二分法求方程的近似解
用二分法求方程的近似解(带练习)

4.5.2用二分法求方程的近似解1.二分法的概念对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.用二分法求函数零点近似值的步骤给定精确度ε,用二分法求函数y=f(x)零点x0的近似值的一般步骤如下:(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点__c__.(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x0=c),则__c__就是函数的零点;②若f(a)f(c)<0(此时x0∈(a,c)),则令b=c;③若f(c)f(b)<0(此时零点x0∈(c,b)),则令a=c.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).以上步骤可借助口诀记忆:定区间,找中点,中值计算两边看;同号去,异号算,零点落在异号间;周而复始怎么办?精确度上来判断.1.已知函数f(x)的图象如图,其中零点的个数与可以用二分法求解的零点的个数分别为()A.4,4 B.3,4C.5,4 D.4,3D解析:图象与x轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以可以用二分法求解的零点个数为3,故选D.2.若函数f(x)在(1,2)内有1个零点,要使零点的近似值满足精确度为0.01,则对区间(1,2)至少二等分( )A .5次B .6次C .7次D .8次C 解析:设对区间(1,2)至少二等分n 次,初始区间长为1. 第1次二等分后区间长为12;第2次二等分后区间长为122;第3次二等分后区间长为123;…第n 次二等分后区间长为12n .根据题意,得12n <0.01,∴n >log 2100. ∵6<log 2100<7, ∴n ≥7.故对区间(1,2)至少二等分7次.【例1】下面关于二分法的叙述中,正确的是( ) A .用二分法可求所有函数零点的近似值B .用二分法求方程的近似解时,可以精确到小数点后的任一位C .二分法无规律可循,无法在计算机上完成D .只能用二分法求函数的零点B 解析:用二分法求函数零点的近似值,需要有端点函数值符号相反的区间,故选项A 错误;二分法是一种程序化的运算,可以在计算机上完成,故选项C 错误;求函数的零点的方法还有方程法、函数图象法等,故选项D 错误.故选B.运用二分法求函数的零点应具备的条件(1)函数图象在零点附近连续不断.(2)在该零点左右函数值异号.只有满足上述两个条件,才可用二分法求函数的零点.1.下列关于函数f(x),x∈[a,b]的命题中,正确的是()A.若x0∈[a,b]且满足f(x0)=0,则x0是f(x)的一个零点B.若x0是f(x)在[a,b]上的零点,则可以用二分法求x0的近似值C.函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点D.用二分法求方程的根时,得到的都是近似解A解析:使用二分法必须满足二分法的使用条件,B不正确;f(x)=0的根也一定是函数f(x)的零点,C不正确;用二分法求方程的根时,得到的也可能是精确解,D不正确,只有A正确.2.已知下列四个函数图象,其中能用二分法求出函数零点的是()A解析:由二分法的定义与原理知A选项正确.【例2】利用二分法求方程x2-x-1=0的近似解(精确度为0.3).解:令f(x)=x2-x-1,由于f(0)=-1<0,f(1)=-1<0,f(2)=1>0,故可取区间(1,2)作为计算的初始区间.用二分法逐次计算,列表如下:零点所在区间中点的值中点函数值(1,2) 1.5 -0.25(1.5,2) 1.75 0.312 5(1.5,1.75) 1.625 0.015 625∵|1.75-1.5|=0.25<0.3,∴方程x2-x-1=0的近似解可取1.5或1.75.二分法的步骤证明函数f(x)=2x+3x-6在区间(1,2)内有唯一一个零点,并求出这个零点.(精确度为0.1)证明:∵函数f(x)=2x+3x-6,∴f(1)=-1<0,f(2)=4>0.∴f(x)在区间(1,2)内有零点.又∵f(x)是增函数,∴函数f(x)=2x+3x-6在区间(1,2)内有唯一的零点.设该零点为x0,则x0∈(1,2),取x1=1.5,f(1.5)≈1.33>0,f(1)·f(1.5)<0,∴x0∈(1,1.5).取x2=1.25,f(1.25)≈0.128>0,f(1)·f(1.25)<0,∴x0∈(1,1.25).取x3=1.125,f(1.125)≈-0.44<0,f(1.125)·f(1.25)<0,∴x0∈(1.125,1.25).取x4=1.187 5,f(1.187 5)≈-0.16<0,f(1.187 5)·f(1.25)<0,∴x0∈(1.187 5,1.25).∵|1.25-1.187 5|=0.062 5<0.1,∴可取x0=1.25,则该函数的零点近似解为1.25.探究题1某方程在区间D=(2,4)内有一无理根,若用二分法求此根的近似值,要使所得的近似值的精确度达到0.1,则应将区间D等分的次数至少是________次.5解析:第一次等分,则根在区间(2,3)内或(3,4)内,此时精确度ε>0.1;不妨设根在(2,3)内,第二次等分,则根在区间(2,2.5)内或(2.5,3)内,此时精确度ε>0.1;不妨设根在(2,2.5)内,第三次等分,则根在区间(2,2.25)内或(2.25,2.5)内,此时精确度ε>0.1;不妨设根在(2,2.25)内,第四次等分,则根在区间(2,2.125)内或(2.125,2.25)内,此时精确度ε>0.1;不妨设根在(2,2.125)内,第五次等分,则根在区间(2,2.062 5)内或(2.062 5,2.125)内,此时精确度ε<0.1.满足题目要求,故至少要等分5次.探究题2在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为()A.0.68 B.0.72 C.0.7 D.0.6C解析:已知f(0.64)<0,f(0.72)>0,则函数f(x)的零点的初始区间为[0.64,0.72],又0.68=12×(0.64+0.72),且f(0.68)<0,所以零点在区间[0.68,0.72],且该区间的左、右端点精确到0.1所取的近似值都是0.7.因此,0.7就是所求函数的一个正实数零点的近似值.1.根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f(x)=0的近似解,即按照用二分法求函数零点近似值的步骤求解.2.区分好“精确度”与“精确到”.3.现实生活中,有很多问题可以用二分法来解决,例如线路断路、地下管道的堵塞、水管的泄漏等.在26枚崭新的金币中,有一枚外表与真金币完全相同的假币(质量轻一点),现在只有一台天平,应用适当的方法最多称几次就可以发现这枚假币?