初中数学分类讨论思想例题分析

合集下载

初中数学专题复习分类讨论(含答案)

初中数学专题复习分类讨论(含答案)

专题复习二 分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. Ⅱ、典型例题剖析【例1】(2005,南充,11分)如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式. 解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0). 设一次函数解析式为y =kx +b . 点A ,B 在一次函数图象上, ∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k则一次函数解析式是 .121--=x y点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为my x=. 点C 在反比例函数图象上,则41-=m ,m =-4.故反比例函数解析式是:xy 4-=.点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。

【例2】(2005,武汉实验,12分)如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。

以点O 2(13,5)为圆心的圆与x 轴相切于点D. (1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度; (3)将⊙O 2沿x 轴向右平移,在平移的过程中与x 轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。

例谈分类讨论思想在解初中数学题中的应用

例谈分类讨论思想在解初中数学题中的应用

例谈分类讨论思想在解初中数学题中的应用分类讨论是数学中常见的解题思想之一,它在解决初中数学题中发挥着重要的作用。

分类讨论思想通过将问题划分成若干类别,然后分别讨论每个类别,最终得出整体的解决方案。

在初中数学中,分类讨论思想既可以帮助学生更好地理解问题,也可以帮助他们更快速、准确地解决问题。

下面将从几个典型的初中数学题目出发,通过具体的例子来探讨分类讨论思想在解题中的应用。

我们来看一个简单的应用题:甲乙两人合作剪彩带,已知甲每分钟剪3米,乙每分钟剪4米。

为了提高效率,甲、乙两人分别采取了不同的工作方式合作,甲每隔4分钟休息1分钟,乙每隔5分钟休息1分钟。

请问:他们共同完成20米的彩带需要多长时间?在这个问题中,需要考虑到甲、乙两人的工作方式不同,所以可以采用分类讨论思想。

我们可以考虑甲、乙两人一起工作的情况。

假设他们一起工作了x分钟后,甲休息了y分钟,那么乙休息了x/4分钟。

根据题目条件,可以列出方程:3x + 4x = 20然后,根据甲、乙两人的休息时间,可以列出方程:y = x/45|y –x解方程组,得出x=4,y=1。

根据x和y的值,可以得出甲、乙两人共同完成20米的彩带需要的时间为x+y=5分钟。

接下来,再来看一个关于方程的问题:某数是17的整数倍,加上19是这个数的平方,求这个数。

在这个问题中,可以使用分类讨论思想来解决。

设这个数为x,根据题目条件,可以列出方程:x = 17k,k为自然数得出x^2 – x – 19 = 0。

然后,解方程得x = (1 ± √(1 + 76))/2。

由于要求x为整数,所以需要1 + 76是完全平方数,即1 + 76 = 77 = 7^2。

所以x = (1 + √77)/2。

符合条件的x只有一个整数解,即x = (1 + √77)/2。

在平面直角坐标系xoy中,点A ∈ {(\frac{1}{2}, \frac{1}{3}),(\frac{1}{2}, \frac{2}{3}),(\frac{1}{3}, \frac{1}{3}),(\frac{2}{3}, \frac{1}{3})},则点A的可能取值为这是一个考察点的排列组合的问题,同样可以采用分类讨论思想来解决。

