2023年高考物理总复习核心素养微专题(二)模型建构—— 弹簧模型
弹簧模型中的力与能---2024年高考物理二轮热点模型及参考答案

弹簧模型中的力与能目录【模型一】静力学中的弹簧模型【模型二】动力学中的弹簧模型【模型三】与动量、能量有关的弹簧模型【模型一】静力学中的弹簧模型静力学中的弹簧模型一般指与弹簧相连的物体在弹簧弹力和其他力的共同作用下处于平衡状态的问题,涉及的知识主要有胡克定律、物体的平衡条件等,难度中等偏下。
1(2024·全国·高三专题练习)如图所示,倾角为θ的斜面固定在水平地面上,两个质量均为m 的物块a 、b 用劲度系数为k 的轻质弹簧连接,两物块均恰好能静止在斜面上。
已知物块a 与斜面间的动摩擦因数是物块b 与斜面间的动摩擦因数的两倍,可认为最大静摩擦力等于滑动摩擦力,重力加速度大小为g ,弹簧始终在弹性限度内。
则弹簧的长度与原长相比()A.可能伸长了mg sin θ3k B.可能伸长了2mg sin θ3k C.可能缩短了mg sin θ3k D.可能缩短了2mg sin θ3k 2(2023上·黑龙江哈尔滨·高三校联考期末)如图所示,倾角为θ且表面光滑的斜面固定在水平地面上,轻绳跨过光滑定滑轮,一端连接物体c ,另一端连接物体b ,b 与物体a 用轻弹簧连接,c 与地面接触且a 、b 、c 均静止。
已知a 、b 的质量均为m ,重力加速度大小为g 。
则()A.c 的质量一定等于2m sin θB.剪断竖直绳瞬间,b 的加速度大小为g sin θC.剪断竖直绳之后,a、b将保持相对静止并沿斜面下滑D.剪断弹簧瞬间,绳上的张力大小为mg sinθ3如图所示,一质量为m的木块与劲度系数为k的轻质弹簧相连,弹簧的另一端固定在斜面顶端。
木块放在斜面上能处于静止状态。
已知斜面倾角θ=37°,木块与斜面间的动摩擦因数μ=0.5。
弹簧在弹性限度内,最大静摩擦力等于滑动摩擦力,重力加速度为g,sin37°=0.6,cos37°=0.8。
则()A.弹簧可能处于压缩状态B.弹簧的最大形变量为3mg 5kC.木块受到的摩擦力可能为零D.木块受到的摩擦力方向一定沿斜面向上【规律方法】(1)弹簧的最大形变量对应弹簧弹力的最大值。
2025年高中物理复习配套课件含答案解析 专题十 “滑块—斜(曲)面”模型和“滑块—弹簧”模型

1
2
上,由动量守恒定律得mvm=(m+2M)v1,由机械能守恒定律得 mm
2
=
1
2
13−3
13−3
2
(m+2M)1 +mg× h,联立解得m=
M,即m<
M时,物块在劈B上能上升的
2
3
2
2
2
最大高度可能大于 h,故C错误;
3
教师备用习题
若m=0.5M,则物块第一次滑到水平面上时,劈A与物块在水平方向上动量守恒,有
1
2
⋅
2
21
= 2 ⋅ 2,其中1 =
产生的内能为Δ =
1
2
0
2
1
2
− ⋅
1
0
2
2
21
=
=
ℎ
,解得ℎ
2
=
8
,C正确;与碰撞时
42 2
,D错误.
教师备用习题
教师备用习题
题型一
“滑块—斜(曲)面”模型
1. (多选)两个质量分别为M和2M的劈A和B高度相同,放在光滑水平面上,A和B的
与弹簧接触,0 ∼ 2 s内两物块的 − 图像
如图乙所示.则(
C )
A.的质量比的大
B.0 ∼ 1 s内,弹簧对、的冲量相同
C. = 1 s时,弹簧的弹性势能最大
D. = 2 s时,的动量比的大
热点题型探究
[解析] 由图乙可知,物块的初速度为
0 = 1.2 m/s, = 1 s时,物块、的共
平方向的速度始终相同,则冲出后一定会落回到细管中,故D正确.
