光缆线路常见故障案例分析

合集下载

光缆故障排查案例-完整PPT课件

光缆故障排查案例-完整PPT课件
《物联网工程布线》项目三
光缆故信
单模光缆不能通信
案例1.校园网络中心到办公楼的6芯单模光缆中有两芯不能 通信;
单模光缆不能通信
经分析和使用光源/功率计测试:
案例1:分析可以判断两芯光纤衰减过大或已经折断。通过测试,可以看到在光纤 10米处有一尖峰,其余为平的,去掉8m的盲区和1m的测试跳线,可以判定故障处 在光缆进入机房终端盒1m的位置。(光纤需重新熔接)
多模光缆不能通信 案例2.从网络中心到教学楼的8芯多模光纤光缆中有两芯不能通信。
多模光缆不能通信
案例2:通过测试,发现在22m和46m处均有一处尖峰,查找发现,光缆在21m处有两 芯光缆折断,在42m处有缺陷,经过重新敷设和熔接,再次测试衰减值在正常范围内。
谢谢关注

光缆线路维护案例

光缆线路维护案例

光缆线路维护案例小南门西街光缆线路故障分析及经验总结一、故障情况2022年10月12日13:30小南门西街发生阻断障碍,使小南门西街部分用户业务中断。

因中断业务具有地点集中性(集中在小南门附近)和时间集中性(故障基本发生在同一时段内)的特点,故预判有可能是主干光缆阻断。

另外,根据近段时间线路巡查人员反馈的信息显示:市政部门在小南门部分地段正在进行拆迁。

据此,故障初步判断为可能是市政施工导致我主干光缆阻断。

二、故障处理过程1#直接头,打断光纤测试了局端和用户端,确定断点在1#接头的用户端(光缆引上的一端)。

因断点距离1#接头太近,所以OTDR无法测出具体米数(OTDR盲区原因)。

维修人员只能用替换光缆的方法,将1#接头用户端方向光缆替换了150米,新增一个24芯光缆接头。

全部接续完成后,经机房测试人员测试,光缆线路恢复正常。

15:30全部业务恢复正常,故障排除完成。

三、故障原因分析维修人员对拆除下的光缆进行检查时发现,在引上杆大约4.5米处的光缆上,有一处钝器造成的损伤。

因损伤造成的外观改变不明显,至使维修人员没有发现故障点。

在观察了周围环境后,现场人员分析可能是在拆除电杆旁边的建筑物时,拆下的拆除物砸到了电杆上,造成了光缆的损伤。

四、经验分析总结及后续防护措施此次排障有需要肯定的经验,也有需要改进的不足,总结一下,有以下几点:1、不要以修代护,加强平时的线路巡查及保护工作,尽量做到防患未然。