将26枚金币平均分成两份,放在天平上,假币在轻的那13枚金币里面;将这13枚金币拿出1枚,将剩下的12枚平均分成两份,若天平平衡,则假币一定是拿出的那一枚,若不平衡,则假币一定在轻的那6枚金币里面;将这6枚金币平均分成两份,则假币一定在轻的那3枚金币里面;将这3枚金币任意拿出2枚放在天平上,若平衡,则剩下的那一枚是假币,若不平衡,则轻的那一枚是假币.依据上述分析,最多称4次就可以发现这枚假币.用二分法求方程的近似解练习(30分钟60分)1.(5分)定义在R上的函数f(x)的图象是连续不断的曲线,已知函数f(x)在区间(a,b)上有一个零点x0,且f(a)f(b)<0,用二分法求x0时,当fa+b2=0时,函数f(x)的零点是() A.(a,b)外的点B.a+b2C.区间a,a+b2或a+b2,b内的任意一个实数D.x=a或bB解析:由fa+b2=0知a+b2是零点,且在(a,b)内.2.(5分)为了求函数f(x)=2x+3x-7的一个零点,某同学利用计算器得到自变量x和函数f(x)的部分对应值,如表所示.x 1.25 1.312 5 1.375 1.437 5 1.51.562 5f(x) -0.871 6 -0.578 8 -0.281 30.021 01 0.328 43 0.641 15则方程2x+3x=7的近似解(精确到0.1)可取为()A.1.32 B.1.39 C.1.4 D.1.3C解析:由题意可知f(x)为增函数.由f(1.375)•f(1.437 5)<0,可知方程2x+3x=7的近似解可取为1.4.故选C.3.(5分)若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下.f(1)≈-2 f(1.5)≈0.625 f(1.25)≈-0.984f(1.375)≈-0.260 f(1.437 5)≈0.162 f(1.406 25)≈-0.054那么方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是()A.1.25 B.1.375 C.1.42 D.1.5C解析:由表格可得,函数f(x)=x3+x2-2x-2的零点在(1.406 25,1.437 5)之间,且1.437 5-1.406 25<0.05.结合选项可知,方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是1.42.故选C.4.(5分)用二分法求方程ln x-2+x=0在区间[1,2]上零点的近似值时,先取区间中点c=32,则下一个含根的区间是32,2.5.(5分)某同学在借助计算器求“方程lg x=2-x的近似解(精确到0.1)”时,设f(x)=lg x+x-2,算得f(1)<0,f(2)>0;在后面的过程中,他用二分法又取了4个x的值,计算了其函数值的正负,并得出判断,方程的近似解是x≈1.8.那么他再取的x的4个值依次是________.1.5,1.75,1.875,1.812 5解析:第一次用二分法计算得区间(1.5,2),第二次得区间(1.75,2),第三次得区间(1.75,1.875),第四次得区间(1.75,1.812 5).6.(5分)利用计算器,列出部分自变量和函数值的对应值如表:x -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0y=2x 0.329 9 0.378 9 0.435 3 0.5 0.574 30.659 8 0.757 9 0.870 6 1y=x2 2.56 1.96 1.44 1 0.64 0.36 0.16 0.04 0 若方程2x=x2有一个根位于区间(a,a+0.4)(a在表格中第一行里的数据中取值),则a 的值为________.-1或-0.8解析:令f(x)=2x-x2,由表中的数据可得f(-1)<0,f(-0.6)>0,f(-0.8)<0, f(-0.4)>0,∴方程的根在区间(-1,-0.6)与(-0.8,-0.4)内.∴a=-1或a=-0.8.7.(5分)用二分法求方程x2=2的正实根的近似解(精确度为0.001)时,如果选取初始区间是[1.4,1.5],则达到精确度要求至少需要计算________次.7解析:设至少需要计算n次,则n满足0.12n<0.001,即2n>100,因为n∈N*,且27=128,故要达到精确度要求至少需要计算7次.8.(12分)以下是用二分法求方程x3+3x-5=0的一个近似解(精确度为0.1)的不完整的过程,请补充完整,并写出结论.设函数f(x)=x3+3x-5,其图象在(-∞,+∞)上是连续不断的一条曲线.先求值,f(0)=________,f(1)=________,f(2)=________,f(3)=________.所以f(x)在区间________内存在零点x0,填表:区间中点m f(m)的符号区间长度解:f(0)=-5,f(1)=-1,f(2)=9,f(3)=31,f(x)在区间(1,2)内存在零点x0,填表为区间中点m f(m)的符号区间长度(1,2) 1.5 + 1(1,1.5) 1.25 +0.5(1,1.25) 1.125 -0.25(1,125,1.25) 1.187 5 +0.125(1.125,1.187 5) 0.062 5因为|1.187 5-1.125|=0.062 5<0.1,所以原方程的近似解可取为1.187 5.9.(13分)求方程x2-2x-1=0的一个大于零的近似解(精确度为0.1).解:设f(x)=x2-2x-1,先画出函数图象的草图,如图所示.因为f(2)=-1<0,f(3)=2>0,所以在区间(2,3)上,方程x2-2x-1=0有一解,记为x1,取2和3的中间数2.5,因为f(2.5)=0.25>0,所以x1∈(2,2.5),再取2与2.5的中间数2.25,因为f(2.25)=-0.437 5<0,所以x1∈(2.25,2.5),如此继续下去,得f(2.375)<0,f(2.437 5)>0,则x1∈(2.375,2.4375),因为|2.437 5-2.375|=0.062 5<0.1.所以此方程大于零的近似解为2.437 5.。
3.1.1二分法求方程的近似解

已知f(2)<0,f(3)>0,求方程f(x)=lnx+2x-6=0的近根似解
-
-
+
f (2.5) 0, f (3) 0 2.5 x1 3
2
2.5
3
-
- + + f (2.5) 0, f (2.75) 0 2.5 x1 2.57
ln x 2x
f (2) 0, f
6零点在2,3
(3) 0
次数
ab 2
f ( a b) 取a
2
取b
区间长度:
ba
1 2.5
-0.084
(22.5.5,33)
0.5
2 2.75
0.512
(22..55 , 22.7.755 )
0.25
3 2.625
0.215
(2.5, 2.625)
0.125
3.1.2 用二分法求方程的近似解
数学发现之旅从这里开始……
复习思考:
1.零点存在的判定
如果函数y=f (x)在区间[a, b]上的图象是 连续不断的一条曲线,并且有f(a)f(b)<0, 那么,函数y=f(x)在区间(a,b)内有零点, 即存在c (a,b),使得f(c)=0,这个c也就是 方程f(x)=0的根.
