抗扭修正系数计算

抗扭修正系数计算

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算公式 纸箱抗压强度一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 ①凯里卡特(K.Q.Kellicutt)公式 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/0.152m) Rmn ——瓦楞芯纸环压强度测试值(N/0.152m) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 纸箱抗压强度公式中的15.2(cm)为测定原纸环压强度时的试样长度。 Z 值计算公式 Z=2(L 0+B ) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm)B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表

b.06 类纸箱抗压强度计算公式: P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数, 凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式

P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 纸箱抗压强度Dx——瓦楞纸板纵向挺度(MN·m)Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式: 包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N); Pm ——瓦楞纸板边压强度(N/m) a——常数 b——常数 纸箱抗压强度⑤APM 计算公式 考虑箱面印刷对抗压强度的影响。

承载力修正系数规范表

承载力修正系数规范表 我们反复强调,理解一个条文要放到“规范体系”中。 什么是“规范体系”? 见下图。就是“国标”“行标”“地标”“协标”等等;这些标准各有特色,各有侧重点。 有人会说,这些“规范”前后矛盾,乱七八糟。这是你的认知问题,实际上,这些规范都会统一在一定的“机理”前提下,没有人会白纸黑字的写一些明显错误的东西。 我们反复强调,概念为先,机理为本。就是说,这么多条文,不管怎么写,都逃不脱“机理”这个框框,只要理解了机理,就能自由运用规范。 我们说:规范体系的任何一个系数,都应能找到它存在的机理! 所以我们说:只有深入理解规范体系,才谈得上“按规范执行”! 先上规范,大家最熟悉的。 建筑地基基础设计规范GB50007-2011 > 5 地基计算> 5.2 承载力

计算 5.2.4 当基础宽度大于3m或埋置深度大于0.5m时,从载荷试验或其他原位测试、经验值等方法确定的地基承载力特征值,尚应按下式修正: ?a=?ak+ηbγ(b-3)+ηdγm(d-0.5) [5.2.4] 注:1 强风化和全风化的岩石,可参照所风化成的相应土类取值,其他状态下的岩石不修正; “其他状态下的岩石不修正;”翻开条文说明,未做任何解释。 我们来看《核电厂岩土工程勘察规范GB 51041-2014》 核电厂岩土工程勘察规范GB 51041-2014 > 13 岩土工程分析评价和成果报告> 13.3 地基承载力 13.3.6 深层平板载荷试验确定的地基承载力特征值可不进行深度修正;按本规范表13.3.3、公式(13.3.4)和浅层平板载荷试验确定的地基承载力特征值,可根据基础埋深按下式修正:

绩效修正系数

(1)方法一: 在指标设置的时候,加设“完成难度”这一项指标,并赋予一定的权重。比如,公司对销售人员考核指标的设置比较严格,难以完成,而对后勤人员的考核比较宽松。在这种情况下销售人员“完成难度”一项就可以得到较高的分数,而后勤人员得分较低,从而使总体得分更为客观。 (2)方法二: 这种方法是将“完成难度”以“难度系数”的形式单独设立,与考核的结果相乘,来进行修正。比如,某个员工的考核得分为80分,其指标完成的难度系数为1.2,则其最终得分为80*1.2=96分。也可以考虑将每一项目标指标都设置“难度系数”。 (1)方法一: 设立公司的整体绩效基准分(可以是全体员工绩效考核的平均数),对各部门的考核均值和员工的考核得分进行部门差异调整,具体设公司整体绩效基准分为A,如员工绩效考核实际得分为B,该员工所在部门绩效考核平均分为C.则部门差异分及为D=C-A,根据部门差异调整员工绩效考核得分为B1=B-D,员工绩效考核系数可以相应的定为B2= B1/A.这种调整方法是假定部门绩效均维持在一致的水

平上,使部门间绩效相尽的员工考核得分接近,而部门内部则仍保持原由的业绩差异结构。 示例: 某员工甲,绩效考核得分为90分,部门考核平均分为80分,公司基准分为75分,则该员工调整后得分为B1=B-D=B-(C-A)=90-(80-75)=85分。其绩效考核系数可确定为B2= B1/A=85/75=1.13. 与甲同部门的员工乙,绩效考核得分为80分,则调整后考核得分为:B1=80-(80-75)=75分,其绩效考核系数为B2= B1/A=75/75=1. 与甲不同部门的但业绩相近的员工丙,由于部门经理对考核标准把握比较严格,绩效考核得分为80分,其所在部门的平均分为70分,则调整后考核得分为:B1=80-(70-75)=85分,其绩效考核系数为B2= B1/A=85/75=1.13. (2)方法二: 在实行部门考核的公司,为了体现部门绩效与员工绩效的一致性,还可以按以下办法进行调整: 第一,可将部门绩效赋予一定的权重作为员工考核的指标。比如设部门考核在员工考核中占有20%的比重,那么调整后的员工考核得分应为:

地基承载力特征值

地基承载力 概述 地基承载力(subgrade bearing capacity)是指地基承担荷载的能力。 在荷载作用下,地基要产生变形。随着荷载的增大,地基变形逐渐增大,初始阶段地基土中应力处在弹性平衡状态,具有安全承载能力。当荷载增大到地基中开始出现某点或小区域内各点在其某一方向平面上的剪应力达到土的抗剪强度时,该点或小区域内各点就发生剪切破坏而处在极限平衡状态,土中应力将发生重分布。这种小范围的剪切破坏区,称为塑性区(plastic zone)。地基小范围的极限平衡状态大都可以恢复到弹性平衡状态,地基尚能趋于稳定,仍具有安全的承载能力。但此时地基变形稍大,必须验算变形的计算值不允许超过允许值。当荷载继续增大,地基出现较大范围的塑性区时,将显示地基承载力不足而失去稳定。此时地基达到极限承载力。 确定地基承载力的方法 (1)原位试验法(in-situ testing method):是一种通过现场直接试验确定承载力的方法。包括(静)载荷试验、静力触探试验、标准贯入试验、旁压试验等,其中以载荷试验法为最可靠的基本的原位测试法。 (2)理论公式法(theoretical equation method):是根据土的抗剪强度指标计算的理论公式确定承载力的方法。 (3)规范表格法(code table method):是根据室内试验指标、现场测试指标或野外鉴别指标,通过查规范所列表格得到承载力的方法。规范不同(包括不同部门、不同行业、不同地区的规范),其承载力不会完全相同,应用时需注意各自的使用条件。 (4)当地经验法(local empirical method):是一种基于地区的使用经验,进行类比判断确定承载力的方法,它是一种宏观辅助方法。 设计时应注意的问题 标准值、设计值、特征值的定义 (1)地基承载力:地基所能承受荷载的能力。 (2)地基容许承载力:保证满足地基稳定性的要求与地基变形不超过允许值,地基单位面积上所能承受的荷载。

05修正系数计算方法及表格

05修正系数计算方法及表格 注:各地区标准不同 综合用地修正系数体系 一、综合用地深度修正 综合用地路线价深度修正系数表 二、综合用地宽深比修正综合用地路线价宽深比修正系数表 三、综合用地容积率修正

注:当容积率W 2.0时,容积率修正系数为1,当容积率〉10?0,容积率修正系数为1.978四、综合用地使用年期修正

五、综合用地街角地修正分两种情况: 1.旁街附设有路线价时,街角地修正计算公式为:地价二正街地价+旁街地价X 修正系数 综合用地路线价街角地修正系数表 2.若街角地只有正街路线价而无旁街路线价,则旁街的影响按下列公式计算:地价二正街地价 +正街地价x 修正系数 综合用地路线价街 角地无旁街路线价修正系数表 六、两面临街地修正 对两面临街的宗地,釆用“重叠价值法”即划分高价街与低价街影响范围的分界点(亦称合致点) ,以 合致线(合致点的连接线)将宗地分为两部分,各部分按其所面临的路线价分别计算地价,然后加总。其计算公式如下: V 二(Uh x dVh x fh ) + (U1 x dVl x fl ) 其中:V ------- 待估宗地地价 佈 ------ 高价街路线价 dVh ——高价街临街深度修正系数 fh ------- 高价街步行街宽深度修正系数 U1 ------ 低价街路线价 dVl ------- 低价街临街深度修正系数 fl ——低价街临街宽深比修正系数 高、低价街临街深度修正系数根据高、低价街的影响深度确定。 高价街路线价 高价街影响深度二 ------------------------------------------- X 全部深度 高价街路线价+低价街路线价 低价街路线价 低价街影响深度二? 舟价街路线价+低价街路线价 X 全部深度

承载力修正系数规范表

承载力修正系数规范表 根据不同的土质,按规范取值。一般地质报告中会提出土的孔隙比,含水量等。估算的时候地基承载力宽度修正系数取1.0就好了。 在荷载作用下,地基要产生变形。随着荷载的增大,地基变形逐渐增大,初始阶段地基土中应力处在弹性平衡状态,具有安全承载能力。当荷载增大到地基中开始出现某点或小区域内各点在其某一方向平面上的剪应力达到土的抗剪强度时,该点或小区域内各点就发生剪切破坏而处在极限平衡状态,土中应力将发生重分布。这种小范围的剪切破坏区,称为塑性区(plastic zone)。地基小范围的极限平衡状态大都可以恢复到弹性平衡状态,地基尚能趋于稳定,仍具有安全的承载能力。但此时地基变形稍大,必须验算变形的计算值不允许超过允许值。当荷载继续增大,地基出现较大范围的塑性区时,将显示地基承载力不足而失去稳定。此时地基达到极限承载力。 确定方法 (1)原位试验法(in-situ testing method):是一种通过现场直接试验确定承载力的方法。包括(静)载荷试验、静力触探试验、标准贯入试验、旁压试验等,其中以载荷试验法为最可靠的基本的原位测试法。 (2)理论公式法(theoretical equation method):是根据土的抗剪强度指标计算的理论公式确定承载力的方法。 (3)规范表格法(code table method):是根据室内试验指标、

现场测试指标或野外鉴别指标,通过查规范所列表格得到承载力的方法。规范不同(包括不同部门、不同行业、不同地区的规范),其承载力不会完全相同,应用时需注意各自的使用条件。 (4)当地经验法(local empirical method):是一种基于地区的使用经验,进行类比判断确定承载力的方法,它是一种宏观辅助方法。

混凝土抗压强度计算方法

计算方法:(个人 总结) 1、混凝土(砂浆)试块试验结果汇总表中的达到强度%:用混凝土(砂浆)的强度宁标准强度X 100% (即试压结果宁强度等级X 100%) 2、混凝土抗压强度计算表 mfcu ------同一验收批混凝土强度的平均值 fcu——抗压强度 fcu,k ------设计的混凝土强度标准值(即:C25=25兆帕,C30=30兆帕) fcu,min——同一验收批混凝土强度最小值 Sfcu------同一验收批混凝土强度的标准值 m2fcu-----同一验收批混凝土强度平均值的平方 Sfcu 二 n 刀fcu,i 2—nm2fcu i =1 如下: n — 1 同一验收批混凝十强度平方数的和- 组数X强度平均数的平方 组数—1 Sfcu二 A 3、砂浆抗压强度计算表 Ri -----砂浆强度的平均 值 砂浆设计强度等级(即M5=5 Mp a, = Mpa) R min ---- 砂浆强度最小值 混凝土抗压强度计算表 说明(书本) 1.混凝土强度验收批应符合下列规定(GB 50204-92)