随着城市化的发展,各地都掀起了拆迁热潮。

拆迁单位迫于工期的要求,越来越呈现强势化,野蛮化。

在此状况下,我们只能加强线路巡查力度,对拆迁地段的线路,做好保护措施。

比如加装挡板或安装保护架,对重要线路提前做好预案,对一些无法实施保护措施的线路进行迁改。

3、克服麻痹大意的思想,线路维护无小事,将隐患消除在萌芽阶段。

此次故障,如维护人员不心存侥幸,对线路巡查人员提供的巡查信息足够的重视,并采取适当防护措施,极有可能避免障碍的发生。

电力通信光缆典型故障分析及应对措施

电力通信光缆典型故障分析及应对措施

电力通信光缆典型故障分析及应对措施1. 引言1.1 背景介绍电力通信光缆是现代电力系统中不可或缺的重要组成部分,它承载着电力信息传输的任务。

随着电力系统的不断发展和升级,电力通信光缆在电力系统中的作用也愈发凸显。

由于外界环境、人为操作等多种因素的影响,电力通信光缆常常会出现各种故障,给电力系统的正常运行和维护带来一定困扰。

了解和掌握电力通信光缆典型故障及其应对措施对于确保电力系统的稳定运行具有重要意义。

本文将对电力通信光缆典型故障进行分析,并提出相应的应对措施和预防措施。

通过对电力通信光缆故障现象、原因、解决方案等方面的探讨,为电力系统的运行和维护提供一定的参考和指导。

本文将结合一些常见的故障案例进行深入分析,以便更加直观地展示故障处理的过程和方法。

希望通过本文的研究,能够增进对电力通信光缆故障的认识,提高电力系统的安全稳定性。

2. 正文2.1 故障现象分析在实际的电力通信光缆运行中,可能会出现各种不同的故障现象,这些故障可能会对通信系统的正常运行造成严重影响。

故障现象分析是解决问题的第一步,只有深入分析故障现象,才能找到准确的故障原因并制定相应的应对措施。

常见的故障现象包括通信中断、信号质量下降、传输速率降低、信号延迟等。

通信中断是最为常见的故障现象之一,可能是由于光缆受损、连接头松动、光源故障等原因造成的。

信号质量下降则可能是由于光缆受到外部干扰、光缆老化、光源问题等引起的。

传输速率降低通常是由于光缆损坏、设备故障等原因导致的。

信号延迟也可能是光缆长度过长、光源问题等原因引起的。

针对不同的故障现象,需要采取不同的分析方法和应对措施。

只有深入分析故障现象,找出问题根源,才能有效地解决问题并保障通信系统的正常运行。

在处理故障现象时,需要充分利用专业的设备和技术手段来进行分析和诊断,确保问题能够及时得到解决。

2.2 典型故障原因分析1. 光缆老化:随着光缆使用时间的增长,光缆会逐渐老化,导致光纤表面磨损、内部纤芯损坏或光纤连接头松动等问题,从而引起信号传输故障。

七起光纤故障案例

七起光纤故障案例

七起光纤故障案例1.故障一装置型号:国电南自PSL-603GCM保护装置保护动作名称:220kV**线主一保护光纤保护通道中断故障描述:上位机报文“220kV线路主一保护光纤保护通道中断”,保护室检查确认PSL-603GCM保护装置有“光纤通道通信中断”报文和信号,不能复归。

原因:国电南自GXC-64/2M光纤PCM接入装置(复用接口装置)同轴电缆线(2M头)松脱。

处理情况:紧固后正常,故障信号,故障已消除,光纤通道数据传输正常。

2.故障二装置型号:国电南自PSL-603GCM保护装置保护动作名称:220KV**线主一光纤保护通道信号中断故障描述:上位机发“220KV主一保护通道异常LA”故障信号。

现地检查220KV线路保护A柜PSL-603GCM保护装置有“光纤通道通信中断”报文和信号,不能复归。

原因:通信机房光配柜(ODF柜),通信光配与保护光配之间的尾纤被老鼠咬断。

处理情况:对故障光纤进行更换,复归“220KV鲁中线保护通道异常LA”故障信号,故障已消除,光纤通道数据传输正常,保护具备投入条件。

向调度汇报并申请保护投入后,进行全面检查运行无异常。

3.故障三装置型号:国电南自PSL-603GCM保护装置保护动作名称:220KV**线主一保护通道异常故障描述:上位机发“220KV鲁中线保护通道异常LA”故障信号。

现地检查220KV线路保护A柜PSL-603GCM保护装置有“光纤通道通信异常”报文和信号,不能复归。

原因:通信机房华为(metro 1000)光设备空开跳闸,设备掉电,链路中断。

处理情况:空开送电后故障消除。

4.故障四装置型号:国电南自PSL-603GCM保护装置保护动作名称:220KV**线主一保护通道异常故障描述:上位机发“220KV鲁中线保护通道异常LA”故障信号。