热点题型探究
题型二 “滑块—弹簧”模型
弹簧模型(原卷版)—动量守恒的十种模型解读和针对性训练

动量守恒的十种模型解读和针对性训练弹簧模型模型解读【典例分析】【典例】(2024高考辽吉黑卷)如图,高度0.8m h =的水平桌面上放置两个相同物块A 、B ,质量A B 0.1kg m m ==。
A 、B 间夹一压缩量Δ0.1m x =的轻弹簧,弹簧与A 、B 不栓接。
同时由静止释放A 、B ,弹簧恢复原长时A 恰好从桌面左端沿水平方向飞出,水平射程A 0.4m x =;B 脱离弹簧后沿桌面滑行一段距离B 0.25m x =后停止。
A 、B 均视为质点,取重力加速度210m/s g =。
求:(1)脱离弹簧时A 、B 的速度大小A v 和B v ;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能p E D。
的【针对性训练】1. (2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A 、B 两物块,质量分别为2kg 、6kg ,B 的左端拴接着一劲度系数为200N/m 3的水平轻质弹簧,它们的中心在同一水平线上。
A 以速度v 0向静止的B 方向运动,从A 接触弹簧开始计时至A 与弹簧脱离的过程中,弹簧长度l 与时间t 的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能2p 12E kx =(x 为弹簧的形变量),则( )A. 在0~2t 0内B 物块先加速后减速B. 整个过程中,A 、B 物块构成的系统机械能守恒C. v 0=2m/sD. 物块A 在t 0时刻时速度最小2. (2024河南新郑实验高中3月质检)如图甲所示,一轻弹簧的两端与质量分别为m 1、m 2的两物块A、B 相连接,并静止在光滑水平面上。
现使A 获得水平向右、大小为3m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )A.在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都处于伸长状态B.从t 3到t 4时刻间弹簧由压缩状态恢复到原长C.两物体的质量之比为m 1:m 2=1:2D.在t 2时刻A 、B 两物块的动能之比为E k 1:E k 2=8:13. (2024山东济南期末)如图甲所示,物块A 、B 用轻弹簧拴接,放在光滑水平面上,B 左侧与竖直墙壁接触。
高中物理二轮专题——弹簧模型(解析版)

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高中物理二轮专题——弹簧模型(解析版)地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容高中物理第二轮专题——弹簧模型高考分析:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能等多个物理概念和规律,所以弹簧类问题也就成为高考中的重、难、热点.我们应引起足够重视.弹簧类命题突破要点:1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:Wk=-(kx22-kx12),弹力的功等于弹性势能增量的负值或弹力的功等于弹性势能的减少.弹性势能的公式Ep=kx2,高考不作定量要求,该公式通常不能直接用来求弹簧的弹性势能,只可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故簧轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹一端受力为,另一端受力一定也为。
