电磁场与电磁波时变电磁场

合集下载

电磁场与电磁波期末复习知识点归纳

电磁场与电磁波期末复习知识点归纳

哈密顿算子:矢量微分算子( Hamilton、nabla、del )
ex
x
ey
y
ez
z
★ 标量场的梯度
gradu u u xˆ u yˆ u zˆ ( xˆ yˆ zˆ)u x y z x y z
★ 矢量场的散度计算公式:
divA= • A Ax Ay Az x y z
1
2=∞ nˆ • D1 s
nˆ E1 0 nˆ B1 0
nˆ H1 Js
2、理想介质表面上 的边界条件
1=0
2=0
nˆ • (D1 D2) 0 nˆ (E1 E2 ) 0
nˆ B1 B2 0
nˆ H1 H2 0
第三章 静态电磁场及其边值问题的解
静电场中: E 0
圆柱坐标和球坐标的公式了解:
Bx By Bz
圆柱坐标系中的体积微元: dV=(d)(d)(dz)= d d dz
分析的问题具有圆柱对称性时可表示为:dV=2ddz
球坐标系中的体积微元: dV=(rsind)(rd)(dr)
分析的问题具有球对称性 时可表示为:
=r2sindrdd dV=4r2dr
★ 标量场的等值面方程 u x, y, z 常数C
程的解都是唯一的。这就是边值问题的唯一性定理
◇ 唯一性定理的意义:是间接求解边值问题的理论依据。
● 镜像法求解电位问题的理论依据是“唯一性定理”。
点电荷对无限大接地导体平面的镜像
z
r1
P
q h
r r2 介质
x
h
介质
q
点电荷对接地导体球面的镜像。
P
r
a
r2
o θ q
d
’d

电磁场与电磁波课后习题及答案六章习题解答

电磁场与电磁波课后习题及答案六章习题解答

第六章时变电磁场有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场之中,如题图所示。

滑片的位置由确定,轨道终端接有电阻,试求电流i.解穿过导体回路abcda的磁通为故感应电流为一根半径为a的长圆柱形介质棒放入均匀磁场中与z轴平行。

设棒以角速度绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。

解介质棒内距轴线距离为r处的感应电场为故介质棒内的极化强度为极化电荷体密度为极化电荷面密度为则介质体积内和表面上同单位长度的极化电荷分别为平行双线传输线与一矩形回路共面,如题图所示。

设、、,求回路中的感应电动势。

解由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。

故回路中的感应电动势为式中故则有一个环形线圈,导线的长度为l,分别通过以直流电源供应电压U0和时变电源供应电压U(t)。

讨论这两种情况下导线内的电场强度E。

解设导线材料的电导率为,横截面积为S,则导线的电阻为而环形线圈的电感为L,故电压方程为当U=U0时,电流i也为直流,。

故此时导线内的切向电场为当U=U(t)时,,故即求解此微分方程就可得到。

一圆柱形电容器,内导体半径为a,外导体内半径为b,长为l。

设外加电压为,试计算电容器极板间的总位移电流,证明它等于电容器的传导电流。

解当外加电压的频率不是很高时,圆柱形电容器两极板间的电场分布与外加直流电压时的电场分布可视为相同(准静态电场),即故电容器两极板间的位移电流密度为则式中,是长为l的圆柱形电容器的电容。

流过电容器的传导电流为可见由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。

解点电荷q产生的电场满足麦克斯韦方程和由得据散度定理,上式即为利用球对称性,得故得点电荷的电场表示式由于,可取,则得即得泊松方程试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。

解(1)在直角坐标中(2)在圆柱坐标中(3)在球坐标系中已知在空气中,求和。

电磁场与电磁波(第三版)课后答案第6章

电磁场与电磁波(第三版)课后答案第6章

第六章时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题6.1图所示。

滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 穿过导体回路abcda 的磁通为5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰ B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。

设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。

解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为00()()P r r r a e r a B σεεωεεω==⋅=-⋅=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。