现地检查220KV线路保护PSL-603GCM保护装置有“光纤通道通信异常”报文和信号,不能复归。

原因:PSL-603GCM保护装置(CPU)光收发插件缺陷,功率不足,衰耗过大。

光缆故障分析报告范例

光缆故障分析报告范例

光缆故障分析报告范例1、光信号缺失:一般因人为窥视信号、破坏光缆原因,致使光信号中断。

一次,接到一光节点无输出电信号的故障,检测该光接收机无输入光功率,到前端机房测试,光分路器输出光功率正常。

初步判断为该4芯光缆故障,安排人员沿线巡查,并未发现明显受损现象。

通过ODTR测试,发现4根纤芯中只有1根不通,根据故障点大概距离再到现场查看,仍未发现光缆有破损迹象。

于是将此故障点前后近100米光缆更换后信号恢复,仔细检查发现光缆上有1小孔,推断系误将光缆当作电缆,人为破坏光缆窥视信号行为所致。

2、光信号质量下降:如光缆中间熔接头质量不好,损耗过大,或光纤在接头盒中盘绕时弯曲半径太小,影响光功率的正常传输;接头盒防潮性能不好,使光纤老化快,造成光折射能力差,降低光功率;光纤活动接头处有脏物,接触不好,使光功率下降,可用脱脂棉蘸(zhan)无水酒精清洗;前端和末端设备的尾纤应盘绕好,固定在光纤盘上,避免折断和弯曲半径变小而造成光损耗增加,影响信号传输质量。

从光纤网络运行近十年的情况看,光发射机故障并不高,也出现过因停送电后冲击浪涌电流过大而烧坏光发射机电源部分的故障。

通过在前端加装稳压电源和不间断UPS电源,可以大大减少此类故障的发生。

光发射机输入的驱动电平要按设备要求注入,如频道增加或减少,也应调整驱动电平高低,避免因驱动电平过高或过低使光发射机CTB、CSO指标恶化而导致系统传输质量变差,这一点至关重要,也是调试光发射机最重要的工作。

如光发射机使用年限较长,光模块老化,使光功率下降,当下降到规定值范围以下时,应更换新的模块或发射机,确保足够的光发射功率。

光接收机在使用和维护中要掌握好输入光功率和输出RF射频电平,入口光功率要符合设备规定值要求,否则应采取措施来保证光接收机的正常工作,射频电平不要调得过高。

若接收机规定输出RF电平为110dBμV,设计、调试和维护时应低于110dBμV,否则会因电平过高可能产生画面出现横丝、图像不清楚等故障。

电力通信光缆典型故障分析及应对措施

电力通信光缆典型故障分析及应对措施

电力通信光缆典型故障分析及应对措施在当今社会的发展中,电力通信光缆就像一个“隐身人”,和我们的日常生活形影不离,它陪伴着我们的很多活动,是人们最亲密的朋友之一。

但我们的这位亲密的朋友有时会缺席我们的一些重要的瞬间,就是他们自身的故障,这些故障阻碍了它和人们的更多更深刻的交往,有的时候巨大的经济损失更是让我们心痛。

如果我们能够非常彻底的认识这位朋友,了解他们的方方面面,在他们出现问题的时候,我们不至于手足无措。

本文就是立足于更加深刻地认识电力通信光缆这位老朋友,分析当它出现故障时可以采取的措施,为今后更好的生活提供参考。

标签:电力通信;光缆;故障;应对措施1电力通信光缆典型故障类型和原因分析1.1 违规操作故障通信光缆管理的日常工作中,熔接危险点引发的故障为常见故障,由于相关人员对光纤熔接设备、光纤熔接步骤与质量标准、影响光纤熔接损耗的主要因素和降低光纤熔接损耗的日常维护保养措施掌握不全面而造成。

具体光缆检修和维护工作中,存在违规操作行为,造成电力通信光缆故障,影响光缆的安全使用。

1.2 外力破坏光缆处于一个公共空间,遭受外力因素的影响不可避免,如自然界的风雨变化、温度变化等,都会对光缆造成一定风化和腐蚀,影响光缆的使用质量,缩短光缆的使用寿命,导致光缆性能下降。