高考物理弹簧类问题的几种模型及其处理方法归纳

第四阶段:弹簧继续被压缩,压缩量继续增加,产生的弹力继续增 加,大于2mg,使得物体AB所受合力变为向上,物体开始向下减速,直
分析:(1)当剪断细线l2瞬间,不仅l2对小球拉力瞬间消失,l1的 拉力也同时消失,此时,小球只受重力作用,所以此时小球的加速度为 重力加速度g。
(2)当把细线l1改为长度相同、质量不计的轻弹簧时,在当剪断细
线l2瞬间,只有l2对小球拉力瞬间消失,弹簧对小球的弹力和剪断l2之 前没变化,因为弹簧恢复形变需要一个过程。如图5所示,剪断l2瞬 间,小球受重力G和弹簧弹力,所以有:
A.A开始运动时 C.B的速度等于零时
B.A的速度等于v时 D.A和B的速度相等时
分析:解决这样的问题,最好的方法就是能够将两个物体作用的过 程细化,明确两个物体在相互作用的过程中,其详细的运动特点。具体 分析如下:
(1)弹簧的压缩过程:A物体向B运动,使得弹簧处于压缩状态,压 缩的弹簧分别对A、B物体产生如右中图的作用力,使A向右减速运动, 使B向右加速运动。由于在开始的时候,A的速度比B的大,故两者之间 的距离在减小,弹簧不断压缩,弹簧产生的弹力越来越大,直到某个瞬 间两个物体的速度相等,弹簧压缩到最短。
2 过程中所加外力F的最大值和最小值。 ⑵此过程中力F所做的功。(设整个过程弹簧都在弹性限度内,取 g=10m/s2)
分析:此题考查学生对A物体上升过程中详细运动过程的理解。在力 F刚刚作用在A上时,A物体受到重力mg,弹簧向上的弹力T,竖直向上的 拉力F。随着弹簧压缩量逐渐减小,弹簧对A的向上的弹力逐渐减小,则 F必须变大,以满足F+T-mg=ma。当弹簧恢复原长时,弹簧弹力消失,只 有F-mg=ma;随着A物体继续向上运动,弹簧开始处于拉伸状态,则物体 A的受到重力mg,弹簧向下的弹力T,竖直向上的拉力F,满足F-Tmg=ma。随着弹簧弹力的增大,拉力F也逐渐增大,以保持加速度不变。 等到弹簧拉伸到足够长,使得B物体恰好离开地面时,弹簧弹力大小等 于B物体的重力。
高考物理弹簧模型

高考物理弹簧模型1.高考物理弹簧弹力的计算弹簧弹力的大小可以由胡克定律来计算,即弹簧发生形变时,在弹性限度内,弹力的大小与弹簧伸长(或缩短)的长度成正比,数学表达式为,其中是一个比例系数,叫弹簧的劲度系数.弹簧的弹力不是一个恒定的力,而是一个变力,其大小随着弹簧形变量的变化而变化,同时还与弹簧的劲度系数有关。
2.高考物理弹簧弹力的特点(1)弹簧弹力的大小与弹簧的形变量有关,当弹簧的劲度系数保持不变时,弹簧的形变量,弹簧的形变量发生变化,弹簧的弹力相应地发生变化;形变量不变,弹力也力也就保持不变,由于弹簧的形变不能发生突变,故弹簧的弹力也不能瞬间发生变化,这与绳子的受力情况不同。
(2)当轻弹簧受到外力的作用时,无论弹簧是处于平衡状态还是处于加速运动状态,弹簧各个部分所受的力的大小是相同的。
(3)弹簧弹力的方向与弹簧的形变有关,在拉伸和压缩两种情况下,弹力的方向相反.在分析弹簧弹力的方向时,一定要全面考虑,如果题目没有说明是哪种形变,那么就需要考虑两种情况。
(4)根据胡克定律可知,弹力的大小与形变量成正比,方向与形变的方向相反,可以将胡克定律的表达式写成F=kx,即弹簧弹力是一个线性回复力,故在弹力的作用下,物体会做简谐运动。
3.高考物理弹性势能与弹力的功弹簧能够存储弹性势能,其大小为Ep=kx2/2,在高中阶段不需要掌握该公式,但要知道形变量越大,弹性势能就越大,在形变量相同的情况下,弹性势能是相等的;一般情况下,通常利用能量守恒定律来求弹簧的弹性势能,由于弹簧弹力是一个变力,弹力的功就是变力的功,可以用平均力来求功,也可以通过功能关系和能量守恒定律来求解。