设0.2a m =、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。

《电磁场与电磁波》PDF讲稿集合

《电磁场与电磁波》PDF讲稿集合

特性:1)电场和磁场互为对方的涡旋(旋度)源。

在空E和§6-3 坡印廷定理及坡印廷矢量1、坡印廷定理能量的流动是时变场中出现的一个重要现象 流动的能量同空间媒质所消耗的能量以及电磁储能之间应满足能量守 恒定律,即Poynting定理,也称能流定理v v v ⎛ ∂ B ⎞ v ⎛ v ∂D ⎞ v v v v v v Q ∇ ⋅ (E × H ) = H ⋅ (∇ × E ) − E ⋅ (∇ × H ) = H ⋅ ⎜ − ⎜ ⎟ ⎜ ∂t ⎟ − E ⋅ ⎜ J + ∂t ⎟ ⎟ ⎝ ⎠ ⎝ ⎠ v v v ∂H v v v ∂E = − μH ⋅ − E ⋅ σ E − εE ⋅ ∂t ∂t 1 ω m = μH 2 ∂ ⎛1 ∂ ⎛1 ⎞ ⎞ 2 = − ⎜ μH 2 ⎟ − σE 2 − ⎜ εE 2 ⎟ ∂t ⎝ 2 ∂t ⎝ 2 1 ⎠ ⎠ ω e = εE 2 ∂ 2 v v = − (ω m + ω e ) − p p = E ⋅ J = σE 2 ∂t假定:媒质是线性、各向同性的,且不随时间变化;无外加源Chap.6 时变电磁场 —— §6-3 坡印廷定理及坡印廷矢量v v ∂ ∇ ⋅ (E × H ) = − (ωm + ωe ) − p ∂t v v v v ∂ 令 S = E × H,得 − ∇ ⋅ S = (ω m + ω e ) + p ∂t单位时间内流入单 位体积中的能量坡印廷定理微分形式 单位体积内焦耳热损耗单位体积内电场能量和磁场能量的增加率 坡印廷定理积分形式取体积分,应用高斯定律得:v v d − ∫ S ⋅ ds = s dt∫ (ωVm+ ω e )dv + ∫ pdvV体积V内变为焦耳 热损耗的功率体积V内电场能量和磁场能量每秒的增加量 由于假设体积V内无外加源,根据能量守恒定律,等式左 端即为单位时间内穿过闭合面S进入体积V中的能量Chap.6 时变电磁场 —— §6-3 坡印廷定理及坡印廷矢量坡印廷定理物理意义: v ∂ 微分形式: − ∇ ⋅ S = ∂t (ω m + ω e ) + p外界向电磁场某点提供的电磁功率密度,等于该点电磁场能量密 度的时间增加率,与对这点自由电荷提供的功率密度之和v v d 积分形式: − ∫s S ⋅ ds = dt ∫V (ω m + ω e )dv + ∫V pdv 某时刻外界通过闭合面进入其所包围体积V中的电磁功率,等于V 内电磁场能量的时间增加率与体积内焦耳热损耗的瞬时功率之和Poynting定理是电磁场中的能量守恒与转换定律 它清楚地表明电磁场是能量的携带者与传播者Chap.6 时变电磁场 —— §6-3 坡印廷定理及坡印廷矢量2、坡印廷矢量v v v v v 由坡印廷定理可知, S ⋅ ds = ∫ (E × H )⋅ ds表示通过闭合面S的总瞬时功率 ∫s s定义:v v v S = E×H为坡印廷矢量,也称能流密度矢量。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。

《电磁场与电磁波》试题8及答案

《电磁场与电磁波》试题8及答案
5.位移电流的表达式为。
6.两相距很近的等值异性的点电荷称为。
7.恒定磁场是场,故磁感应强度沿任一闭合曲面的积分等于零。
8.如果两个不等于零的矢量的叉积等于零,则此两个矢量必然相互。
9.对平面电磁波而言,其电场、磁场和波的三者符合右手螺旋关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是连续的场,因此,它可用磁矢位函数的来表示。
(2)求出媒质1中电磁波的相速。