例谈分类讨论思想在解初中数学题中的应用

例谈分类讨论思想在解初中数学题中的应用

例谈分类讨论思想在解初中数学题中的应用
分类讨论思想是解决数学问题的一种重要方法之一,它通过将问题按照不同的情况进
行分类讨论,从而得到最终的解答。

在初中数学题中,分类讨论思想特别适用于解决一些
复杂的实际问题,可以帮助学生更好地理解和掌握相关的数学概念和方法。

1. 方程的分类讨论:在解决一元一次方程和一元二次方程等问题时,常常需要通过
分类讨论的方式来解决。

在解决关于年龄、长度、面积等实际问题时,往往需要设定不同
的条件和方程式,然后通过分类讨论的方式求解。

2. 整式的分类讨论:在计算多项式的值、展开多项式等问题时,常常需要将多项式
按照不同的情况进行分类讨论,并采用相应的方法来计算。

求多项式的值时,可以通过将
多项式按照不同的变量取值情况进行分类,然后分别计算得到最终的结果。

1. 几何图形的分类讨论:在解决诸如三角形、四边形、多边形等几何图形的性质和
计算问题时,常常需要将图形按照不同的情况进行分类讨论。

在解决三角形的面积问题时,可以将三角形按照是否为直角三角形、是否为等边三角形等进行分类讨论,然后采用相应
的公式和方法求解。

分类讨论思想在初中数学解题中的应用

分类讨论思想在初中数学解题中的应用

学习指导2023年8月下半月㊀㊀㊀分类讨论思想在初中数学解题中的应用◉江苏省昆山开发区青阳港学校㊀沈俊杰㊀㊀摘要:近年来,分类讨论的问题已经成为各地中考压轴试题的热门考点,这类问题学生在解答中极易出现漏解.本文中就分类讨论思想在初中数学各个专题中的应用浅谈应用策略.关键词:分类讨论;初中数学;解题;应用㊀㊀在初中数学教学过程中发现,大多数学生对分类讨论思想了解不够深入,把握不够牢固,分析问题比较片面,导致问题解决不彻底.本文中笔者根据自身教学实践,就分类讨论思想在初中数学各个专题中的应用进行探讨研究.1分类讨论思想在绝对值问题中的运用由绝对值的概念可知,绝对值可用来表示数轴上两点之间的距离,但无法明确这两点的具体位置,对此类问题,我们就需要进行分类讨论后再确定相应的值.例1㊀解决下面的问题:(1)如果|x +1|=2,求x 的值;(2)若数轴上表示数a 的点位于-3与5之间,求|a +3|+|a -5|的值;(3)当a =㊀㊀㊀时,|a -1|+|a +5|+|a -4|的值最小,最小值是㊀㊀㊀㊀.点拨:显然,例1中的每一个问题都涉及到了绝对值,由于绝对值里的式子不知是正还是负,因此需要进行分类讨论.(1)由|x +1|=2,可得x +1=2,或x +1=-2,解得x =1,或x =-3.(2)中因为已经明确表示数a 的点位于-3与5之间,故可以判断a +3和a -5的正负,则不需要进行分类讨论,可直接根据正负情况去掉绝对值进行解答.(3)中没有明确数a 的具体大小,无法直接判断a -1,a +5,a -4的正负,这就需要利用三个零点从四个方面进行分类讨论,再根据具体的取值分析最小值即可.从例1的分析可知,在遇到数轴上点的位置不明确时,就需要考虑使用分类讨论思想进行解答,从而将绝对值符号去掉并轻松解题[1].2分类讨论思想在二次根式中的运用在涉及有关二次根式的计算与化简问题时,常常会遇到形如a 2的式子,如何对这类式子进行化简,则需要进行分类讨论.例2㊀若代数式(2-a )2+(a -4)2=2,求a 的值.点拨:若对代数式进行化简,则要去掉根号,根据a 2=a ,将问题转化为含有绝对值的问题来处理,结合例1的分析可考虑利用分类讨论思想解题.(2-a )2+(a -4)2=|2-a |+|a -4|,再分别从a <2,2ɤa <4,a ȡ4三个方面进行分类讨论,进而化简求值.在解决与二次根式有关的求数的平方根或者化简二次根式等问题都要注意分类讨论思想的运用.3分类讨论思想在方程中的运用在一些与方程有关的问题中,若方程含有字母参数,根据题干我们无法直接判断参数的情况,从而无法判断方程的类型,对下一步的问题解答造成麻烦,这个时候就需要进行分类讨论[2].例3㊀已知关于x 的方程(m +1)x 2-(m -2)x +m 4=0.(1)若方程有实数根,求m 的取值范围;(2)已知x 1,x 2为方程的两个实数根,且x 21-x 22=0,求m 的值.点拨:第(1)问只是说明这是关于x 的方程,从方程式可以看出未知数的最高次数是2次,但由于二次项系数m +1有可能为0,因此可以从m +1ʂ0和m +1=0两方面判断该方程是一元二次方程或者一元一次方程.根据方程特点,可整理分析得25Copyright ©博看网. All Rights Reserved.2023年8月下半月㊀学习指导㊀㊀㊀㊀到Δȡ0或m +1=0两种情况,再解不等式或方程求出m 的取值范围即可.