4.高考物理常见的弹簧类问题(l)弹簧的平衡与非平衡问题;(2)弹簧的瞬时性问题;(3)弹簧的碰撞问题;(4)弹簧的简谐运动问题;(5)弹簧的功能关系问题;(6)弹簧的临界问题;(7)弹簧的极值问题;(8)弹簧的动量守恒和能量守恒问题;(9)弹簧的综合性问题.5.高考物理处理弹簧模型的策略(l)判断弹簧与连接体的位置,分析物体的受力情况;(2)判断弹簧原长的位置,现长的位置,以确定弹簧是哪种形变以及形变量的大小;(3)分析弹簧弹力的变化情况,弹箦弹力不能发生突变,以此来分析计算物体的运动状态;(4)根据相应的物理规律列方程求解,例如,物体处于平衡时,运用平衡条件和胡克定律求解。
2023年高考物理总复习素养专题强化练(二)弹簧模型

素养专题强化练(二)弹簧模型1.如图所示,一轻弹簧一端固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且使弹簧保持原长的A点无初速度释放,让它自由摆下,不计空气阻力,在重物由A点摆向最低点B 的过程中()A.重力做正功,弹力不做功B.重力做正功,弹力做负功,弹性势能增加C.若用与弹簧原长相等的不可伸长的细绳代替弹簧后,重力和弹力都做正功D.若用与弹簧原长相等的不可伸长的细绳代替弹簧后,重力做功不变,弹力不做功【解析】选B。
在重物由A点摆向最低点B的过程中,重物的高度下降,重物的重力势能减小,重力对重物做正功;弹簧伸长,弹簧的弹力对重物做负功,根据功能关系知,小球的机械能的减少量等于弹簧弹性势能的增加量,故A错误,B正确;若用与弹簧原长相等的不可伸长的细绳代替弹簧后,重物的高度下降,重物的重力势能减小,重力对重物做正功,由于细绳不可伸长,所以重物下落的高度减少,重力做的功减小;不可伸长的细绳拉力(弹力)方向始终与速度方向垂直,所以细绳的拉力(弹力)不做功,故C、D错误。
2.如图所示,一轻弹簧直立于水平面上,弹簧处于原长时上端在O点,将一质量为M的物块甲轻放在弹簧上端,物块下降到A点时速度最大,下降到最低点B时加速度大小为g,O、B间距为h。
换用另一质量m的物块乙,从距O点高为h的C点静止释放,也刚好将弹簧压缩到B点,不计空气阻力,弹簧始终在弹性限度内,重力加速度大小为g,则()A.乙运动到O点下方A处速度最大B.乙的最大速度为√gℎC.乙在B 点加速度大小为2gD.弹簧最大弹性势能为2mgh【解析】选D 。
物块甲下落的整个过程中,根据功能关系可得:Mgh =E p 弹,物块乙下落的整个过程中,根据功能关系可得:mg ·2h =E p 弹,解得:M =2m ;物块甲下降到A 点时速度最大,则有:kx 甲=Mg ;设弹簧压缩x 乙时乙的速度最大,则有:kx 乙=mg ,解得:x 乙=12x 甲,故A 错误;由自由落体运动的公式可得,设m 到达O 点时的速度为v ,根据动能定理可得mgh =12mv 2,解得v =√2g ℎ;m 到达O 点后,刚接触弹簧时,弹簧的弹力小于m 的重力,所以m 将继续向下做加速运动,所以m 的最大速度一定大于√2g ℎ,故B 错误;由M 运动的对称性可知,到达B 点时:h =2x A ,所以在B 点弹簧的弹力:F B =2kx 甲=2Mg =4mg ,乙在B 点的加速度:a =F B -mg m=3g ,故C 错误;弹簧的最大弹性势能等于乙的重力势能的减少量,即为E p 弹=2mgh ,故D 正确。
2024年高中物理新教材讲义:弹簧—小球模型 滑块—光滑斜(曲)面模型