4 2.5625
0.066
(2.5, 2.5625)
0.0625
由于|2.5625-2.5|=0.0625<0.1
f (x) ln x 2x 6
所以方程的近似解为:
x 2.5625或2.5
2.5
2.75
2
二分法求方程的近似解

二分法求方程的近似解
二分法是一种求解方程近似解的数值方法。
它的思路是将待求解
区间分成两个子区间,通过比较子区间端点函数值的符号确定新的待
求解区间,重复这个过程直到达到指定的精度要求。
二分法的优点是
收敛速度较快,但需要满足一定的前提条件,如函数在待求解区间内
单调、连续等。
具体实现时,可以先确定一个初始区间[a,b],计算出函数在两
个端点的值f(a)和f(b)。
如果f(a)和f(b)符号相同,则表示该区间
内没有实根,需要选择另一个区间;否则,可以将区间的中点
c=(a+b)/2计算出来,计算f(c)的符号,如果与f(a)的符号相同,则
舍弃前一半区间,否则舍弃后一半区间,将c作为新的端点继续迭代,直到满足精度要求为止。
二分法求解方程的近似解,在数学、物理等领域广泛应用,它不
仅在理论上有严格的证明,而且在计算机实现中也十分方便。
在实际
问题中,我们可以通过对待求解区间的缩减和符号比较来快速确定解
的位置,从而实现高效的计算。
用二分法求方程的近似解课件-2022-2023学年高一上学期数学苏教版(2019)必修第一册

- + -6<0,因此f(x)的零点在区间 ,
64 8 4
4 2
=
7 5
,
4 2
1,
5
2
上.
上,
上.
【方法总结】通过二分法不断缩小根所在区间长度,直到符合某个选项中的区间.用二分法求方程近似解,若没有给出初
始区间,首先要选初始区间,这个区间既要包含所求的根,又要使其长度尽可能小.
高中数学
必修第一册
A. 2.52
B. 2.56
C. 2.66
D. 2.75
5. [多选题]下列函数图象均与x轴有交点,其中不能用二分法求图象所对应函数的零点的是(AC)
A
B
C
D
高中数学
必修第一册
配套江苏版教材
6. 函数f(x)=x2+ax+b有零点,但不能用二分法求出,则a,b的关系是 a2=4b .
7. 某同学在借助计算器求“方程lg x=2-x的近似解(精确度0.1)”时,设f(x)=lg x+x-2,算得f(1)<0,
第8章
8.1
二分法与求方程近似解
8.1.2
用二分法求方程的近似解
高中数学
必修第一册
配套江苏版教材
学习目标
1. 通过具体实例,理解二分法的概念和适用条件,了解二分法是求方程近似解的常用方法,并从中
体会函数与方程之间的联系.
2. 借助于计算器或信息技术手段用二分法求方程的近似解.
核心素养:数学运算、逻辑推理.
∵ f(0)=c>0,∴ a>0.
1
取区间[0,1]的中点2,则
1
2
3
3
1
3.1.2用二分法求方程的近似解(s必修一 数学 优秀课件)

f (2.75) 0.512 0
f (2.5) f (2.75) 0 所以零点在区间(2.5,2.75)内.
结论:由于 (2,3) (2.5,3) (2.5, 2.75) 所以零点所在的范围确实越来越小
用二分法求方程的近似解:
口 诀
定区间,找中点, 中值计算两边看. 同号去,异号算, 零点落在异号间. 周而复始怎么办? 精确度上来判断.
x 2 bx c, x 0 5.设函数 f ( x) ,若f (– 4) = f (0), x0 2,
f (– 2) = – 2,则关于x的方程f (x) = x的解的个数为( (B ) 2 (C )3 (D )4
)
(A )1
6.若直线y = 2a与函数y = | a x– 1 |(a > 0且a ≠ 1)的
函数f(x)的一个零点在(-1,0)内,另一个零点在(2,3)内
y
如何进一步有效缩小根所在的区间? 第一步:得到初始区间(2,3) 第二步:取2与3的平均数2.5 第三步:再取2与2.5的平均数2.25 如此继续取下去: 若要求结精确度为0.1,则何时停 止操作?
y=x2-2x-1
-1 0 1 2 3 2.25 2
15
10
y
-
(2,3)
+
2.5 2.75 2.625
-0.084
0.512
-20
1
5
(2.5,3) +
0.5
-10 0.25
-(2.5,2.75)+
0.215
o
5
10
x
-(2.5,2.625)+ 2.5625
(2.5,2.5625)
用二分法求方程的近似解

总结作业
茅盾中学 用二分法求方程的近似解
0.03
(2.5625,2.625)
新课讲解
茅盾中学 用二分法求方程的近似解
给定精确度 ,用二分法求函数f (x)零点近似值
的步骤 :
宇普西龙
1.确定区间[a,b], 验证f (a) f (b) 0;
2.求区间(a, b)的中点c;
3.计算f (c);
(1)若f (c) 0,则c就是函数的零点;
(2)若f (a) f (c) 0,则令b c(此时零点x0 (a, c)); (3)若f (c) f (b) 0,则令a c(此时零点x0 (c, b)); 4.判断是否达到精确度 :即若 | a b | ,则得到零点近似值a(或b);否
则重复2 4.