混凝土强度按单位工程同一验收批规定,但单位工程仅有一组试块,其强度不应低于,k,当单位工程试块数量在2~9组时,按非统计方法评定; 单位工程试块数量在10组及其以上时,按统计方法进行评定。 2.混凝土试样应在混凝土浇筑地点随机抽取,取样频率应符合下列规定 (GB 50204-92; (1)每拌制100盘,且不超过100m3的同配合比混凝土,取样不得少于 一次 (2)每工作班拌制的同配合经的混凝土不足100盘时,其取样不得少 于一次。 (3)对现浇混凝土结构。 1)每一层配合比的混凝土,其取样不得少于一次。 2)同一单位工程同配合比的混凝土,其取样不得少于一次。 注:预拌混凝土应在预拌混凝土厂内按上述规定取样,混凝土运到 施工现场后,尚应按上述规定留置试件。 3.判定标准: mfcu - ?1Sfcu>,k 、fcu,min A 尢fcu,k 统计方法 ” mfcu A ,k 、fcu,min A,k 非统计方法 式中mfcu ------同一验收批混凝土强度的平均值(N/mm2); fcu,k——-设计的混凝土强度标准值(N/mm2); fcu,min——同一验收批混凝土强度最小值(N/mm2);

基准地价修正系数表及说明书表地编制

实用标准 文档大全基准地价修正系数表及说明表的编制 基准地价修正系数表是采用替代原理,建立基准地价、宗地地价及其影响因素之间的相关关系,编制出基准地价在不同因素条件下修正为宗地地价的系数体系,以便能在宗地条件调查的基础上,按对应的修正系数,快速、高效、及时地评估出宗地地价。 一、基准地价修正幅度值的计算 以土地级别为单位,以各级别中最高、最低定级因素总分值所对应的单元地价作为上、下限值,分别与相应级别的基准地价相减,得到上调或下调的最高值。计算公式如下: 上调幅度计算公式: F1=[(I nh—I ib)/I ib]×100% (10-1)下调幅度计算公式: F2=[(I nb—I nl)/I ib]×100% (10-2)式中:F1 --基准地价上调最大幅度; F2 --基准地价下调最大幅度; I ib --级别基准地价; I nh --级别单元总分上限值所对应的地价; I nl --级别单元总分下限值所对应的地价。 根据前述确定的单元总分值、基准地价评估结果及其关系模型,按公式9-1、9-2可以计算出各类各级基准地价修正幅度值。结果见表10-4、10-5、10-6。 表10-4 商业用地基准地价最大上调、下调幅度计算表

二、因素修正系数值的计算及修正系数表及说明表的编制 (一)因素修正系数值计算 根据确定的影响各类用地价格的因素及其权重值,采用下式计算各因素的修正值: F1i=F1×W i(10-3) F2i=F2×W i(10-4)

式中:F1i—某一因素的上调幅度;F2i—某一因素的下调幅度; F1—基准地价上调幅度;F2—基准地价下调幅度; W i—某一因素对宗地地价的影响权重。 (二)因素修正系数及指标说明表的编制 根据基准地价修正幅度的计算结果,在按公式10-3、10-4计算因素修正幅度值的基础上,按优、较优、一般、较劣、劣等5个层次设定修正幅度值,分地类按级别编制修正系数表。 在此基础上,进一步编制影响因素修正系数条件指标表。因素修正系数指标说明表是对各层次的修正系数对应的地价影响因素状态条件所做的描述,通常以在一定区域或土地级别围地价影响因素的最佳状态指标、平均状态指标、最差状态指标分别对应着优、一般、劣等层次的修正系数。利用土地定级中各影响因素的评价结果,在进行统计分析的基础上,编制影响因素修正系数条件指标表,结果见表10-7~36。

如何理解参数的修正系数

如何理解参数的修正系数? 统计修正系数计算时,公式括号中的正负号如何选择?不利组合具体情况下怎么考虑?除了抗剪强度取负值外,还有那些指标通常取负值或那些指标可以取负值?另外,统计修正系数一般情况下在0.75-1之间,如果计算出来是负数或大于1,是不是计算结果就不能用了呢? 对于岩土参数的统计规范有规定,对于原住测试该怎么统计呢,是按照规范的公式,还是按平均值-1.645σ? 答复: 《岩土工程勘察规范》(GB50021-2001)给出了岩土参数标准值φk 的计算公式: 式中正负号的选用取决于指标的性质,如对于抗剪强度指标,应取负号。为什么对抗剪强度标准这样的参数需要取负号呢?什么指标需要取正号呢?这还必须从概率统计的基本原理说起。 统计修正系数是对土性指标的平均值因变异性而进行的修正,平均值乘以修正系数以后称为标准值,标准值是具有概率意义的代表性数值或者称为取用值。 岩土参数的标准值是岩土工程设计的基本代表值,是岩土参数的可靠性估值。对岩土设计参数的估计,实质上是对总体平均值作置信区间估计。在勘察工作中取土试样或者作原位测试测定岩土的性状和行为,其目的是希望了解岩土体的总体的性状和行为,取土试验或作测试工作是一种抽样的手段,而非目的。抽样所得的子样,包括试验的结果和原位测试的结果都是抽样得到的子样,这些子样并非我们的终极目标。例如,我们取土作三轴试验,求得的强度指标仅是所取的土样的性状,这些指标在多大程度上反映了整个土层的实际性状呢?我们感兴趣的不是几筒土样,而是整个土层,需要了解的是整个土层强度的平均趋势,也就是需要了解强度指标的总体。如何从子样的数据中得出关于总体的结论呢?这种方法在统计学中称为统计推断,就是从有限的样品的结果出发来估计总体的特征,从特殊的抽样数据来推断一般的总体特征的方法。 在采用统计学区间估计理论基础上,可以得到的关于参数总体平均值置信区间的单侧置信界限值:

承载力修正系数规范表

承载力修正系数规范表 1 规范相关条文说明 《建筑地基基础设计规范》(简称规范)第5.2.4条指出:通过载荷试验或其它原位测试结果、经验值等方法确定的地基承载力特征值,需要进行深度修正。其条文说明中还有一段论述:“目前建筑工程大量存在着主裙楼一体的结构,对于主体结构地基承载力的深度修正,宜将基础底面以上范围内的荷载,按基础两侧的超载考虑,当超载宽度大于基础宽度两倍时,可将超载折算成土层厚度作为基础埋深,基础两侧超载不等时,取小值。” 目前工程届对地基承载力深度修正的认识还十分混乱。本文拟进一步对地基承载力深度修正的实质进行总结,阐述其在常见的几种地基基础形式中的应用,同时剖析几种工程界中流行的认识,希望对广大设计人员有所帮助。 2.1深度修正的实质和要点 文【1】、【2】指出,进行地基承载力的深度修正,就是为了考虑基础两侧基底标高以上的超载q对基础两侧滑动土体向上滑动的抵抗作用。这个超载可以直观地理解为作用在滑动土体表面的压重,见图1。

超载q可以是土自重q=rd;也可以是裙房产生的连续均布压力,计算公式可参考规范式(5.2.2-1),注意,活荷载应按“荷载规范”第4.1.2条要求折减。 因此,结合地基破坏机理,以及计算公式建立的前提,总结出地基承载力深度修正的几个要素分别如下: (1)地基承载力的深度修正,其实都是超载的压重作用。无论是用土的天然埋深,还是将裙房等其他连续均匀压重折算为土厚进行地基承载力的深度修正,其实质都是基础两侧超载对抗滑动土体向上运动的体现。 (2)对超载连续、均匀性和满足一定分布宽度的要求。地基承载力计算公式的建立是以超载q为连续均布荷载,并作用在整个滑动体表面为前提的。根据规范和文【2】的建议,超载的分布宽度满足大于(2~4)B(B为基础宽度)的要求即可进行地基承载力的深度修正。如果是天然土层形成的超载,这个荷载基本上是连续均布的。裙房等压重不一定能形成的连续均布的超载,具体分析见下文。 (3)取最小值的要求。地基的破坏一般都发生在最薄弱部位,因此应取基础四周的埋深(或折算埋深)的最小值进行深度修正。

受扭计算总结及算例

受扭构件承载力计算 7.1 概述 混凝土结构构件除承受弯矩、轴力、剪力外,还可能承受扭矩的作用。也就是说,扭转是 钢筋混凝土结构构件受力的基本形式之一,在工程中经常遇到。例如:吊车梁、雨蓬梁、平 面曲梁或折梁及与其它梁整浇的现浇框架边梁、螺旋楼梯梯板等结构构件在荷载的作用下, 截面上除有弯矩和剪力作用外,还有扭矩作用。 图7-1受扭构件的类型(平衡扭转) (a)雨蓬梁的受扭 (b )吊车梁的受扭 按照引起构件受扭原因的不同,一般将扭转分为两类。一类构件的受扭是由于荷载的直 接作用引起的,其扭矩可根据平衡条件求得,与构件的抗扭刚度无关,一般称平衡扭转,如 图7-1(a )(b )所示的雨篷梁及受吊车横向刹车力作用的吊车梁,截面承受的扭矩可从静力 平衡条件求得,它是满足静力平衡不可缺少的主要内力之一。如果截面受扭承载力不足,构 件就会破坏,因此平衡扭转主要是承载能力问题,必须通过本章所述的受扭承载力来平衡和 抵抗全部的扭矩。 还有一类构件的受扭是超静定结构中由于变形的协调所引 起的扭转称为协调扭转。如图7-2所示的框架边梁。当次梁受弯 产生弯曲变形时,由于现浇钢筋混凝土结构的整体性和连续性, 边梁对与其整浇在一起的次梁端支座的转动就要产生弹性约束, 约束产生的弯矩就是次梁施加给边梁的扭转,从而使边梁受扭。 协调扭转引起的扭矩不是主要的受力因素,当梁开裂后,次 梁的抗弯刚度和边梁的抗扭刚度都将发生很大变化,产生塑性内 力的重分布,楼面梁支座处负弯矩值减小,而其跨内弯矩值增大; 框架 图 7-2受扭构件的类型(协调扭转) 边梁扭矩也随扭矩荷载减小而减小。 (c) 现浇框架的边梁 由于本章介绍的受扭承载力计算公式主要是针对平衡扭转而言的。对属于协调扭转钢筋混 凝土构件,目前的《规范》对设计方法明确了以下两点: 1、支承梁(框架边梁)的扭矩值采用考虑内力重分布的分析方法。将支承梁按弹性分析 所得的梁端扭矩内力设计值进行调整,弹T T )1(β-=。 根据国内的试验研究:若支承梁、柱为现浇的整体式结构,梁上板为预制板时,梁端扭 矩调幅系数β不超过4.0;若支承梁、板柱为现浇整体式结构时,结构整体性较好,现浇板 通过受弯、扭的形式承受支承梁的部分扭矩,故梁端扭矩调幅系数可适当增大。 2.经调幅后的扭矩,进行受弯、剪扭构件的承载力计算,并确定所需的抗扭钢筋(周 边纵筋及箍筋)并满足有关的配筋构造要求。 7.2 纯扭构件的实验研究及破坏形态 以纯扭矩作用下的钢筋混凝土矩形截面构件为例,研究纯扭构件的受力状态及破坏特 征。当结构扭矩内力较小时,截面内的应力也很小,其应力与应变关系处于弹性阶段,此时