专题强化3弹簧—小球模型滑块—光滑斜(曲)面模型[学习目标]1.进一步掌握用动量守恒定律、能量守恒定律解决碰撞问题的技巧(重点)。
2.掌握两类碰撞问题的解题方法(重难点)。
一、弹簧—小球模型如图所示,光滑水平面上静止着一质量为m 2的刚性小球B ,左端与水平轻质弹簧相连,另有一质量为m 1的刚性小球A 以速度v 0向右运动,并与弹簧发生相互作用,两球半径相同,问:(1)弹簧的弹性势能什么情况下最大?最大为多少?(2)两球共速后,两球的速度如何变化?弹簧长度如何变化?(3)小球B 的速度什么情况下最大?最大为多少?答案(1)当两个小球速度相同时,弹簧最短,弹簧的弹性势能最大。
由动量守恒定律得m 1v 0=(m 1+m 2)v 由能量守恒定律得12m 1v 02=12(m 1+m 2)v 2+E pmax 解得E pmax =m 1m 2v 022(m 1+m 2)(2)如图所示,两球共速后,A 减速,B 加速,A 、B 间的距离增大,故弹簧的压缩量减小,弹簧的长度增加。
(3)当弹簧恢复原长时,小球B 的速度最大,由动量守恒定律得m 1v 0=m 1v 1+m 2v 2由能量守恒定律得12m 1v 02=12m 1v 12+12m 2v 22解得v 2=2m 1v 0m 1+m 2。
拓展延伸(1)系统动能何时最小?求系统的动能的最小值。
(2)从小球与弹簧相互作用至弹簧恢复原状的过程,系统动能何时最大?求系统的动能的最大值。
答案(1)弹簧和小球组成的系统机械能守恒,两球共速时,弹簧的弹性势能最大,系统的动能最小。
E kmin =12(m 1+m 2)v 2=m 122(m 1+m 2)v 02(2)弹簧和小球组成系统机械能守恒,当弹簧恢复原长时,弹簧的弹性势能最小,系统的动能最大,E kmax =12m 1v 02。
对两个(或两个以上)物体与弹簧组成的系统,在相互作用的过程中,若系统合外力为零,则系统动量守恒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模型建构——弹簧模型
弹簧问题综合性大,但弹簧问题往往是由几个基本的模型组合而成,掌握弹簧问题的基本模型,对于解决复杂的弹簧问题有很重要的意义。
处理复杂的弹簧模型,要应用基本的弹簧模型,应用力的观点、能的观点以及动量的观点解决问题。
类型
图示
规律分析
瞬时性
初始时,A 、B 紧挨在一起但A 、B 之间无压力。
剪断细绳的瞬间,
弹簧的弹力不能突变,AB 系统受到的合外力等于B 的重力,用整体法求AB 的加速度,隔离法求A 、B 间的相互作用力
对称性
斜面光滑,物块B 紧靠挡板,物块A 被外力控制恰使弹簧处于原长状态。
撤去外力后,A 物块的运动具有对称性
分离性
撤去外力F ,AB 向上运动的过程中,A 、B 相互作用力为0的位置为A 、B 分离的位置
不变性
弹性势能与物体质量无关,相等的伸长量和缩短量弹性势能相等
弹性势能不变模型
光滑斜面上物块A 被平行斜面的轻质弹簧拉住静止于O 点,如图所示,现将A 沿斜面拉
到B 点无初速度释放,物块在BC 范围内做简谐运动,则下列说法错误的是
( )
A.在运动过程中,物块A 和弹簧组成的系统机械能守恒
B.从B 到C 的过程中,合外力对物块A 的冲量为零
C.物块A 从B 点到O 点过程中,动能的增量等于弹性势能的减小量
D.B 点时物块A 的机械能最小
【解析】选C。
在运动过程中,物块A和弹簧组成的系统机械能守恒,故A正确;从B到C的过程中,根据冲量定理可知Ft=mv C-mv B,由于B、C两点的速度为零,故合外力对物块A的冲量为零,故B正确;从B点到O点的过程中,对物块A根据动能定理可知-mgh-W弹=1
2