新课讲解
茅盾中学 用二分法求方程的近似解
例1、借助计算器或计算机,用二分法求方程x
3 lg x在(2,3)内的近似解(精确度0.1). 近似 值
区间
中点的值 中点的函数值
(2,3) (2.5,3) (2.5,2.75)
2.5 2.75 2.625
0.10 0.19 0.04
(2.5,2.625) 2.5625
A.(3,4) B.(0,1) C.(1,2) D.(2,3)
新课讲解
二分法 :
茅盾中学 用二分法求方程的近似解
对于区间[a,b]上连续不断且f (a) f (b) 0的函 数y f (x), 通过不断地把函数f (x)的零点所在 的区间一分为二, 使区间的两个端点逐步逼近 零点, 进而得到零点近似值的方法, 称之.
首页
§ 3.1.2 用二分法求方程近似解
复习引入 新课讲解 课堂小结 课后作业
课件8: 3.1.2 用二分法求方程的近似解
D.1.437 5
解析:由参考数据知 f(1.406 25)·f(1.437 5)<0,且 1.437 5-1.406 25
=0.031 25<0.04,所以方程的一个近似解可取为 1.437 5. 答案:D
4.已知方程 f(x)=0 的根所在区间为[0,1],则用二分法求方程的
近似解时,需计算的值为( )
归纳升华 运用二分法求函数的零点应具备的条件: (1)函数图象在零点附近连续不断. (2)在该零点左右函数值异号. 只有满足上述两个条件,才可用二分法求函数零点.
[变式训练] 已知函数 f(x)=x3-2x-5,f(2.5)>0,用二分法求方程 x3-2x-5=0 在区间(2,3)内的近似实数根,取区间中点为 x0=2.5, 那么下一个有根的区间是________. 解析:因为f(2)=23-2×2-5=-1<0,f(2.5)>0,f(3)=33-2×3-5 =16>0,所以f(2)·f(2.5)<0,所以方程x3-2x-5=0在(2,2.5)内有实 数根. 答案:(2,2.5)
类型 1 二分法的概念
[题型探究]
[典例 1] (1)下列图象与 x 轴均有分法求方程 f(x)=0 在(1,2)内近似解的过程中得到 f(1)<0,f(1.5)>0,
f(1.25)<0,则方程的根所在的区间为( )
A.(1.25,1.5) B.(1,1.25) C.(1.5,2)
0.562 5 与真正零点的误差不超过 0.1,所以函数 f(x)的零点近
似值为 0.562 5,即方程 lg x=12x-1 的近似解为 x≈0.562 5.
归纳升华 利用二分法求方程的近似解的步骤
1.构造函数,利用图象确定方程的解所在的大致区间,通常取区间 (n,n+1),n∈Z. 2.利用二分法求出满足精确度的方程的解所在的区间 M. 3.区间 M 内的任一实数均是方程的近似解,通常取区间 M 的一个 端点.
高中数学 3.1.2《用二分法求方程的近似解》课件 新人教A版必修1
(1.375,1.5) 1.438
(1.375,1.43
|a-b| 1 0.5
0.25 0.125
第十六页,共24页。
由上表计算可知区间(1.375,1.438)长度小于0.1,故可在 (1.438,1.5)内取1.406 5作为函数f(x)正数的零点的近似值.
第十七页,共24页。
1.准确理解“二分法”的含义 顾名思义,二分就是平均分成两部分.二分法就是通过不 断地将所选区间一分为二,逐步逼近零点的方法,找到零点附 近足够小的区间,根据所要求的精确度,用此区间的某个数值 近似地表示真正的零点.
图象可以作出,由图象确定根的大致区间,再用二分法求解.
第九页,共24页。
【解析】 作出y=lg x,y=3-x的图象可以发现,方程lgx=3-x有 唯一解,记为x0,并且解在区间(2,3)内.
设f(x)=lgx+x-3,用计算器计算,得
f(2)<0,f(3)>0,
∴x0∈(2,3); f(2.5)<0,f(3)>0⇒x0∈(2.5,3); f(2.5)<0,f(2.75)>0⇒x0∈(2.5,2.75); f(2.5)<0,f(2.625)>0⇒x0∈(2.5,2.625); f(2.562)<0,f(2.625)>0⇒x0∈(2.562,2.625). ∵|2.625-2.562|=0.063<0.1 ∴方程的近似解可取为2.625(不唯一).
第四页,共24页。
下列函数图象与x轴均有交点,其中不能用二分法求图中函数零点的 是( )
【思路点拨】 由题目可获取以下主要信息: ①题中给出了函数的图象;
②二分法的概念. 解答本题可结合二分法的概念,判断是否具备使用二分法的条件.