此类题型主要问题是概念指代不清,存在类似问题的还有函数是一次函数还是二次函数,都需要考虑分类讨论.4分类讨论思想在不等式中的运用在解决不等式的有关问题时,也常常遇到由a b >0或a b <0来判断a ,b 符号的问题,根据同号为正㊁异号为负的法则,需要我们针对具体情况进行分类讨论,如当a b >0时,有a >0,b >0,{或a <0,b <0.{两种情况.例4㊀解一元二次不等式:x 2-4>0.点拨:将x 2-4分解因式,得x 2-4=(x +2)(x -2),则原不等式转化(x +2)(x -2)>0即可.根据有理数的乘法法则 两数相乘,同号得正 ,进行分类讨论,则有x +2>0,x -2>0,{或x +2<0,x -2<0,{进而解得一元二次不等式x 2-4>0的解集为x >2或x <-2.在计算过程中出现同号为正㊁异号为负的情况时,都需要从两个方面进行计算,此时要关注分类讨论思想的体现,以防漏解或缺解.5分类讨论思想在几何图形中的应用几何图形中常见的分类讨论往往集中在等腰三角形的判定㊁相似三角形的判定㊁与圆相关的图形位置判断等方面.涉及几何图形的分类讨论问题往往融合在函数中,故处理相关问题时也要注意分类讨论[3].例5㊀已知øA O B =80.5ʎ,øA O D =12øA O C ,øB O D =3øB O C (øB O C <50ʎ),求øB O C 的度数.点拨:根据题干叙述,无法直接判断O C ,O D 的位置,从而无法进行计算,因此本题需要根据题干情况进行分类讨论.根据题意分析,可以得到符合要求的有三种情况,针对存在的三种情况,画出相应的图形,然后进行计算,即可得到øB O C 的度数[4].图1例6㊀如图1,在直角梯形A B C D 中,A D ʊB C ,øC =90ʎ,B C =16,A D =21,D C =12,动点P 从点D 出发,沿线段D A 方向以每秒2个单位长度的速度运动,动点Q 从点C 出发,在线段C B 以每秒1个单位长度的速度向点B 运动.点P ,Q 分别从点D ,C 同时出发,当点P 运动到点A 时,点Q 随之停止运动,设运动时间为t s .(1)设әB P Q 的面积为S ,求S 和t 之间的函数关系式;(2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形?点拨:显然,第(2)问中以B ,P ,Q 三点为顶点的三角形是等腰三角形,需要分三种情况讨论:①P Q =B Q ;②B P =B Q ;③P B =P Q .根据勾股定理最终求得t =72或t =163时,以B ,P ,Q 三点为顶点三角形是等腰三角形.图2例7㊀如图2,四边形A B C D 中,A D ʊB C ,øB =90ʎ,A B =8,B C =20,A D =18,Q 为B C 的中点,动点P 在线段A D边上以每秒2个单位长度的速度由点A 向点D 运动,设动点P 的运动时间为t s .在A D 边上是否存在一点R ,使得以B ,Q ,R ,P 四点为顶点的四边形是菱形若存在,请直接写出t 的值;若不存在,请说明理由.点拨:题目中要求探究的点R 在什么位置,我们一下子搞不清,故考虑分类讨论,可分为两种情况.一是点P 在点R 的左侧,四边形B Q R P 是菱形,此时B P =B Q =10,根据勾股定理求得A P =6,则D P =12,再列方程求出此时的t 值即可;二是点R 在点P 的左侧,四边形B Q P R 是菱形,此时B R =B Q =10,A P =6+10=16,再列方程求出t 值.结合上述五个方面的研究发现,在解答数学问题的过程中遇到一些点或线位置不明确㊁图形不固定的情况时,要考虑分类讨论,让问题解答更加全面.总之,在初中数学问题研究中,充分运用分类讨论思想更能深刻挖掘学生的生活体验,引导他们从多个角度感知㊁分析问题情境,更多地激励学生开动脑筋,运用新思想新方法,拓展思维,从而培养学生多角度全方位的解题习惯,全面提升数学核心素养.参考文献:[1]顾宣峰.分类讨论思想在高中数学解题中的应用[J ].高中数理化,2021(S 1):20.[2]任建平.分类讨论思想在初中数学解题教学中的运用探究[J ].数理天地(初中版),2023(13):37G38.[3]王珍.分类讨论思想在初中数学解题教学中的运用[J ].中学数学,2023(12):73G74.[4]孙高传.分类讨论思想在初中数学解题教学中的运用[J ].第二课堂(D ),2022(2):38G39.Z 35Copyright ©博看网. All Rights Reserved.。

