核医学复习

核医学复习
核医学复习

核医学复习:

名词解释:

核素发生器:是从长半衰期核素的衰变产物中分离得到短半衰期核素的装置。

有效半衰期:放射性核素由于衰变减少一半所需要的时间。

贝克勒尔:单位时间内原子核的衰变数量为放射性活度,其国际制单位是*

PET-CT:(正电子发射计算机断层扫描)核医学发展的一项新技术,当代最先进无创伤性高品质影像诊断技术,高水平核医学诊断的标志,是现代医学必不可少的高技术

填空:

常用四个核素半衰期:131I(131碘8.04天)18F(18氟110分)99mTC(99m锝6小时)125I(125碘60天)

放射免疫分析的优点:灵敏度高特异性强精确度高用血量少

体外测量

常用放射性核素发生装置:

全身骨显像检查的优势:一次显像可显示全身骨骼情况落后敏感度高,显示病变可比CT、X线片等早3~6月对患者的辐射剂量小

常用显像剂:

问答:骨密度检查临床意义:1.骨质疏松的诊断

2.骨质疏松性骨折的预测

3.随访及对治疗效果的评估

全身骨显像检查临床意义:1.早期诊断骨转移癌如肺癌乳腺癌前列腺癌

2.观察判断原发性骨肿瘤的病变范围和疗效如成骨肉瘤

3.诊断骨髓炎和炎症性骨痛如化脓性骨髓炎

4.移植骨的监测

5.骨折诊断

6.发现骨质代谢异常性疾病如骨质疏松Paget病

7.监测股骨头血供状态

PET-CT在肿瘤学上的临床意义:1.寻找肿瘤原发灶

2.脏器肿块良恶性鉴别

3.恶性肿瘤分期与分级及肿瘤转移灶的定位诊断

4.临床治疗后肿瘤残余灶确定或复发的早期判断

5.肿瘤放化疗后局部坏死与存活肿瘤组织的鉴别

6.临床疗效的监测、肿瘤耐药的评价和预后随访

7.肿瘤生物学评价

肾图的临床应用:1.判断左右分侧肾功能

2.尿路梗阻的诊断

3.肾血管性高血压的诊断

4.移植肾的监测

153Sm-EDTMP 治疗肿瘤骨转移

89Sr治疗肿瘤骨转移

静态骨显像显像剂(Imaging Agent)是

99mTc标记的磷酸盐(PYP)

膦酸盐(MDP、MHDP)

肾动态显像肾小球滤过型:99mTc-喷替酸(99mTc- DTPA);

肾小管分泌型:99mTc-双半胱氨酸(99mTc- EC),99mTc-MAG3。(ERPF的测定)肾有效血浆流量:单位时间内肾能清除血浆中某种物质的毫升数主要反映肾小管功能131I-OIH或99mTc-EC

GFR的测定肾小球滤过率单位时间内从肾小球滤过的血浆容量

主要反映肾小球的功能99mTc-DTPA

了解肾脏的功能、形态及尿路通畅和血供情况

放射性核素可以治疗的疾病

32P治疗血液系统疾病(真性红细胞增多症、原发性血小板增多症)

131I治疗甲状腺功能亢进症

153Sm-EDTMP(或89Sr)治疗骨转移癌

188Re-硫化铼治疗骨关节炎及血友病性关节炎

放射免疫导向治疗

131I治疗甲状腺机能亢进症;利用131Iβ-射线的电离辐射生物效应对功能亢进的甲状腺组织产生抑制和破坏作用,减少甲状腺激素的合成分泌过多,从而达到治疗目的

男性或女性一般在30~35岁左右达到一生中所获得的最高骨量,称为峰值骨量

正常的骨量减少称为骨贫或骨质缺乏

由于多种原因造成骨量的快速丢失的病变称为骨质疏松症

峰值骨量为M,则

M 1 SD以内正常M 1~2 SD 骨质减少

M 2 SD以上骨质疏松

M 2 SD以上伴1或多处骨折为严重骨质疏松

肾图131I-OIH

异常肾图类型持续上升型高水平延长线型抛物线型低水平延长线型

低水平递降曲线型阶梯式下降型单侧小肾图型

肾静态显像99mTc-二巯基丁乙酸(99mTc- DMSA)。了解肾脏位置、大小、形态,显示肾内占位性病变。

肾上腺皮质显像原理:

胆固醇是合成肾上腺皮质激素的前身物

标记的胆固醇参与肾上腺皮质激素合成,进入肾上腺皮质

131I(123I)-6-碘甲基-19-去甲基胆固醇(NP-59)

131I(123I)-19-碘化胆固醇(NM-145)

临床应用:皮质增生皮质腺瘤皮质癌原发性醛固酮增多症

肾上腺髓质显像原理:

肾上腺髓质分泌去甲肾上腺素

间位碘代卞胍类似去甲肾上腺素

用放射性核素标记间位碘代卞胍.