m v O2-0,故动能的增量等于弹性势能的减小量减去克服重力做的功,故C错误;物块A和弹簧系统机械能守恒;B 点时弹簧的弹性势能最大,故物块A的机械能最小,故D正确。
弹性势能对称模型
(2022·湖北选择考)如图所示,质量分别为m和2m的小物块Р和Q,用轻质弹簧连接后放在水平地面上,Р通过一根水平轻绳连接到墙上。
P的下表面光滑,Q与地面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力。
用水平拉力将Q向右缓慢拉开一段距离,撤去拉力后,Q恰好能保持静止。
弹簧形变始终在弹性限度内,弹簧的劲度系数为k,重力加速度大小为g。
若剪断轻绳,Р在随后的运动过程中相对于其初始位置的最大位移大小为()
A.μmg
k B.2μmg
k
C.4μmg
k D.6μmg
k
【解析】选C。
Q恰好能保持静止时,设弹簧的伸长量为x,满足kx=2μmg,若剪断轻绳后,物块P与弹簧组成的系统机械能守恒,弹簧的最大压缩量也为x,因此Р相对于其初始位置的最大位移大小为s=2x=4μmg
k
,故选C。
碰撞模型
(2022·全国乙卷)如图(a),一质量为m的物块A与轻质弹簧连接,静止在光滑水平面上;物块B向A运动,t=0时与弹簧接触,到t=2t0时与弹簧分离,第一次碰撞结束,A、B的v-t 图像如图(b)所示。
已知从t=0到t=t0时间内,物块A运动的距离为0.36v0t0。
A、B分离后,A 滑上粗糙斜面,然后滑下,与一直在水平面上运动的B再次碰撞,之后A再次滑上斜面,达到的最高点与前一次相同。
斜面倾角为θ(sinθ=0.6),与水平面光滑连接。
碰撞过程中弹簧始终处于弹性限度内。
求:
(1)第一次碰撞过程中,弹簧弹性势能的最大值; (2)第一次碰撞过程中,弹簧压缩量的最大值; (3)物块A 与斜面间的动摩擦因数。
【解析】(1)当弹簧被压缩至最短时,弹簧弹性势能最大,此时A 、B 速度相等,即t =t 0时刻,根据动量守恒定律有:
m B ·1.2v 0=(m B +m )v 0 根据能量守恒定律有:
E pmax =1
2m B (1.2v 0)2-1
2(m B +m )v 02
联立解得m B =5m 、E pmax =0.6m v 02
(2)同一时刻弹簧对A 、B 的弹力大小相等,根据牛顿第二定律F =ma 可知同一时刻a A =5a B
则同一时刻A 、B 的瞬时速度分别为
v A =a A t 、v B =1.2v 0-
a A t 5
根据位移等于速度在时间上的累积可得
s A =v A t (累积)、s B =v B t (累积) 又s A =0.36v 0t 0 解得s B =1.128v 0t 0
第一次碰撞过程中,弹簧压缩量的最大值Δs =s B -s A =0.768v 0t 0
(3)物块A 第二次到达斜面的最高点与第一次相同,说明物块A 第二次与B 分离后速度大小仍为2v 0,方向水平向右,设物块A 第一次滑下斜面的速度大小为v'A ,设向左为正方向,根据动量守恒定律有:mv'A -5m ·0.8v 0=m ·(-2v 0)+5mv'B 根据能量守恒定律有:
1
2mv 'A 2+12·5m ·(0.8v 0)2=12m ·(-2v 0)2+1
2
·5mv 'B 2 联立解得v'A =v 0
设在斜面上滑行的长度为L ,上滑过程,根据动能定理有: -mgL sin θ-μmgL cos θ=0-1
2m (2v 0)2 下滑过程,根据动能定理有:
mgL sin θ-μmgL cos θ=1
2m v 02
-0
联立解得μ=0.45
答案:(1)0.6m v 02 (2)0.768v 0t 0 (3)0.45。