初中数学分类讨论思想在解题中的应用探讨

初中数学分类讨论思想在解题中的应用探讨

初中数学分类讨论思想在解题中的应用探讨初中数学分类讨论是指将问题中的数学对象按照特定的性质进行分析归类,然后讨论每一类对象的共同性质和特点,从而解决问题的一种思想方法。

分类讨论在初中数学中的应用非常广泛。

以解决方程为例,当我们遇到一个复杂的方程时,通常可以把方程中含有的不同类型的对象进行分类,然后分别讨论每一类对象的性质和特点,最后得到方程的解。

比如解方程2x+1=3x-5,我们可以分别讨论含有x的项和常数项,然后将它们放在方程两边进行分类讨论,最后得到x=6。

分类讨论还可以应用于整数运算、平面几何、概率等问题的解决中。

比如在整数运算中,我们经常遇到“偶数加偶数等于偶数”、“奇数加奇数等于偶数”等类型的问题,可以将问题中的整数按照奇偶性进行分类讨论,从而得到结果的奇偶性质。

在平面几何中,我们常常需要讨论三角形的种类和性质,可以将三角形按照边长、角度等进行分类讨论,从而得到三角形的共同性质。

在概率问题中,我们需要计算事件发生的可能性,通常可以将事件的样本空间按照特定的特点进行分类讨论,然后计算每一类事件的概率,再把它们加起来得到最终的结果。

分类讨论在解题中的应用有很多优点。

分类讨论可以把一个复杂的问题分解成多个简单的子问题,使得解决问题的过程更加清晰和有条理。

分类讨论可以提前了解问题中各种对象的共同性质和特点,为解题提供方向和思路。

分类讨论可以帮助我们把握问题中的关键信息,将问题的解决过程简化和加速。

分类讨论可以提高我们的逻辑思维和推理能力,培养我们从多个角度思考问题的能力。

分类讨论在解题中也存在一些限制。

分类讨论需要根据问题的特点和难度选取合适的分类,否则会使解题过程变得复杂和困难。

分类讨论需要对每一类对象的性质和特点有一定的了解,如果不了解或者了解不充分,可能会导致分类不准确或者遗漏一些重要的对象。

分类讨论在解决一些复杂的问题时,可能会导致解题过程冗长和繁琐,需要我们有足够的耐心和坚持。

初中数学专题复习分类讨论问题(含答案)

初中数学专题复习分类讨论问题(含答案)

初中数学专题复习(1) 分类讨论问题【简要分析】在中学数学的概念、定理、法则、公式等基础知识中,有不少是分类给出的,遇到涉及这些知识的问题,就可能需要分类讨论。

另外,有些数学问题在解答中,可能条件或结论不唯一确定,有几种可能性,也需要从问题的实际出发进行分类讨论。

把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得以解决整个问题,这种解决问题的方法称为分类讨论思想方法。