4.1.2利用二分法求方程的近似解
4.1.2教学分析求方程的解是常见的数学问题, 这之前我们学过解一元一次、 一元二次方程,但有些方 程求精确解较难.本节从另一个角度来求方程的近似解, 这是一种崭新的思维方式,在现实生活中也有着广泛的应用. 用二分法求方程近似解的特点是: 运算量大,且重复相同的步骤,因此适合用计算器或计算机进行运算. 在教学过程中要让学生体会到人类在方程求解中的不断进步.三维目标1 •让学生学会用二分法求方程的近似解,知道二分法是科学的数学方法.2•了解用二分法求方程的近似解特点,学会用计算器或计算机求方程的近似解,初步 了解算法思想. 3•回忆解方程的历史,了解人类解方程的进步历程,激发学习的热情和学习的兴趣. 重点难点用二分法求方程的近似解. 课时安排 1课时教学过程导入新课师:(手拿一款手机)如果让你来猜这件商品的价格,你如何猜? 生1 :先初步估算一个价格,如果高了再每隔 10元降低报价.生2 :这样太慢了,先初步估算一个价格,如果高了每隔 100元降低报价•如果低了, 每隔50元上升报价;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价……生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格和的 一半;如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报 出的价格与前面的价格结合起来取其和的半价……师:在现实生活中我们也常常利用这种方法. 譬如,一天,我们华庄校区与锡南校区的线路出了故障(相距大约3 500米)•电工是怎样检测的呢?是按照生 1那样每隔10米或者 按照生2那样每隔100米来检测,还是按照生 3那样来检测呢?生:(齐答)按照生3那样来检测.师:生3的回答,我们可以用一个动态过程来展示一下 新知探究 提出问题① 解方程 ② 解方程 ③ 解方程 ④ 解方程 ⑤ 我们知道,函数f 如何找出这个零点的近似值?⑥ “取中点”后,怎样判断所在零点的区间? ⑦ 什么叫二分法?⑧ 试求函数f X = In x + 2x — 6在区间 2 , 3 ⑨ 总结用二分法求函数零点近似值的步骤 . ⑩ 思考用二分法求函数零点近似值的特点 . 讨论结果: ① x = 8.② x =— 1, X = 2.③ x =— 1, X = 1, x = 2.④ x=-^f 2, x = ^2, x = 1, x = 2.⑤ 如果能够将零点所在的范围尽量缩小, 那么在一定精确度的要求下, 我们可以得到零 点的近似值.为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围. 〔“取中点”,利用二分法求方程的近似解(展示多媒体课件,区间逼近法)• 2x — 16= 0. x 2— x — 2= 0. x 3— 2x 2— x + 2= 0.X 2-2 x 2— 3x +2 = 0. x = In x + 2x — 6 在区间2, 3内有零点.进一步的问题是, 内零点的近似值.4° a + b一般地,我们把x =—盯称为区间(a , b )的中点〕⑥ 比如取区间(2,3)的中点2.5,用计算器算得f (2.5) < 0,因为f (2.5) - f (3) < 0,所 以零点在区间(2.5,3)内.⑦ 对于在区间[a , b ]上连续不断且f (a ) • f (b ) < 0的函数y = f (x ),通过不断地把函数 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值.像这样每次取区间的中点, 将区间一分为二,再经比较,按需要留下其中一个小区间的 方法称为二分法.⑧ 因为函数f (x ) = ln x + 2x — 6,用计算器或计算机作出函数 f (x ) = ln x + 2x — 6的对 应值表.由表可知,f (2) < 0, f (3) > 0,则f (2) • f (3) < 0,这说明f (x )在区间(2,3)内有零点 X 0,取区间(2,3)的中点X 1= 2.5,用计算器算得f (2.5) — 0.084,因为f (2.5) - f (3) < 0, 所以 X o € (2.5,3). 同理,可得表(下表)与图像(如图1).由于(2約(2.礼:劝(2. 5, 2.⑸,所以零点所在的范围确实越来越小了.如果重复上述步骤,那么零点所在的范围会越来越小 (见上表).这样,在一定的精确度下,我们可以在 有限次重复相同步骤后, 将所得的零点所在区间内的任意一点作为函数零点的近似值. 特别 地,可以将区间端点作为函数零点的近似值. 例如,当精确度为0.01时,由于12.539 062 5 —2.531 25| = 0.007 812 5 <0.01 ,所以,我们可以将 x = 2.531 25 作为函数 f (x ) = In x + 2x — 6零点的近似值.⑨给定精度£,用二分法求函数f (x )的零点近似值的步骤如下:确定区间[a, b ],验证f (a ) • f (b ) <0,给定精度£ . 求区间(a , b )的中点c . 计算f (c ): 若f (c ) = 0,则c 就是函数的零点; 若 f (a ) • f (c ) < 0,则令 b = c 〔此时零点 X 0€ (a , c )〕; 若 f (c ) • f (b ) < 0,则令 a = c 〔此时零点 X 0€ ( c , b )〕. 判断是否达到精度 £,即若|a — b | < £ ,则得到零点值a (或b );否则重复步骤2°1°2°3°4°.⑩由函数的零点与相应方程的关系, 我们可用二分法来求方程的近似解. 由于计算量较 大,而且是重复相同的步骤,因此, 我们可以通过设计一定的计算程序,借助计算器或计算 机完成计算.应用示例例1求方程2x 3+ 3x — 3= 0的一个实数解,精确到 0.01.3解:考察函数f (x ) = 2x + 3x — 3,从一个两端函数值反号的区间开始, 应用二分法逐步 缩小方程实数解所在区间.经试算,f (0) =— 3< 0, f (2) = 19> 0,所以函数 f (x ) = 2x 3+ 3x — 3 在[0,2]内存在零 点,即方程2x 3+ 3x — 3= 0在[0,2]内有解.取[0,2]的中点1 ,经计算,f (1) = 2> 0,又f (0) < 0,所以方程2x 3+ 3x — 3 = 0在[0,1] 内有解.3如此下去,得到方程 2x + 3x — 3 = 0的实数解所在区间的表如下.