(1)媒质2电磁波的波阻抗
(2)媒质1中电磁波的相速
(2)矢量场 的在点 处的大小
解:
(1)
(2)矢量场 的在点 处的大小为:
(3分)
(2分)
四、应用题(每小题10分,共30分)
18.自由空间中一点电荷电量为2C,位于 处,设观察点位于 处,求
(1)观察点处的电位
(2)观察点处的电场强度。
解:
(1)任意点 处的电位
(3分)
将观察点代入
(2分)
(2)
源点位置矢量
设上极板的电荷密度为 ,则
(1分)
极板上的电荷密度与电场法向分量的关系为
(2分)
由于平行板间为均匀电场,故
(2分)
(2)由:
(3分)
将上面电场代入得:
(2分)
五、综合题(10分)
21.平面电磁波在 的媒质1中沿 方向传播,在 处垂直入射到 的媒质2中, 。极化为 方向,如图3所示。
(1)求出媒质2电磁波的波阻抗;
(1)电容器间电场强度;
(2)电容器极板间电压。
五、综合题(10分)
21.平面电磁波在 的媒质1中沿 方向传播,在 处垂直入射到 的媒质2中, 。
极化为 方向,如图3所示。

电磁场与电磁波 第五章时变电磁场

电磁场与电磁波 第五章时变电磁场

D H J t 位移电流是电流概念的扩充,它不是带电粒子的定向运动 形成的,而是人为定义的,不能直接由实验测出。

l
H dl (J Jd ) dS
S
D J dS dS S S t
年中发生的美国内战 (1861-1865)将会降低为一个地区性琐事而
黯然失色”。
陕西科技大学编写
电磁场与电磁波
第5章 时变电磁场
14
评价
处于信息时代的今天,从婴儿监控器到各种遥控设备、从雷达到
微波炉、从地面广播电视到太空卫星广播电视、从地面移动通信到 宇宙星际通信、从室外无线局域网到室内蓝牙技术、以及全球卫星 定位导航系统等,无不利用电磁波作为传播媒体。 无线信息高速公路更使人们能在任何地点、任何时间同任何人取 得联系,发送所需的文本、声音或图象信息。电磁波的传播还能制 造一种身在远方的感觉,形成无线虚拟现实。 电磁波获得如此广泛的应用,更使我们深刻地体会到19世纪的麦 克斯韦和赫兹对于人类文明和进步的伟大贡献。
D (J )0 t
全电流连续 位移电流
D Jd 陕西科技大学编写 t
电磁场与电磁波
第5章 时变电磁场
7
流进曲面S1的传导电流 S1 S2 等于流出S2的位移电流 ② 位移电流与传导电流、运流电流一样具有磁的效应;

J dS Jd dS
令 l2 0
H 2t H1t J s
磁场: ( H - H ) J 即 en 1 2 S
B1n B2n 电场:H 2t H1t J s
陕西科技大学编写
电磁场与电磁波
第5章 时变电磁场

电磁场与电磁波及其应用 第四章

电磁场与电磁波及其应用 第四章
将以上两式相减, 得到
在线性、 各向同性媒质中, 当参数不随时间变化时,
于是得到 再利用矢量恒等式
可得到 (4.3.4)
在体积V上, 对式(4.3.4)两端积分, 并应用散度定理即 可得到
(4.3.5)
由于E和H也是相互垂直的, 因此S、 E、 H三者是相互 垂直的, 且构成右旋关系, 如图4.3-1 所示。
第四章 时变电磁场
4.1 波动方程 4.2 时变场的位函数 4.3 时变电磁场的能量与能流 4.4 时谐电磁场 4.5 左手媒质 4.6 时变电磁场的应用
4.1 波 动 方 程
在无源空间中, 电流密度和电荷密度处处为零, 即 ρ=0、 J=0。 在线性、 各向同性的均匀媒质中, E和H满足 麦克斯韦方程
图4.3-1 能流密度矢量与电场及磁场的方向关系
例4.3.1 同轴线的内导体半径为a、 外导体半径为b, 其 间均匀充填理想介质。 设内外导体间电压为U, 导体中流过 的电流为 I。 (1) 在导体为理想导体的情况下, 计算同轴线 中传输的功率; (2) 当导体的电导率σ为有限值时, 计算通 过内导体表面进入每单位长度内导体的功率。
磁场仍为 内导体表面外侧的坡印廷矢量为
由此可见内导体表面外侧的坡印廷矢量既有轴向分量, 也 有径向分量, 如图4.3-3所示。
图4.3-3 同轴线中电场、 磁场和坡印廷矢量 (非理想导体情况)
进入每单位长度内导体的功率为
式中
是单位长度内导体的电阻。 由此可见,
进入内导体中的功率等于这段导体的焦耳损耗功率。
利用复数取实部表示方法, 可将式(4.5.1)写成
式中
(4.4.2)
称为复振幅, 或称为u(r, t)的复数形式。 为了区别复数形 式与实数形式, 这里用打“•”的符号表示复数形式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场的
时变电磁场中位函数的定义
矢量位