它体现了化整为零与积零为整的思想,是近年来中考重点考查的思想方法。

分类讨论思想方法也是一种重要的解题策略。

分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解.要注意,在分类时,必须按同一标准分类,做到不重不漏.【典型考题例析】例1:已知一次函数y x =-+3333与x 轴、y 轴的交点分别为A 、B ,试在x 轴上找一点P ,使△PAB 为等腰三角形。

分析:本题中△PAB 由于P 点位置不确定而没有确定,而且等腰三角形中哪两条是腰也没有确定。

△PAB 是等腰三角形有几种可能?我们可以按腰的可能情况加以分类:(1)PA=PB ;(2)PA=AB ;(3)PB=AB 。

先可以求出B 点坐标()033,,A 点坐标(9,0)。

设P 点坐标为()x ,0,利用两点间距离公式可对三种分类情况分别列出方程,求出P 点坐标有四解,分别为()()()()-+-903096309630,、,、,、,。

(不适合条件的解已舍去)点拨:解答本题极易漏解。

解答此类问题要分析清楚符合条件的图形的各种可能位置,紧扣条件,分类画出各种符合条件的图形。

另外,由点的运动变化也会引起分类讨论。

由于运动引起的符合条件的点有不同位置,从而需对不同位置分别求其结果,否则漏解。

例2:正方形ABCD 的边长为10cm ,一动点P 从点A 出发,以2cm/秒的速度沿正方形的边逆时针匀速运动。

如图,回到A 点停止,求点P 运动t 秒时,P ,D 两点间的距离。

例谈分类讨论思想在解初中数学题中的应用

例谈分类讨论思想在解初中数学题中的应用

例谈分类讨论思想在解初中数学题中的应用1. 引言1.1 概述数统计等。

【概述】分类讨论思想是指在解决问题时,将问题按照不同的特征或条件进行分类,然后分别讨论每个类别下的情况,最终得出综合结论的思维方法。

在初中数学学习中,分类讨论思想被广泛运用于解决各种类型的数学问题,尤其在解决复杂的问题和提高问题解题能力方面具有重要意义。

通过分类讨论思想,学生可以将复杂的问题进行分解,逐步解决,提高问题解决的效率和准确性,培养逻辑思维和分析问题的能力。

本文将重点讨论分类讨论思想在解初中数学题中的应用,分析其基本概念、应用案例、具体技巧,比较与其他解题方法的优劣以及在数学学习中的重要性。

通过本文的探讨,旨在深入探析分类讨论思想在数学学习中的实际意义,并探讨未来在该领域的研究方向。

1.2 研究背景在传统的教学模式中,学生往往是被passively 授予知识,缺乏对知识的主动探索和应用能力。

而分类讨论思想的引入可以打破这种被动学习的模式,鼓励学生思考问题的本质和解决方法,培养其独立思考和创新能力。

通过对不同情况的分类讨论和比较,学生可以更深入地理解问题,掌握解题的基本思路和方法,提高解题效率和准确度。

研究分类讨论思想在初中数学题中的应用具有积极意义,可以有效促进学生数学思维的发展,提高其解决实际问题的能力。

也为教师提供了一种新的教学方法和手段,有助于激发学生学习兴趣,提高教学效果。

通过深入探讨分类讨论思想的具体应用和技巧,可以为数学教育的改革和发展提供有益启示。

1.3 研究目的研究目的:本文旨在探讨分类讨论思想在解初中数学题中的应用,通过对分类讨论思想的基本概念、具体应用技巧以及与其他解题方法的比较分析,揭示其在数学学习中的重要性。