左端点右端点 第1次 0 2 第2次 0 1 第3次 0.5 1 第4次 0.5 0.75 第5次 0.625 0.75 第6次 0.687 5 0.75 第7次 0.718 75 0.75 第8次 0.734 375 0.75 第9次 0.742 187 5 0.75 第10次 0.742 187 5 0.746 093 75 第11次0.742 187 50.744 140 625至此,可以看出,区间 [0.742 187 5,0.744 140 625] 是0.74.所以0.74是方程2x 3+ 3x — 3 = 0精确到0.01点评:利用二分法求方程近似解的步骤:① 确定函数f (x )的零点所在区间(a , b ),通常令 ② 利用二分法求近似解. 变式训练利用计算器,求方程 x 2— 2x — 1 = 0的一个近似解. 活动:教师帮助学生分析:2 , .画出函数f (x ) = x — 2x — 1的图像,如图2所示.从图像上可以发现, 方程x 2— 2x — 1 = 0的一个根X 1在区间(2,3)内,另一个根X 2在区间 (—1,0)内.根据图像,我们发现f (2) =— 1< 0, f (3) = 2 > 0,这表明此函数图像在区间 (2,3)上穿过x 轴一次,即方程+ 3、1计算得f I —厂4> 0,发现X 1€ (2,2.5)( 解:设f (x ) = x 2— 2x — 1,先画出函数图像的简图,如图 2.内的所有值,若精确到 0.01,都 的实数解.b —a =1; (精确到0.1) 如图2),这样可以进一步缩小 x i 所在的区间.因为f(2) =— 1< 0, f (3) = 2> 0,所以在区间(2,3)内,方程x2— 2x— 1 = 0有一解,记为X1.取2与3的平均数2.5,因为f(2.5) = 0.25 > 0,所以2< X i< 2.5.再取2与2.5的平均数2.25,因为f(2.25) =— 0.437 5 < 0, 所以 2.25 < X i < 2.5.如此继续下去,得 f (2) < 0, f (3) > 0= X i € (2,3),f(2) < 0, f(2.5) > 0= x i€ (2,2.5),f(2.25) < 0, f(2.5) >0=x i€ (2.25,2.5),f (2.375) < 0, f(2.5) > 0=x i€ (2.375,2.5),f (2.375) < 0 , f (2.437 5) > 0= X i € (2.375,2.437 5).因为2.375与2.437 5精确到0.i的近似值都为2.4 ,所以此方程的一个近似解为 2.4.点评:利用同样的方法,还可以求出方程的另一个近似解.例2利用计算器,求方程Ig X = 3—X的近似解.(精确到0.i) 活动:学生先思考或讨论后再回答,教师点拨、提示并及时评价学生.分别画出y = Ig X和y = 3—x的图像,如图3所示.在两个函数图像的交点处,函数值相等.因此,这个点的横坐标就是方程Ig x= 3—X的解.由函数y = Ig x与y = 3 —x的图像可以发现,方程Ig X = 3 —X有唯一解,记为X i,并且这个解在区间(2,3)内.解:设f(X)= Ig x+ x — 3,设x i为函数的零点即方程Ig x = 3 —x的解. 用计算器计算,得f(2) < 0, f(3) > 0= x i € (2,3),f(2.5) < 0, f (3) >0=X i€ (2.5,3),f(2.5) < 0, f (2.75) >0=X i€ (2.5,2.75),f(2.5) < 0, f (2.625) >0=x i€ (2.5,2.625),f (2.562 5) < 0, f (2.625) > 0= X i € (2.562 5,2.625).因为2.562 5与2.625精确到0.i的近似值都为2.6,所以原方程的近似解为 2.6.例3 求方程In x — 2x+ 3 = 0在区间[i,2]内的根.(精确到0.i)解:设f(x) = In x— 2x+3,则原方程的根为函数f(x)的零点.设x i为函数的零点即方程In x — 2x+ 3 = 0的解.因为f(i) = i, f (2) = — 0.306 852 8i9 ,所以f (i) f(2) < 0,即函数f (x)在[i,2]内有一个零点.根据二分法,用计算器得出以F表格:(步长为0.25)0.062 5)由上述表格可以得到下表与图像(图4):因为 f (1.75) = 0.059 615 787 >0, f (1.812 5) 所以区间[1.75,1.812 5] 内的所有值若精确到 所以1.8是方程In X — 2x + 3= 0精确到0.1的实数解.点评:①先设出方程对应的函数, 画出函数的图像,初步确定解所在的区间,再用二分法求方程近似解.② 二分法,即逐渐逼近的方法.③ 计算量较大,而且是重复相同的步骤,借助计算器或计算机完成计算比较容易. 知能训练根据下表中的数据,可以断定方程e X— X — 2= 0的一个根所在的区间为( ).X—1 0 1 2 3 X e0.37 1 2.72 7.39 20.0 X + 21 23 45A. ( —1,0)B. (0,1)C. (1,2)D. (2,3)分析:设 f (x ) = e x—x — 2, f (1) < 0, f (2) > 0,即 f (1) f (2) < 0,A X € (1,2).答案:C 课堂小结活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价. 引导方法:从基本知识基本技能和思想方法两方面来总结.① 掌握用二分法求方程的近似解,及二分法的其他应用.=—0.030 292 892 < 0,0.1,都是 1.8.②思想方法:函数方程思想、数形结合思想. 课后作业:P119习题4— 1 A组1,3.。
用二分法求方程的近似解-经典例题及答案
例1: 【2 】应用盘算器,求方程0122=--x x的一个近似解(准确到0.1).【解】设2()21f x x x =--, 先画出函数图象的简图.(如右图所示)因为(2)10,(3)20f f =-<=>,所以在区间(2,3)内,方程2210x x --=有一解,记为1x .取2与3的平均数2.5,因为 (2.5)0.250f =>,所以 12 2.5x <<.再取2与2.5的平均数2.25,因为(2.25)0.43750f =-<,所以 12.25 2.5x <<.如斯持续下去,得1(2)0,(3)0(2,3)f f x <>⇒∈1(2)0,(2.5)0(2,2.5)f f x <>⇒∈1(2.25)0,(2.5)0(2.25,2.5)f f x <>⇒∈1(2.375)0,(2.5)0(2.375,2.5)f f x <>⇒∈1(2.375)0,(2.4375)0(2.375,f f x <>⇒∈ 2.4375),因为2.375与2.4375准确到0.1的近似值都为2.4,所以此方程的近似解为 1 2.4x ≈.