电磁场的
B0
B A
标量位
ΕB t
(ΕA )0 t
EA
t
EA
t
8
位函数的不唯一性


满足下列变换关系的两组位函数(A、)和(A、)能描述同
一个电磁场问题。
A A
能流密度矢量
向的单位面积的电磁功率
坡印廷矢量的特点
S既垂直于E也垂直于H,又因 为E和H自身也是相互垂直的, 因此, S 、H 、 E三者是相互 垂直,且成右手螺旋关系。
23
E
O S
H
能流密度矢量
S(r,t)=E(r,t)H(r,t) 由于式中的E(r,t)和H(r,t)都是瞬时值,所以能流密度
S(r,t)也是瞬时值,只有当E(r,t)和H(r,t)同时达到最大值 时, S(r,t)才能达到最大。若某一时刻,E(r,t)或H(r,t) 为零,则S(r,t)=0。
2
t 2

பைடு நூலகம்

达郎贝尔 方程
14
4.3 电磁能量守恒定律 讨论内容
电磁能量的流动 能流密度矢量 S 电磁能量守恒原理 坡印廷矢量及其特点
15
电磁能量的流动 定性分析:
电磁能量的定向流动形成“能流”,类似于“水流” 。
16
定量分析:
电场能量密度:
we

1 2
E
D
磁场能量密度:
wm

5
在直角坐标系中,波动方程可以分解成三个标量方程,每 个方程只含有一个方向上的场分量。
2E 2tE 20
2Ex x2

2Ex y 2

2Ex z2


2Ex t2

0
2Ey x2

2Ey y 2

2Ey z2

2Ey t2

0
2Ez x2
体中功率等于这段导体的焦耳损耗功率。
H B H H 1 ( H H ) ( 1 H B ) t t 2 t t2
21
再利用矢量恒等式:
Ε H H Ε ( Ε H )
即可得到坡印廷定理的微分形式
原因:未规定 A 的散度。
9
位函数的规范条件
造成位函数的不确定性(不唯一性)的原因就是没有规定 A 的散度。利用位函数的不确定性,可通过规定A 的散度使位函数
满足的方程得以简化。
在电磁理论中,通常采用洛仑兹规范条件,即
A
t 除了利用洛仑兹条件外,另一种常用的是库仑规范条件,即
Ε
B t
D t
将以上两式Ε 相 减 ,H 得 到H Ε Ε J Ε D H B t t
在线性和各向同性的媒质中,当参数都不随时间变化时,则有
Ε D Ε Ε 1 ( Ε Ε ) ( 1 Ε D ) t t 2 t t2
E外aealnU (ba)ezπaI2
磁场则仍为
H外a
e
I 2πa
内导体表面外侧的坡印廷矢量为
同轴线中的电场、磁场和坡印廷矢量 (非理想导体情况)
I2
U I
S 外 a (E 外 H 外 ) a e 2 π 2 a 3 e z2 π a 2 ln ( b a )
同轴线中的电场、磁场和坡印廷矢量 (理想导体情况)
穿过任意横截面的功率为
P SS e zd Sa b2 π2 U ln I(ba )2 πd U I
27
(2)当导体的电导率σ为有限值时,导体内部存在沿电流方
向的电场
E内J ez
I
πa2
根据边界条件,在内导体表面上电场的切向分量连续,即 E外z E内z 因此,在内导体表面外侧的电场为
28
由此可见,内导体表面外
侧的坡印廷矢量既有轴向
分量,也有径向分量,如
图所示。进入每单位长度 内导体的功率为
同轴线中的电场、磁场和坡印廷矢量 (非理想导体情况)
P S S 外 a ( e ) d S 0 1 2 π I 2 a 2 32 π a d z π a I 2 2 R I 2 1 式中 R π a 2 是单位长度内导体的电阻。由此可见,进入内导
E e
U
ln(b
, a)
I
H e 2π
(ab)
内外导体之间任意横截面上的坡印廷矢量
UI
U I
S E H [ e ln ( b a ) ] ( e 2 π ) e z2 π 2 ln ( b a )
26
电磁能量在内外导体之间的介质中沿轴方向流动,即由电源流向 负载,如图所示。
④矢量位只决定于J,标量位只决定于ρ,这对求解方程特别有利。
⑤电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应
用不同的规范条件,矢量位 A 和标量位 的解也不相同,但最终
得到的电磁场矢量E、H是相同的。
13
静态场与时变场中位函数的比照
静态场(静电场、恒定磁场) 特点:电场、磁场相互独立
时变电磁场 特点:电场、磁场是一个整体
B恒A
E静
A0
2A J