抗压强度计算2015讲解

第四部分外窗的抗风压强度计算 第一节标准与方法 一、相关标准: 《建筑结构荷载规范》GB 50009-2012: ——用于计算建筑物围护结构的风荷载标准值 《建筑外窗抗风压强度、挠度计算方法》(建筑用塑料窗附录B)——用于进行门窗抗风压强度计算、受力杆件挠度校核《建筑玻璃应用技术规程》JGJ113-2009 ——用于玻璃的设计

《建筑外门窗气密、水密、抗风压性能分级及检测方法》GB/T 7016-2008——用于门窗性能检测及性能分级 《门窗、幕墙风荷载标准值》04J906 ——用于直接查询建筑物的风荷载标准值,编制时间较早(2004年按GB50009-2001编制)。三、计算与分级 一)、计算方法有两种: 第一种是挠度校核,即在规定的风荷载标准值作用下,受力杆件的挠度不大于规定值; 第二种是抗风压值计算,即挠度达到最大值(等于L/150,且小于或等于20mm)时的风荷载值。二)、分级 抗风压强度计算与分级可分三步进行:

1、确定建筑物围护结构风荷载标准值。依据《建筑结构荷载规范》GB 50009计算,可由设计院或甲方提供,也可从相关规范、规定获取。。 2、按照《建筑外窗抗风压强度、挠度计算方法》进行门窗受力杆件挠度的校核或门窗抗风压值的计算 3、依据《建筑玻璃应用技术规程》JGJ113确定玻璃风荷载设计值,并进行玻璃强度计算。 4、按《建筑外门窗气密、水密、抗风压性能分级及检测方法》进行级别的判定。 第二节风荷载标准值 一、风荷载标准值的确定 ★甲方或设计院提供(当地有规定的按规定执行)。

★按《建筑结构荷载规范》GB 50009计算确定 按规范计算的风荷载标准值是最小值,根据建筑物的具体情况,可在计算的基础上,乘以安全系数确定。 ★风荷载标准值的直接选用 中国建筑标准设计研究院,在2004年以《建筑结构荷载规范》GB 50009-2001为依据,编制了《门窗、幕墙风荷载标准值》04J906(虽然荷载规范修订了,也许此图册会修订)。 《门窗、幕墙风荷载标准值》04J906是采用基本风压、地面粗糙度类别、建筑物高度三个参数,查表确定该建筑物的风荷载标准值。 在查表的过程中,没有用到建筑物的体形系数,是因为《门窗、幕墙风荷载标准值》04J906是取最大值计算的,即外表面是按负压区墙角边部位-1.8取值,内表面按+0.2取值的。

轴扭转计算

第5章扭转 5.1 扭转的概念及外力偶矩的计算 5.1.1、扭转的概念 在工程实际中,有很多以扭转变形为主的杆件。例如图示 5.1,常用的螺丝刀拧螺钉。 图5.1 图示5.2,用手电钻钻孔,螺丝刀杆和钻头都是受扭的杆件。 图5.2 图示5.3,载重汽车的传动轴。 图5.3 图示5.4,挖掘机的传动轴。 图5.4 图5.5所示,雨蓬由雨蓬梁和雨蓬板组成(图5.5a),雨蓬梁每米的长度上承受由雨蓬板传来均布力矩,根据平衡条件,雨蓬梁嵌固的两端必然产生大小相等、方向相反的反力矩(图5.5b),雨蓬梁处于受扭状态。 图5.5 分析以上受扭杆件的特点,作用于垂直杆轴平面内的力偶使杆引起的变形,称扭转变形。变形后杆件各横截面之间绕杆轴线相对转动了一个角度,称为扭转角,用 表示,如图5.6所示。以扭转变形为主要变形的直杆称为轴。 图5.6

本章着重讨论圆截面杆的扭转应力和变形计算。 5.1.2、外力偶矩的计算 工程中常用的传动轴(图)是通过转动传递动力的构件,其外力偶矩一般不是直接给出的,通常已知轴所传递的功率和轴的转速。根据理论力学中的公式,可导出外力偶矩、功率和转速之间的关系为: n N m 9550= (5.1) 式中 m----作用在轴上的外力偶矩,单位为m N ?; N-----轴传递的功率,单位为kW ; n------轴的转速,单位为r/min 。 图5.7 5.2 圆轴扭转时横截面上的内力及扭矩图 5.2.1 扭矩 已知受扭圆轴外力偶矩,可以利用截面法求任意横截面的内力。图5.8a 为受扭圆轴,设外力偶矩为e M ,求距A 端为x 的任意截面n m -上的内力。假设在n m -截面将圆轴截开,取左部分为研究对象(图5.8b ),由平衡条件0=∑x M ,得内力偶矩T 和外力偶矩e M 的关系 内力偶矩T 称为扭矩。 扭矩的正负号规定为:自截面的外法线向截面看,逆时针转向为正,顺时针转向为负。 图5.8 图示5.8的b 和c ,从同一截面截出的扭矩均为正号。扭矩的单位是m N ?或m kN ?。 5.2.2 扭矩图 为了清楚地表示扭矩沿轴线变化的规律,以便于确定危险截面,常用与轴线平行的x 坐标表示横截面的位置,以与之垂直的坐标表示相应横截面的扭矩,把计算结果按比例绘在图上,