应用同样的办法,还可以求出方程的另一个近似解.点评:①第一步肯定零点地点的大致区间),(b a ,可应用函数性质,也可借助盘算机或盘算器,但尽量取端点为整数的区间,尽量缩短区间长度,平日可肯定一个长度为1的区间; ②建议列表样式如下:零点地点区间 区间中点函数值 区间长度]3,2[0)5.2(>f 1 ]5.2,2[0)25.2(<f 0.5 ]5.2,25.2[ 0)375.2(<f 0.25]5.2,375.2[ 0)4375.2(>f0.125 如斯列表的优势:盘算步数明白,区间长度小于精度时,即为盘算的最后一步. 例2:应用盘算器,求方程x x -=3lg 的近似解(准确到0.1).剖析:分离画函数lg y x =和3y x =-的图象,在两个函数图象的交点处,函数值相等.是以,这个点的横坐标就是方程x x -=3lg 的解.由函数lg y x =与3y x =-的图象可以发明,方程x x -=3lg 有惟一解,记为1x ,并且这个解在区间(2,3)内.【解】设()lg 3f x x x =+-,应用盘算器盘算得1(2)0,(3)0(2,3)f f x <>⇒∈1(2.5)0,(3)0(2.5,3)f f x <>⇒∈1(2.5)0,(2.75)0(2.5,2.75)f f x <>⇒∈1(2.5)0,(2.625)0(2.5,2.625)f f x <>⇒∈(2.5625)0,(2.625)0f f <>1x ⇒∈(2.5625,2.625)因为2.5625与2.625准确到0.1的近似值都为2.6,所以此方程的近似解为1 2.6x ≈.思虑:发明盘算的成果约稳固在2.58717.这现实上是求方程近似解的另一种办法——迭代法.除了二分法.迭代法,求方程近似解的办法还有牛顿切线法.弦切法等.例3:应用盘算器,求方程24xx +=的近似解(准确到0.1).【解】方程24x x += 可以化为24xx =-.分离画函数2x y = 与4y x =-的图象,由图象可以知道,方程24xx +=的解在区间(1,2)内,那么对于区间(1,2),应用二分法就可以求得它的近似解为 1.4x ≈.追踪练习一1. 设0x 是方程ln 4x x =-+的解,则0x 地点的区间为( B )A .(3,4)B .(2,3)C .(1,2)D .(0,1)2.估算方程25710x x --=的正根地点的区间是 ( B )A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.盘算器求得方程25710x x --=的负根地点的区间是( A )A .(1-,0)B .()2,1-- C .()2.5,2-- D .()3, 2.5--4.应用盘算器,求下列方程的近似解(准确到0.1)(1)lg 21x x =-+ (2)34xx =+ 答案: (1)0.8(2)1 3.9x ≈-,2 1.6x ≈一.含字母系数的二次函数问题例4:二次函数2()f x px qx r =++中实数p .q .r 知足021p q r m m m ++=++,个中0m >,求证:(1)()01m pf m <+);(2)方程()0f x =在(0,1)内恒有解.剖析:本题的奇妙之处在于,第一小题供给了有益的根据:1mm +是区间(0,1)内的数,且()01m pf m <+,这就启示我们把区间(0,1)划分为(0,1m m +)和(1m m +,1)来处理.【解】(1)2()[()()]111m m m pf p p q r m m m =+++++2[](1)1pm q r pm m m m =++++2[](1)2pm p pm m m =-++222(2)(1)[](1)(2)m m m p m m m +-+=++22(1)(2)p m m m =-++,因为()f x 是二次函数,故0p ≠,又0m >,所以,()01m pf m <+.⑵ 由题意,得(0)f r =,(1)f p q r =++. ①当0p >时,由(1)知()01m f m <+ 若0r >,则(0)0f >,又()01m f m <+, 所以()f x 在(0,1mm +)内有解.若0r ≤,则(1)f p q r =++=(1)p m ++()2p r r m m =--++=02p r m m ->+,又()01m f m <+,所以()0f x =在(1m m +,1)内有解.②当0p <时同理可证.点评:(1)标题点明是“二次函数”,这就暗示着二次项系数0p ≠.若将题中的“二次”两个字去失落,所证结论响应更改.(2)对字母p .r 分类时先对哪个分类是有必定讲求的,本题的证实中,先对p 分类,然后对r 分类显然是比较好.追踪练习二1.若方程2210ax x --=在(0,1)内恰有一则实数a 的取值规模是 (B ) A .1[,)8-+∞B .(1,)+∞C .(,1)-∞D .1[,1)8-2.方程22210x x k -+-=的两个根分离在区间(0,1)和(1,2)内,则k 的取值规模是112k <<;3.已知函数()24f x mx =+,在[2,1]-上消失0x ,使0()0f x =,则实数m 的取值规模是____12m m ≥≤-或_____________.4.已知函数()3f x x x =+ ⑴试求函数()y f x =的零点;⑵是否消失天然数n ,使()1000f n =?若消失,求出n ,若不消失,请解释来由. 答案:(1)函数()y f x =的零点为0x =;(2)盘算得(9)738f =,(10)1010f =,由函数的单调性,可知不消失天然数n ,使()1000f n =成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b)
3 3
f(a)的近 f(b)的近 似值 似值 -1.3069 -0.0837 -0.0837 1.0986 1.0986 0.5116 0.2151 0.0660
否 否 否 否
2.5
2.5
2.5
-0.0837
-0.0837
是
2.5
xo
x
2.5625
|2.5-2.5625|<0.1
的函数 y f ( x),通过不断把函数 f ( x) 的零点所在的区间一分为二,使区间的 两个端点逐步逼近零点,进而得到零点 近似值的方法叫做二分法。
引导学生将上 述例子推广到一 般的函数,并注 意推广的条件。 从而归纳出二分 法的定义,体会 从特殊到一般的 思想。
过程分析
【小组活动】
分析归纳——二分法步骤
对二分法的过
程形成比较直 观的印象,从 而更好地理解 二分法。
过程分析 y
分析归纳——二分法定义
对于一般函数,如果存在零点,是不是也可以用这 种方法去求呢?
y
y
y
o
A
x
o
B
x
o
C
x
o
D
x
二分法思想只能用来解决在零点附近连续 且“穿轴”的零点问题 !