2



矢量磁位 标量电位 库仑规范 泊松方程
B变A
E变At
A
t
电磁场的 矢量位
电磁场的 标量位
洛仑兹规范


2
A

2A t 2

J



2

1 2
H
B
dW
dt V
S
电磁场能量密度: w w ew m1 2ED 1 2H B
空间区域V中的电磁能量:W w d V (1 E D 1 H B )d V
V
V2 2
特点:当场随时间变化时,空间各点的电磁场能量密度也要随 时间改变,从而引起电磁能量流动。
17
能流密度矢量 为了描述能量的流动状况,引入“能流密度矢量”,其
S
d tV 2 2
V
微分形式: (E H ) (1 E D 1 H B ) E J t2 2
其中: d (1E D 1H B )dV—— 单位时间内体积V 中所增加
dt V2 2
的电磁能量。
EJdV——
单位时间内电场对体积V中的电流所做的功;
24
例4.3.1 同轴线的内导体半径为a 、外导体的内半径为b,其 间填充均匀的理想介质。设内外导体间的电压为U ,导体中流过 的电流为I 。(1)在导体为理想导体的情况下,计算同轴线中传
输的功率;(2)当导体的电导率σ为有限值时,计算通过内导体
表面进入每单位长度内导体的功率。
同轴线
25
解:(1)在内外导体为理想导体的情况下,电场和磁场只存 在于内外导体之间的理想介质中,内外导体表面的电场无切向分 量,只有电场的径向分量。利用高斯定理和安培环路定理,容易 求得内外导体之间的电场和磁场分别为
物理意义:单位时间内,通过曲面S 进入体积V的电磁能量等于 体积V 中所增加的电磁场能量与损耗的能量之和。
22
坡印廷矢量(电磁能流密度矢量)
描述时变电磁场中电磁能量传输的一个重要物理量
定义:S Ε H ( W/m2 )
E
物理意义:
O

S
S的方向 —— 电磁能量传输的方向
H
S的大小 —— 通过垂直于能量传输方
t H
t
H 0

Ε 0
H (E )
t
H(E)
t
( H ) 2H 2 tH 2
同理可得
2E 2tE 20

2H

2tH 2 0
电磁场波动方程
1
2
本章内容
4.1 波动方程 4.2 电磁场的位函数 4.3 电磁能量守恒定律 4.4 惟一性定理 4.5 时谐电磁场
3
4.1 波动方程
问题的引入
麦克斯韦方程 —— 一阶矢量偏微分方程组,描述电场与磁 场
麦克斯韦方程组
间波的动相方互程转。化(关较系简。单()较复杂)
波动方程 —— 二阶矢量偏微分方程,揭示电磁场的波动性。
A t 2 A 0 2 tA 2 2A J 2( A A J t)
t2
11
同样

D
D E 、 E A

t
(A )
A0
位函数满足的微分方程

DE
H B
10
HJD


BJ

E
t
B A E A
t
t A J
( A )

t t
A ( A ) 2 A
无源区的波动方程
在无源空间中,设媒质是线性、各向同性且无损耗的均匀媒
质,则有 2E 2tE 20

2H

2H0
t2
电磁波动方程
4
推证 在无源空间中,J0 。设媒质是线性、各向同
性且无损耗的均匀媒质,则有






H
Ε

Ε

2Ez y 2

2Ez z2

2Ez t2
相关文档
最新文档