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算 公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

瓦楞纸箱抗压强度计算公式 一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/)

Rmn ——瓦楞芯纸环压强度测试值(N/) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 公式中的(cm)为测定原纸环压强度时的试样长度。Z 值计算公式 Z=2(L 0+B ) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm)B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表 类纸箱抗压强度计算公式:

P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数,

凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式 P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 Dx——瓦楞纸板纵向挺度(MN·m) Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式:

包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N);Pm ——瓦楞纸板边压强度(N/m)a——常数 b——常数 ⑤APM 计算公式 考虑箱面印刷对抗压强度的影响。 a——箱面分类系数;

地基承载力的基础埋深修正系数应为基础底平面上压力修正系数

地基承载力的基础埋深修正系数应为基础底平面上压力修 正系数 摘要:基础周边底平面之上受到压力在地基内产生侧压力对地基土侧向约束,其对地基土侧向约束力越大则地基承载力越高。 地基承载力修正值由基础底平面周边地基土受到压力,包括基础底面之上土自重压力、地下水浮力或建筑荷等确定,基础埋深的地基承载力修正系数实傺为基础底面之上受到压力修正系数。 关键词:地基承载力;地基承载力修正系数 1.地基承载力的基础埋深修正系数应为基础底平面上压力修正系数 按建筑地基基础设计规范《GB5007-2002》5.2.4,当基础宽度大于3米或埋深大于0.5米时,地基承载力按公式修正。 修正后的地基承载力特征值;基础埋深(m); 地基承载力特征值; 基础宽度和埋深的地基承载力修正系数; 基础底面之下土的重度地下水位之下取浮重度; 基础底面之上土的加权平均重度,地下水位之下取浮重

度。 上列公式展开得:(1) 基础底面之上土自重压力,基础底面之上0.5m厚土自重压力。 地基承载力由地基土的抗剪参数与地基土周围约束压确定,即三轴压力状态大主应力。 基础周边底面之上受到压力在地基内产生侧压力对地基土侧向约束,其对地基土侧向约束力越大则地基承载力越高。 主楼筏板基础地面之下开挖深度,筏板基础地下室之下埋深,洪水期最高地下水位距抗浮板高度,地下室内独立柱荷载作用在抗浮板上平均荷载(Kpa)。 这时筏板基础底平面上基础周边作用于地基土压力为抗浮板上平均荷载、筏板地基开挖深度确定的土自重压力和最大水位对抗浮板的浮托压力的合力。 这时筏板基础底平面上基础周边作用于地基土压力为: (2) 将(2)式算得压力再代入(1)式计算地基承载力修正值。 2.结论 基础底面之上受到压力在地基内产生侧压力对地基土

混凝土抗压强度计算方法

计算方法:(个人总结) 1混凝土(砂浆)试块试验结果汇总表中的达到强度%:用混凝土(砂浆)的强度宁标准强度X 100% (即试压结果宁强度等级X 100%) 2、混凝土抗压强度计算表 mfcu ------同一验收批混凝土强度的平均值 feu ----- 抗压强度 fcu,k ------设计的混凝土强度标准值(即:C25=25兆帕,C30=30兆帕) feu,min——同一验收批混凝土强度最小值 Sfeu ------同一验收批混凝土强度的标准值 m2fcu-----同一验收批混凝土强度平均值的平方 n — 2 刀fcu,i 2—nm2fcu Sfcu= i =1 如下: N n —1 Sfcu= 同一验收批混凝十强度平方数的和 - 组数X强度平均数的平方 组数- 3、砂浆抗压强度计算表 R -----砂浆强度的平均值 R标-----砂浆设计强度等级(即M5=5Mpa, M7.5=7.5 Mpa) Rnin -----砂浆强度最小值

混凝土抗压强度计算表 说明(书本) 1. 混凝土强度验收批应符合下列规定(GB 50204-92) 混凝土强度按单位工程同一验收批规定,但单位工程仅有一组试块,其强度不应低于1.15fcu,k,当单位工程试块数量在2~9组时,按非统计方法评定;单位工程试块数量在10组及其以上时,按统计方法进行评定。 2. 混凝土试样应在混凝土浇筑地点随机抽取,取样频率应符合下列规定(GB 50204-92); (1)每拌制100盘,且不超过100m3的同配合比混凝土,取样不得少于一次(2)每工作班拌制的同配合经的混凝土不足100盘时,其取样不得少于一次。 (3)对现浇混凝土结构。 1)每一层配合比的混凝土,其取样不得少于一次。 2)同一单位工程同配合比的混凝土,其取样不得少于一次。 注:预拌混凝土应在预拌混凝土厂内按上述规定取样,混凝土运到施工 现场后,尚应按上述规定留置试件。 3. 判定标准: mfcu -入Sfcu》0.9fcu,k { fcu,mi n A h fcu,k 统计方法 mfcu A 1.15fcu,k -fcu,min A0.95fcu,k 非统计方法 式中mfcu --------- 同一验收批混凝土强度的平均值(N/mm2);

