还原出所求图形或确定其性质。
解法二:利用投影的定义和性质解决问题。
具体步骤如下:1. 根据投影的定义,找到所给平面图形在空间中的位置;2. 根据已知条件及各个线段的投影长度,研究其规律性;3. 利用规律性解方程,求解出所求图形或确定其性质。
三、立体图形的体积与表面积在立体几何题中,求解立体图形的体积与表面积是经常出现的考点。
立体几何二面角5种常见解法

立体几何二面角5种常见解法立体几何二面角大小的求法二面角的类型和求法可用框图展现如下:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作 棱的 垂线‘得出平面角,用定义法时‘要认真观察图形的特T 生;例、如图,已知二面角a-a-p 等于120° ,PA 丄a ,A ea,PB 丄例、在四棱锥P-ABCD 中,ABCD 是正方形,PA 丄平面ABCD , 一、定义法: - —面角I可见楼型—不见棱型解法 垂线法 *垂面法积法十P ,Bep.求 z APB 的大"、.PA=AB=a,求二面角B-PC-D的大小二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD中,ABCD是平行四边形,PA丄平面ABCD,PA=AB=a,z ABC=30°,求二面角P-BC-A 的大小。
例、(2003北京春)如图,ABCD-AiBiCiDi是长方体,侧棱AA】长为1, 底面为正方体且边长为2,E是棱BC的中点,求面GDE与面CDE所成二面角的正切值・DAB例、△ ABC 中,Z A=90°,AB=4,AC=3,平面ABC 外一点P 在平面ABC内的射影是AB中点M,二面角P-AC-B的大小为45°。
求(1 )二面角P—BC—A的大小;(2)二面角C—PB—A的大小例、(2006年陕西试题)如图4,平面丄平面,n =h AG ,BG ,点A在直线I上的射影为Al,点B在I的射影为Bl,已知AB=2 ? AA 1=1,BBi=2,求:二面角Ai —AB — Bi 的大小.A三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半 平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的 平面与棱垂直;例、空间的点P 到二面角 I 的面、及棱I 的距离分别为四、射影法:(面积法)利用面积射影公式S 射=$原85 ,其中为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA 丄平面ABCD ,PA=AB= a ,求平面PBA 与平面PDC 所成二面角的大小。
高中数学方法总结立体几何的平面与直线解法

高中数学方法总结立体几何的平面与直线解法在高中数学中,立体几何是一个重要且复杂的内容。
其中,涉及到平面与直线的解法,在解题过程中需要掌握一定的方法和技巧。
本文将总结其中一些常用的解法,并提供相应的例题进行说明。
一、平面与直线的相交关系1. 平面与直线相交于一点当一个直线与一个平面相交于一点时,可以通过以下两种方法来确定该点的坐标。
方法一:设直线方程为L: ax + by + cz + d = 0,平面方程为P: Ax + By + Cz + D = 0。
将直线方程代入平面方程,即可求得该点的坐标。
例题:已知直线L: x - y + z - 1 = 0与平面P: 2x + y - z + 3 = 0相交于一点,求该点的坐标。
解答:将直线方程代入平面方程,得到:2(x - y + z - 1) + (y) - (z) + 3 = 02x - 2y + 2z - 2 + y - z + 3 = 02x - y + z + 1 = 0由上式可知,该点的坐标为(-1, 2, -3)。
方法二:利用平行向量的性质,将直线的方向向量与平面的法向量进行叉乘,求得交点的坐标。
例题:已知直线L过点A(2, 1, -1),其方向向量为l(1, -1, 2),平面P过点B(3, -1, 4),其法向量为n(2, 3, 1)。
求直线L与平面P的交点坐标。
解答:设交点为M(x, y, z)。
由于直线L上的点M同时满足直线L的方程和平面P的方程,即l∙AM = 0 且n∙MB = 0首先,求l∙AM = 0:(1, -1, 2)∙(x - 2, y - 1, z - (-1)) = 0x - 2 - y + 1 + 2z + 2 = 0x - y + 2z + 1 = 0其次,求n∙MB = 0:(2, 3, 1)∙(x - 3, y - (-1), z - 4) = 02x - 6 + 3y + 3 + z - 4 = 02x + 3y + z - 7 = 0联立以上两式,得出方程组:x - y + 2z + 1 = 02x + 3y + z - 7 = 0解方程组可得该点的坐标为(2, -1, 0)。