通过对分类讨论思想在解题过程中的实际操作和应用案例分析,旨在帮助读者更深入理解该方法的实际运用情况,从而提高解题效率和思维能力。

通过对未来研究方向的探讨和展望,寻求分类讨论思想在数学问题解决中的更广泛应用可能性,为数学教育的改革和提升提供参考。

例谈分类讨论思想在解初中数学题中的应用

例谈分类讨论思想在解初中数学题中的应用

例谈分类讨论思想在解初中数学题中的应用分类讨论思想在解初中数学题中发挥了重要作用,它能够将问题分解为若干不同的情况,从而将原问题变得简单易解。

下面我就分别从代数式、方程、几何等多个角度来谈谈分类讨论思想在初中数学中的应用。

一、代数式在代数式的求值中,有时我们需要计算代数式在不同情况下的值。

例如,如何用有理数表示下列函数在特定点的值:f(x)=|2x+1|-|x-1|?我们可以采用分类讨论的思路,分别考虑f(x)在(-∞,-1/2)、[-1/2,1]和(1,+∞)三个区间的值。

在第一个区间中,f(x)=-(2x+1)-(x-1)= -3x-2; 在第二个区间中,f(x)=(2x+1)-(x-1)= x+2; 在第三个区间中,f(x)=2x+1-(x-1)=x+2。

从而我们得到了f(x)在不同区间的值,便可以用有理数表示出f(x)在特定点的值。

二、方程在解方程时,分类讨论思想同样可行。

例如,需要解方程2x+1=|x-1|+3,我们可以将它分解为以下两种情况,来逐一进行求解:(1)当x≥1时,方程可化为2x+1-x+1=3,解得x=1。

通过分类讨论的方式,我们得到了方程的所有解。

三、几何在解几何问题时,分类讨论思想更是不可或缺。

例如,在平面直角坐标系内,已知直线y=kx+1与x轴、y轴及直线x+y=2所构成的四个角度之和为90°,求k的取值范围。

我们可以分两种情况来讨论:(1)k>0时,易得k≤1/2。

从而我们得到k的取值范围为-1≤k≤1/2。

综上所述,分类讨论思想在初中数学中的应用非常广泛,有时它甚至是解题的一种标准方法。

我们需要注意的是,在采用分类讨论的思路时,应把问题分解得尽可能清晰明了,以保证所得结果的准确性和完整性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分类讨论思想例题分析
[线段中分类讨思想的应用]——线段及端点位置的不确定性引发讨论。

例1已知直线AB 上一点C ,且有CA=3AB ,则线段CA 与线段CB 之比为_3:2_或_3:4____。

练习:已知A 、B 、C 三点在同一条直线上,且线段AB=7cm ,点M 为线段AB 的中点,线段BC=3cm ,点N 为线段BC 的中点,求线段MN 的长.
解析:(1)点C 在线段AB 上: (2)点C 在线段AB 的延长线上
M
例2下列说法正确的是( )
A 、 两条线段相交有且只有一个交点。

B 、如果线段AB=A
C 那么点A 是BC 的中点。

C 、两条射线不平行就相交。

D 、不在同一直线上的三条线段两两相交必有三个交点。

[
OM 平分∠AOB ,ON 平分∠[练习] 已知o AOB 60∠=,过O 作一条射线OC ,射线OE 平分AOC ∠,射线OD 平分
这两种情况下,都有o
o AOB 60
DOE=
3022
∠∠== A B C1 C2
小结:(对分类讨论结论的反思)——为什么结论相同?虽然AOC ∠的大小不确定,但是所求的DOE ∠与AOC ∠的大小无关。

我们虽然分了两类,但是结果是相同的!这也体现了分类讨论的最后一个环节——总结的重要性。

[三角形中分类讨论思想的应用]
一般有以下四种类型:一是由于一般三角形的形状不确定而进行的分类;二是由于等腰三角形的腰与底不确定而进行的分类;三是由于直角三角形的斜边不确定而进行的分类;四是由于相似三角形的对应角(或边)不确定而进行的分类。

1、三角形的形状不定需要分类讨论
例4、 在△AB C 中,∠B=25°,AD 是BC 上的高,并且
AD BD DC 2=·,则∠BCA 的度数为_____________。