地基承载力计算

地基承载力计算 地基承载力的定义 地基土单位面积上随荷载增加所发挥的承载潜力,常用单位kPa,是评价地基稳定性的综合性用词。应该指出,地基承载力是针对地基基础设计提出的为方便评价地基强度和稳定的实用性专业术语,不是土的基本性质指标。土的抗剪强度理论是研究和确定地基承载力的理论基础。 在荷载作用下,地基要产生变形。随着荷载的增大,地基变形逐渐增大,初始阶段地基土中应力处在弹性平衡状态,具有安全承载能力。当荷载增大到地基中开始出现某点或小区域内各点在其某一方向平面上的剪应力达到土的抗剪强度极限时,该点或小区域内各点就发生剪切破坏而处在极限平衡状态,土中应力将发生重分布。这种小范围的剪切破坏区,称为塑性区(Plastic Zone)。地基小范围的极限平衡状态大都可以恢复到弹性平衡状态,地基尚能趋于稳定,仍具有安全的承载能力。但此时地基变形稍大,必须验算变形的计算值不允许超过允许值。当荷载继续增大,地基出现较大范围的塑性区时,将显示地基承载力不足而失去稳定。此时地基达到极限承载力。 地基承载力的组成 荷载作用下,地基的破坏形式主要包括以下三种:

工程中地基土层,一般较好,基础埋深较浅。因此主要发生整体剪切破坏,地基极限承载力计算的太沙基公式为: 式中: C---土的粘聚力,KPa; q---基础两侧土压力q=γ0d,若地基土是均质,则基础两侧土压力q=γd;若地基土是非均质,则γ0是基底以上土的加权平均重度; d---基底埋深,m ;b---基础宽度,m ; Nr、Nq、Nc---无量纲承载力系数

据此可知,地基承载力由以下三部分组成。 地基承载力的深宽修正 地基承载力深宽修正的计算公式为:

混凝土抗压强度标准值计算

1 总则 1.0.1~本规范系根据国家标准《水利水电工程结构可靠度设计统一标准(GB50199—94)》(简称《水工统标》)的规定,对《水工钢筋混凝土结构设计规范(SDJ20—78)》(简称原规范)的设计基本原则进行了修改,并依据科学研究和工程实践增补有关内容后,编制而成。其适用范围扩大到预应力混凝土结构和地震区的结构,其它与原规范相同。但不适用于混凝土坝的设计,也不适用于碾压混凝土结构。 当结构的受力情况、材料性能等基本条件与本规范的编制依据有出入时,则需要根据具体情况,通过专门试验或分析加以解决。 1.0.4 本规范的施行,必须与按《水工统标》制订、修订的水工建筑物荷载设计规范等各种水工建筑物设计标准、规范配套使用,不得与未按《水工统标》制订、修订的各种水工建筑物设计标准、规范混用。 3 材料 混凝土 按照国际标准(ISO3893)的规定,且为了与其它规范相协调,将原规范混凝土标号的名称改为混凝土强度等级。在确定混凝土强度等级时作了两点重大修改; (1)混凝土试件标准尺寸,由边长200mm的立方体改为边长150mm的立方体; (2)混凝土强度等级的确定原则由原规范规定的强度总体分布的平均值减去倍标准差(保证率90%),改为强度总体分布的平均值减去倍标准差(保证率95%)。用公式表示,即: f cu,k=μfcu, 15-σfcu =μfcu, 15 (1-δfcu) (3.1.2-1)

式中 f cu,k ──混凝土立方体抗压强度标准值,即混凝土强度等级值(N /mm 2); μfcu,15──混凝土立方体(边长150mm )抗压强度总体分布的平均值; σfcu ──混凝土立方体抗压强度的标准差; δfcu ──混凝土立方体抗压强度的变异系数。 混凝土强度等级由立方体抗压强度标准值确定,立方体抗压强度标准值是本规范混凝土 其他力学指标的基本代表值。 R (原规范的混凝土村号)与C (本规范的混凝土强度等级)之间的换算关系为: )1.0() 27.11(95.0645.1115,15,R C fcu fcu δδ--= (3.1.2-2) 式中为试件尺寸由200mm 立方体改为150mm 立方体的尺寸效应影响系数;为计量单位换算系数。 由此可得出R 与C 的换算关系如表3.1.2所列 表3.1.2 R 与C 换算表

地基承载力为什么修正

实验表面,地基承载力不仅与土的性质有关,还与基础的大小、形状、埋深以及荷载的情况有关。这些因素对承载力的影响程度又随土质的不同而不同,在采用载荷实验或原位实验的经验统计关系等确定地基承载力标准值时,考虑的是对应于标准条件或基本条件下的值。而在进行地基基础设计和计算时,考虑的是承载力极限状态下的标准组合,即采用荷载设计值,所以对某个实体基础而言,就应该计入它的埋深和宽度给地基承载力特征值带来的影响,进行深度和宽度修正。 (一)、承载力宽度修正 根据大量的载荷资料表明:对于?k>0的地基土,其承载力的增大随?k的提高而逐渐显著。若地基底部的宽度增大,地基承载力将提高,所以地基承载力标准值应予以宽度修正。当b>6m时,修正公式必将给出过大的承载力值,出于对基础沉降方面的考虑,此时宜按6m 考虑。另一方面,当b<3m时,根据沙土地基的静载荷资料表明,按实际值计算的结果偏小许多,所以《地基规范》又规定,当基底宽度小于3m时按3m考虑。 (二)、承载力深度修正 静载荷实验又表明:地基承载力随埋深d显线形增加趋势,即深度修正系数将增大。实际上,如果埋深d越大,那么基础以上的土可做边载考虑,基底处土体所受到的上覆压力越大,使基础产生失稳和破坏的荷载也越大,也就是说,埋深越大,地基承载力越高。值得注意的是,深度修正系数是根据同样宽度但埋深不同的载荷板实验,得出随埋深增大而承载力增长的规律确定的。但由于载荷板实验的埋深有限,所以得出的规律也只能在有限的范围内运用。有些根据直径为200~300mm的小载荷板所做的实验结果表明:同样存在着一个约4d左右的临界深度,超过此值时,承载力的增长规律不明显。所以在有些地区确定大直径桩的承载力时,由于静载荷实验的困难,就套用天然地基承载力再加上深度修正的办法得出桩的端承力,对此必须慎重对待,务必不超过当地的经验值。