1.3 技术因素光缆施工安装、日常维护和检修工作中,都需要一定的技术支持,如果相关技术落实不到位,会对光缆整体使用效果和性能产生影响。

例如,光缆引下线工艺处理、光缆接头盒安装等,若技术不规范,安装工艺和质量将不达标,威胁光缆的正常使用。

1.4 管理因素光缆建设投入运营后,后期管理和运维至关重要,但一些电力通信公司忽视光缆的管理和维护,导致故障不能及时解决,造成更大的问题。

这反映了相关企业对于光缆管理欠缺有效的方法和技术。

2 电力通信光缆典型故障应对措施2.1改良施工的技术和工艺为了让电力通信光缆这个好伙伴更好地为人们服务,减少它的“事故率”,在施工和安装的工艺方面,要做好以下几点:①严守“专业”这个标杆,所有的一切都要严守专业这一要求。

光缆线路常见故障案例分析

光缆线路常见故障案例分析

光缆线路常见故障案例分析案例一:长途架空线路。

机房报出的断点测试距离是35.6km。

因为我们对线路的许多节点都有记载,所以就直接驱车赶到距离断点附近最近的一个接头盒处,此接头盒记录为距机房33.8km,打开接头盒,接续备用纤芯以便用OTDR做精确定位,同时派出人员往前查找断点,按照断点和已知接头盒的距离的差值得出断点距接头盒还有1.8km,经过OTDR的测试得出断点距离也是1.8km。

这也验证了我们的判断,并及时把断点的精确距离告知在前方查找的人员,经过仔细的巡查,发现在0332#杆光缆有异样,维护人员用脚扣上杆查看,发现是被人为的剪断,但是光缆的加强芯还没断,在远处看线路是看不出来的,所以没有精确的定位想尽快的查找到断点是有难度的。

案例二:地埋管道线路。

接到站里维护人员上报豪绅嘉苑6台光站全部没有下行光信号,相邻的小区4台光站下行也没有光功率。

我们初步推定为主干光缆断,然后驱车赶到豪绅嘉苑小区一台光站用OTDR测试,OTDR显示为3.025km断。

然后计算分支光缆的距离是1.02km,,得出二级主干光缆断点的距离为2km,查看主干光缆的尺码带和型号,然后驱车按照光缆和管道的实际走向沿途查找,车行至接近测得断点距离的位置发现有人在施工,在施工区现场发现管道被挖机挖断,光缆也被挖断,但是在挖断的光缆中有6条光缆,怎么能找到那根光缆才是我们需要的光缆呢?只有按照开始看到的光缆型号和尺码带去查找,最后找到了我们需要的光缆。

增加一段光缆熔接完毕。

案例三:地埋管道线路(不熟悉)。

管道二公司南二区宿舍,接站里维护人员上报5台光站都没有下行光功率,初步判断为二级光缆线路段造成。

赶到所在小区的光站测试一台光站得出216米断,按照常规这么短的距离应该很容易找到断点,而且小区外就有道路铺路施工,但是事情不是那么简单的。

首先线路是怎么走的我们不知道,分支4芯光缆是多长我们也不知道。

所以首先是要找到线路是怎么走的,就能找到分歧包,在我们按照光缆的走向一个一个人井的打开,在距离测试光站50米处找到了分歧包,除去分歧包前面的距离得出二级主干光缆的断点是166米,接着继续一个一个人井的打开去查找断点,当查找到光缆出小区用子管直埋过路的,但是对面施工区并没有发现有光缆的断头,怎么办?找来铁锹挖探沟找,下挖60cm发现了管道,但是此处管道是完好的,光缆在管道内是看不到的,按照距离还差19米才是断点的距离,接着顺着管道方向挖,当挖出10米后就发现管道已破损了,光缆也出来了,接着挖了几米后找到了光缆的断点,光缆只剩加强芯没断。