过程分析
分析归纳——二分法定义
【设计意图】
对于在区间 [a, b] 上连续且 f (a) f (b) 0
f(m)的 近似值
| a -b |
是否达 到精确 度
2
3
过程分析
(a
2
构建模型——填表
a b f(m)的近 m |a-b| 似值 2
2.5 2.75 2.625 2.5625 -0.0837 0.5116 0.2151 0.0660 1.0000 0.5000 0.2500 0.1250 0.0625
零点有 几个?
零点怎 么求?
本节内容体现了数学的工具性、应用性,同时也渗 透了函数与方程、数形结合、算法思想和逼近思想等数 学思想。
教材分析
【重点】
理解用二分法逼近方程根的过程
【难点】
1、理解精确度的作用 2、归纳二分法的一般步骤
学情分析 【教学对象】 高一普通班的学生 教学对象的认知基础
(1)学生已经学习了函数零点定理,理解函数零点和 方程根的关系,初步了解函数与方程的转化思想。 (2)学生比较熟悉二次方程的根,但对于高次方程和
法求函数零点的
步骤,使学生加 深对二分法过程
的理解,有助于
突破难点。
过程分析
分析归纳——课外拓展
【设计意图】 让有兴趣有 能力的学生在
除了二分法外,还有没有 其它的逼近方式?
四分法
a b
逼近的不同方 式上做更多的 思考。
牛顿切线法
过程分析
应用巩固
【设计意图】
【练习】
求方程 2 +3x=7 的近似解。 (精确度为0.1)
例:求 f ( x) ln x 2 x 6 零 点的近似值,精确度为0.1。
步骤:
布置作业:
评价分析
亮点重现
分小组讨论,从文字,符号,框图三个角度, 概括二分法解决一般函数零点问题的步骤。
【活动效果】
小组讨论后,二分法步骤 的概括情况如下: 文字语言(大部分小组)
符号语言(少数小组) 框图语言(少数小组)
过程分析
分析归纳——二分法步骤
框图语言
符号语言
过程分析
分析归纳——二分法步骤
【设计意图】
通过一步步完 善学生的归纳, 最后总结出二分
|x-xo|<0.1
过程分析
构建模型——填表
【设计意图】
学生小组通过完成表格 的活动,更深一步体会了 二分法的运用过程。 教师通过展示,让学
生清晰零点区间如何缩小,
从而逐步逼近零点的过程, 以及精确度作为判断终止
掌握重点,攻破难点。
条件的作用。
过程分析
构建模型——画图
【设计意图】 用几何画板 作图,让学生
x
让学生通过练 习熟悉地掌握二 分法求方程近似 解的步骤,并通 过分层作业既使 必做题:课本第92页练习第3、5题 学生掌握基础知 选做题:课本第93页习题B组第3题 识,又使学有余 力的学生有所提 课外实践:课本第93页信息技术应用 高。
【作业】
板书设计
二分法求方程的近似解
游戏: 定义: 练习:
过程分析
数学史引问题
【设计意图】
通过介绍方 程求解的发展史,
让学生了解有些
非常规方程是很 难求根的,从而 引出问题:怎么 求这类方程的近 似解?
过程分析
游戏引方法
猜猜我 的龄? 猜:40 低了 范围变为:40~60
猜:50
猜:55 20
实际年龄 高?低? 允许误差
低了
范围变为:50~60
|55-58|=3<5 50 55 60
•公元50~100年 《九章算术》 解一次、二次、 正系数三次方程的算法形式
•13世纪 秦九韶 用算筹布列解任意数字方程 •9世纪 花拉子米 一次、二次方程的一般解法 •1541年 塔尔塔利亚 三次方程的一般解法 国 外 •1545年 卡尔达诺 四次方程的一般解法 •1778年 拉格朗日 提出五次方程根式解不存在的猜想 •1824年 阿贝尔 证明五次以上一般方程没有根式解 对于高次方程及其它的一些非常规方程,有必要寻求其近似解。
|a-b|<ɛ
b
【设计意图】 将游戏中采用 的方法严谨化,
从表格、图象
两方面入手解 决数学问题。
用表格分析零点的近似值 用几何画板作图诠释逼近思想
过程分析
构建模型——填表
【小组活动】学生两人一组,一人 按计算器,另一人记录过程,共同 完成表格。
f(a)的 近似值 f(b)的 近似值
(a
b)
ab m 2
大于20岁 小于60岁
允许误差<5
40
零点 d<5 零点存在定理 精确度
过程分析
游戏引方法
【设计意图】
通过游戏激发学 生的思维,并将其 与数学问题对应, 从而引出解决问题 的方法:二分法。
过程分析
构建模型
例:求 f ( x) ln x 2 x 6 零点的近似值,精确度为0.1。
a
xo
超越方程的根的寻求有困难。
(3)模式化求近似解对学生来说是一个全新的问题。
过程分析
引入课题 构建模型
教学流程
设计思路
数学史引问题,游戏引方法 按照游戏中的思想从表格 图像两方面入手构建模型 归纳二分法的定义及步骤
分析归纳
应用巩固
通过练习巩固二分法的使用
过程分析
数学史引问题
中外历史上的方程求解
国 内 •7世纪 王孝通 三次方程正根的数值解法
人教A版 必修1 第3.1.2节
说课流程
教材分析
学情分析
过程分析 评价分析
教材分析
教材的地位和作用
零点问题,即方程根的问题,是不等关系的基础。 用二分法求方程的近似解是新课程中新增的内容。为了 帮助学生认识函数与方程的关系,按照对新事物的认知 规律,教材分四个步骤进行:
零点是 什么?
零点有 没有?