解析:因未指明三角形的形状,故需分类讨论。

如图1,当△ABC 的高在形内时,
由AD BD DC 2=·, 得△ABD∽△CAD,进而
可以证明△ABC 为直角三角形。

由 ∠B=25°。

可知∠BAD=65°。

所以∠BCA=∠BAD=65°。

如图2,当高AD 在形外时,此时
△ABC 为钝角三角形。


AD BD DC 2=·,得△ABD∽△CAD 所以∠B=∠CAD=25°
∠BCA=∠CAD+∠ADC=25°+90°=115°
2、等腰三角形的分类讨论:
a 、在等腰三角形中求边:等腰三角形中,对给出的边可能是腰,也可能是底边,所以我们要进行分类讨论。

例5、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。

[练习]若等腰三角形一腰上的中线分周长为9cm 和12cm 两部分,求这个等腰三角形的底和腰的长。

简析:已知条件并没有指明哪一部分是9cm ,哪一部分是12cm ,因此,应有两种情形。

若设这个等腰三角形的腰长是x cm ,底边长为y cm ,可得⎪⎪⎩⎪⎪⎨⎧=+=+,1221,921y x x x 或⎪⎪⎩⎪⎪⎨⎧=+=+.921,122
1y x x x 解
得⎩⎨⎧==,9,6y x 或⎩⎨⎧==.5,
8y x 即当腰长是6cm 时,底边长是9cm ;当腰长是8cm 时,底边长是5cm 。

b 、在等腰三角形中求角:等腰三角形的一个角可能指底角,也可能指顶角,所以必须分情况讨论。

例6、已知等腰三角形的一个内角为75°则其顶角为( )
A. 30°
B. 75°
C. 105°
D. 30°或75°
[练习]1、等腰三角形一腰上的高与另一腰所成的夹角为45°,求这个等腰三角形的顶角的度数。

简析:依题意可画出图1和图2两种情形。

图1中顶角为45°,图2中顶角为135°。

2、在ΔABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=____________。

3、直角三角形中,直角边和斜边不明确时需要分类讨论
例7、已知x,y为直角三角形两边的长,满足
x y y
22
4560
-+-+=
,则第三边的长为_____________。

解析:由
x y y
22
4560
-+-+=
,可得x240
-=且y y
2560
-+=分别解这两个方程,可得满足条件的解
x
y
1
1
2
2
=
=


⎩,或
x
y
2
2
2
3
=
=



由于x,y是直角边长还是斜边长没有明确,因此需要分类讨论。

当两直角边长分别为2,2时,斜边长为2222
22
+=;
当直角边长为2,斜边长为3时,另一直角边的长为5;
当一直角边长为2,另一直角边长为3时,斜边长为13。

综上,第三边的长为22或5或13。

4、相似三角形的对应角(或边)不确定而进行的分类。

例8、如图所示,在ABC
△中,64
AB AC P
==
,,是AC的中点,过P点的直线交AB于点Q,若以A P Q
、、为顶点的三角形和以A B C
、、为顶点的三角形相似,则AQ的长为()
(A)3 (B)3或
43 (C)3或34 (D)43
析解:由于以A P Q 、、为顶点的三角形和以A B C 、、为顶点的三角形有一个公共角(A ∠),因此依据相似三角形的判定方法,过点P 的直线PQ 应有两种作法:一是过点P 作PQ ∥BC ,这样根据相似三角形的性质可得
AQ AP AB AC =,即2
64
AQ =,解得3AQ =;
二是过点P 作APQ ABC ∠=∠,交边AB 于点Q ,这时
APQ
ABC ,于是有
AQ AP AC AB =,即246AQ =,解得43AQ =. 所以AQ 的长为3或4
3,故应选(B)。

四、本节小结
分类讨论思想是在解决问题出现不确定性时的有效方法。

线段及端点的不确定;角的一边不确定;三角形形状不确定;等腰三角形腰或顶角不确定;直角三角形斜边不确定;相似三角形对应角(边)不确定等,都需要我们正确地运用分类讨论的思想进行解决。

分类讨论思想不仅可以使我们有效地解决一些问题,同时还可以培养我们的观察能力和全面思考问题的能力。

C
B。

相关文档
最新文档