光缆线路故障典型案例-山东

光缆线路故障典型案例-山东

光缆线路典型案例分析中国联通山东省分公司案例编写人:案例编写时间:联系方式:(一)济宁光缆济南-泰安中继段故障案例分析一、故障处理情况2010年3月12日9:05,山东省级维护平台传输网管显示京沪320G波分系统、奥运波分系统济南至泰安之间光板互收loss告警,发送功率正常,SDH业务环保护,IP业务中断。

济南传输局接通知后,立即安排人员奔赴工商河机房进行电路调度并测试障碍地点,同时安排抢修人员去现场查找故障点。

10:20,抢修人员将受影响的京沪320G电路及奥运波分系统调度至济宁沪光缆上,业务恢复正常。

二、故障原因分析人井内管道光缆被人为剪断。

三、责任认定故意破坏造成的非责任性传输网S3级故障。

四、经验总结1、代维方没有履行代维职责。

由于铁路局改革,原代维单位职能划归济南铁路局管理;沟通、协调工作难度增大。

2、高铁工程施工现场复杂,代维方没有按照我方施工监护要求,设置监护标志,并派专人监护,造成故障的发生。

3、由于光缆路由位于铁路禁区,我方人员不能进入施工现场进行有效监护。

虽然我方在“两会”前及以传真及电话等形式及时告知代维方,但代维方依然不能采取有效措施,及时处理线路隐患。

五、后续采取的防范措施1、强化对代维单位的管理。

指定专人负责通信段的代维监管工作。

2、要求济南通信段加强线路的日常巡视,特别要加强易遭人为破坏地段的防护,必要时派人日夜守候。

3、鉴于京沪高速铁路电气化施工现场较多,要求代维单位加强对施工点的监护,确保施工点线路的安全。

4、要求代维单位对管道人井进行封堵,防止人为破坏的再次发生。

现场照片人井内被剪断的光缆(二)青岛上海光缆青岛-九龙中继段故障案例分析一、故障处理情况2010年4月26日下午16:07,青岛上海光缆在用系统发生环保护。

经测试,故障点位置距离青岛振华路机房约50.74公里,17:26分抢修人员赶到现场,组织开挖,由于滑坡土石方量大,给开挖造成很大困难,18时,开始布放抢修光缆,18:34 分,一干京沪穗WDM80入/L-1系统恢复,18:40分,一干京济沪穗WDM160入/L-1系统恢复,19:02分,二干高速中环系统恢复,至19时24分,全部纤芯接续完成,设备告警消除,但济南传输机房反馈一干京沪穗WDM80入/L-1系统光功率不稳定,时高时低,需要观察,抢修人员将光缆接头盒平稳放置后,未做其他处理,至21时20分左右,系统稳定,全部抢修工作完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光缆线路常见故障案例分析
案例一:
长途架空线路。

机房报出的断点测试距离是35.6km。

因为我们对线路的许多节点都有记载,所以就直接驱车赶到距离断点附近最近的一个接头盒处,此接头盒记录为距机房33.8km,打开接头盒,接续备用纤芯以便用OTDR做精确定位,同时派出人员往前查找断点,按照断点和已知接头盒的距离的差值得出断点距接头盒还有1.8km,经过OTDR的测试得出断点距离也是1.8km。

这也验证了我们的判断,并及时把断点的精确距离告知在前方查找的人员,经过仔细的巡查,发现在0332#杆光缆有异样,维护人员用脚扣上杆查看,发现是被人为的剪断,但是光缆的加强芯还没断,在远处看线路是看不出来的,所以没有精确的定位想尽快的查找到断点是有难度的。