地基承载力修正

车库离主楼大约4.5左右,在修正主楼的地基承载力时,基础深度是否可以考虑基础实际埋置深度,不用考虑车库。。。另外,车库与主楼之间的距离该怎么确定,有没有公式或者经验什么的? QQ截图20120313161448.png(8.53 KB, 下载次数: 3) 5.4.5 【问题】5.2.4条中公式5.2.4中基础埋置深度“d”的确定方法: 按规范规定,d(基础埋置深度)一般从室外地面算起,填方整平地区,可自填土地面算 起。但填土在上部结构施工后完成时,应从天然地面算起。对地下室如果用箱形基础或筏 基时,基础埋深自室外地面标高算起;当采用独立基础或条形基础时,应从室内地面标高 算起。规范的规定比较原则,此规定指一般情况,对于实际的高层建筑工程非一般的情况 很多,则需具体情况具体分析。 首先要分析为什么要修正,公式5.2.4中两个重要系数是γ、γm的取值问题。γ是由基础 底面下地基土本身决定的,是定值。而γm是基础底面以上的加权平均重度,地下水位以 下是取浮重度。这主要是考虑岩土工程报告提供的地基承载力特征值只是取原状土土样试 验,其承载力并没有考虑其原状土在自重作用下的三向受力状态;而位于基底标高处的原 状土是处于自重应力作用的三向受力状态,因此,原状土的实际承载力要高于土工实验土 样的承载力。所以,进行合理的修正。基于这个概念,当地基承载力特征值是通过深坑载 荷原位试验确定的则深度不修正。因为土工试验的土样也是饱和土样,因此,当地下水位 以下土颗粒间空隙已由地下水填满,所以公式中的γm采用浮重度。 由以上分析可看出:地基承载力的修正值与基础以上的荷载有关,(也即超载)。根据这 一概念提出建议。 【建议】: 1)对于高层主楼和裙房(包括单侧裙房、两侧裙房、三侧裙房),进行地基承载力计算而 确定基础埋深时,(d值)可将裙房基础底面以上范围内荷载作为基础侧面的超载并将其 折算成等效埋深。上部荷载确定后,即可确定基础底的反力q,如果设折算埋深为d1, d1=q/γm,d1应小于基础从室外地面到基础底的埋深。 以上规定的前提条件是裙房(带地下室)的基础是与主楼厚度不同的筏板基础,裙房的筏

常用计算公式

常用计算公式: 1、钢板拉伸: 原始截面积=长×宽 原始标距=原始截面积的根号×5.65 L0=K S0 k为5.65 S0为原始截面积 断后标距-原始标距 断后伸长率= ×100% 原始标距 原始截面积—断后截面积 断面收缩率= ×100% 原始截面积 Z=[(A0—A1)/A0]100% 2、圆材拉伸: 2 原始截面积= 4 (=3.1416 D=直径)标距算法同钢板3、光圆钢筋和带肋钢筋的截面积以公称直径为准,标距=5×钢筋的直径。断后伸长同钢板算法。 4、屈服力=屈服强度×原始截面积 最大拉力=抗拉强度×原始截面积 抗拉强度=最大拉力÷原始截面积 屈服强度=屈服力÷原始截面积 5、钢管整体拉伸:

原始截面积=(钢管外径—壁厚)×壁厚×(=3.1416)标距与断后伸长率算法同钢板一样。 6、抗滑移系数公式: N V=截荷KN P1=预拉力平均值之和 nf=2 预拉力(KN)预拉力之和滑移荷载Nv(KN)第一组171.4342.8425 第二组172.5345428 第三组171.5343424 7、螺栓扭矩系数计算公式:K=

P ·d T=施工扭矩值(机上实测) P=预拉力 d=螺栓直径 已测得K 值(扭矩系数)但不知T 值是多少?可用下列公式算出:T=k*p*d T 为在机上做出实际施拧扭矩。K 为扭矩系数,P 为螺栓平均预拉力。D 为螺栓的公称直径。 8、螺栓标准偏差公式: K i =扭矩系数 K 2=扭矩系数平均值 用每一组的扭矩系数减去平均扭矩系数值再开平方,八组相加之和,再除于7。再开根号就是标准偏差。 例:随机从施工现场抽取8 套进行扭矩系数复验,经检测: 螺栓直径为22 螺栓预拉力分别为:186kN ,179kN ,192kN ,179kN ,200kN ,205kN ,195kN ,188kN ; 相应的扭矩分别为: 530N ·m ,520N ·m ,560N ·m ,550N ·m ,589N ·m ,620N ·m , 626N ·m ,559N ·m K=T/(P*D) T —旋拧扭矩 P —螺栓预拉力 D —螺栓直径(第一步先算K 值,如186*22=4092 再用530/4092=0.129,共算出8组的K 值,再算出这8组的平均K 值,第二步用每组的K 值减去平均K 值,得出的数求出它的平方,第三步把8组平方数相加之和,除于7再开根号。得出标准差。 解:根据规范得扭矩系数: σ=

相关文档
最新文档