案例二:
地埋管道线路。

接到站里维护人员上报豪绅嘉苑6台光站全部没有下行光信号,相邻的小区4台光站下行也没有光功率。

我们初步推定为主干光缆断,然后驱车赶到豪绅嘉苑小区一台光站用OTDR测试,OTDR显示为3.025km断。

然后计算分支光缆的距离是1.02km,,得出二级主干光缆断点的距离为2km,查看主干光缆的尺码带和型号,然后驱车按照光缆和管道的实际走向沿途查找,车行至接近测得断点距离的位置发现有人在施工,在施工区现场发现管道被挖机挖断,光缆也被挖断,但是在挖断的光缆中有6条光缆,怎么能找到那根光缆才是我们需要的光缆呢?只有按照开始看到的光缆型号和尺码带去查找,最后找到了我们需要的光缆。

增加一段光缆熔接完毕。

案例三:
地埋管道线路(不熟悉)。

管道二公司南二区宿舍,接站里维护人员上报5台光站都没有下行光功率,初步判断为二级光缆线路段造成。

赶到所在小区的光站测试一台光站得出216米断,按照常规这么短的距离应该很容易找到断点,而且小区外就有道路铺路施工,但是事情不是那么简单的。

首先线路是怎么走的我们不知道,分支4芯光缆是多长我们也不知道。

所以首先是要找到线路是怎么走的,就能找到分歧包,在我们按照光缆的走向一个一个人井的打开,在距离测试光站50米处找到了分歧包,除去分歧包前面的距离得出二级主干光缆的断点是166米,接着继续一个一个人井的打开去查找断点,当查找到光缆出小区用子管直埋过路的,但是对面施工区并没有发现有光缆的断头,怎么办?找来铁锹挖探沟找,下挖60cm发现了管道,但是此处管道是完好的,光缆在管道内是看不到的,按照距离还差19米才是断点的距离,接着顺着管道方向挖,当挖出10米后就发现管道已破损了,光缆也出来了,接着挖了几米后找到了光缆的断点,光缆只剩加强芯没断。

添加一段光缆熔接两个接头盒。

案例四:
地埋直埋一级干线。

接机房上报,徐州至连云港的一级干线光缆在48.5km处断。

接报后准备好熔接所需的设备,去48芯光缆300米备用。

由于我们有完备的线路资料,在资料上显示在47.3km处有以前处理过的接续包,所以我们就直接赶到这个距离故障点最近的包,然后徒步沿着此处往前继续查找故障点,由于是直埋光缆,所以我们
并没有首先开挖去找着个包。

在一边往前行进的过程中,一边仔细观察光缆沿线的地面特征,去寻找哪里有施工的地方,在行进至1公里的地方发现有条河的河摊有大量的新鲜淤泥,但是没有发现光缆,然后分派一组人继续往前查找,另一组留下来仔细查找,因为直埋缆在遇到河流的地方都会做护坡,我们就用钩子在河边护坡的位置来回的勾,勾了几次后勾到了一个光缆的断头,拉上来查看,光缆型号和纤芯芯束正符合。

然后在找另一头,但是另一头还埋在土里,需要开挖土方才能找到。

从车上取出带来的两把铁锹,分成两组轮换挖土,挖了一个小时才挖到光缆的另一头,接着挖出两米够熔接的长度。

加一段光缆熔接两个包。

案例五:
市内管道光缆。

接维修站维护人员上报某小区的一台光站(A)的下行没信号,上行正常,而且小区的其他光站也都正常,我们到现场测试750米断,测试上行纤是4.2km,和资料上对照是到机房了。

资料上显示分支光缆的长度是400米,由此判断断点是在主干光缆里,遇到这样的故障,断点是在主干光缆内,而且是只有一芯断,所以采取改用备用芯来解决这样的故障。

在光交找到备用纤,首先测试纤芯的状态是否是正常的。

经测试正常,然后把此备用纤芯熔接到A 光站的下行纤,这样A光站的下行纤就连接到机房了。

但是这样就需要机房来配合跳纤才能处理完成这样的故障。

而单靠我们维护人员是不好完成的。

相关文档
最新文档