131I-MIBG静脉注射显像剂74- 111MBq

临床应用:嗜铬细胞瘤异位嗜铬细胞瘤恶性嗜铬细胞瘤神经母细胞瘤

肺灌注显像Tc-99m-MAA

肺通气显像Tc-99m-硫化胶体,Tc-99m-DTPA锝气

核素通气-灌注肺扫描(V/Q)是诊断肺栓塞最有价值的无创性方法之一。

核素下肢深静脉显像99mTc标记的胶体显像111In标记的血小板显像

胫后静脉→胫前静脉→腓静脉→腘静脉→股静脉→髂静脉→下腔静脉依次显影

肝胶体显像显像剂:99mTc-植酸钠

肝血池显像显像剂:99mTc-RBC

肝胶体显像病变区无明显的放射性浓聚而血池显像放射性明显高于周围肝组织为肝血管瘤的特征。

胆系显像药物:Tc-99m-HIDA

胃肠道出血99mTc-红细胞

下消化道出血定位99mTcO4淋洗液

胃食道返流(GER)99mTc-硫胶体口服

甲状旁腺显像99mTc-MIBI双时相法

体外放射分析技术

放射性竞争结合分析:放射免疫分析(RIA)

放射性非竞争结合分析:免疫放射分析(IRMA) 受体放射配基结合分析(RBA)

脑血流灌注显像99Tcm-双半胱乙酯(99Tcm- ECD)

临床应用短暂脑缺血发作(TIA) 脑梗死癫痫

脑葡萄糖代谢显像显像剂:18F-FDG

脑脊液循环系统显像99Tcm-DTPA 脑脊液漏的检测与定位

核素心功能显像门控平衡法:99mTc-RBC 首次通过法:99mTc-MIBI

心肌灌注显像201Tl 99Tcm-MIBI

核医学复习重点学习资料

核医学复习重点

核医学复习重点 填空: 1.核医学定义、内容 核医学是利用核素及其标记物进行临床诊断、疾病治疗以及生物医学研究的一门学科,是核科学技术与医学相结合的产物,是现代医学的重要组成部分。核医学的主要内容就是放射性核素分子水平的靶向显像诊断,放射性核素分子水平的靶向治疗,利用放射性核素靶向、灵敏特点进行医学研究。 2.放射性药物定义,99m Tc、131I及18F的特性(射线,能量,半衰期等) 放射性药物指含有放射性核素供医学诊断和治疗用的一类特殊药物。用于机体内进行医学诊断或治疗的含放射性核素标记的化合物或生物制剂。 3.SPECT,PET中文名称 单光子发射计算机断层成像术SPECT PET 正电子发射型计算机断层显像 4.显像类型 书本P24 5.放射性核素显像特点 P28 6.放射性核素发生器,物理半衰期,放射性活度及国际制、旧单位及换算。

放射核素发生器是从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置。常用的发生器有:Mo–Tc发生器、W–Re发生器、Sr–Rb发生器、Rb–Kr发生器 7.脑血流灌注显像临床应用 脑血管疾病:脑梗死、短暂性脑缺血发作;癫痫;阿尔兹海默症;帕金森氏病;脑积水、脑脊液漏、脑脊液分流术后疗效观察;脑肿瘤脑功能研究、脑外伤、脑死亡、颅内感染等 8.甲状腺摄131I率检查适应症,禁忌症,诊断甲亢的重要指标。P74 9.甲状腺显像(冷、凉、温、热结节,甲状腺炎) P76 表8-3、P78 10.外照射的防护措施有那些? 时间、距离、设置屏蔽 P56 11.最常用的心室收缩功能参数及正常值,最常用的心室舒张功能参数? P102~103 12.目前评价心肌活力最可靠的无创性检查方法是( PET心肌代谢显 像)。 名词解释 1.放射性核素:原子核不稳定,它能自发放射出一种或几种核射线,由一种核素衰变为另一种核素者。 2.物理半衰期:放射性核素因物理衰变减少至原来的一半所需的时间 放射性活度:单位时间内衰变的原子数量等于原子核衰变常数与其核数目之乘积。核医学中反映放射性强弱的常用物理量。国际单位:贝克勒尔(Bq)、旧单位是居里(Ci)

核医学重点归纳.(精选)

绪论 1定义: 核医学是利用放射性核素诊断、治疗疾病和进行医学研究的学科。 2核医学的内容出来显像外还有器官功能测定、体外分析法、放射性核素治疗 第一章 1、元素:具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I和127I; 2、核素:质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。同一元 素可有多种核素,如131I、127I、3H、99m Tc、99Tc分别为3种元素的5种核素; 3、同质异能素:质子数和中子数都相同,但处于不同的核能状态原子,如99m Tc、99Tc 。 4、同位素:凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互 称为该元素的同位素。 5、放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素称 为放射性核素 6、放射性衰变:放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上 的射线并转化为另一种原子的过程称为放射性衰变。 7、电子俘获:原子核俘获核外的轨道电子使核内一个质子转变成一个中子和放出一个中微子 的过程 8、放射性衰变基本规律 对于由大量原子组成的放射源,每个原子核都可能发生衰变,但不是所有原子在同一时刻都发生衰变,某一时刻仅有极少数原子发生衰变。放射性核素衰变是随机的、自发的按一定的速率进行,各种放射性核素都有自己特有的衰变速度。放射性核素原子随时间而呈指数规律减少,其表达式为: N=N e-λt 指数衰减规律: N = N e-λt N 0: (t = 0)时放射性原子核的数目 N: 经过t时间后未发生衰变的放射性原子核数目 λ:放射性原子核衰变常数大小只与原子核本身性质有关,与外界条件无关; 数值越大衰变越快 9、半衰期:放射性原子核数从N 0衰变到N 的1/2所需的时间 10、放射性活度(A) 定义:单位时间内发生衰变的原子核数1Bq=1次× S-1 1Ci=3.7×1010 Bq 1Ci=1000mCi 11、比放射性活度定义:单位质量或体积中放射性核素的放射性活度。 单位: Bq/kg; Bq/m3; Bq/l 12、电离当带电粒子通过物质是和物质原子的核外电子发生静电作用,是电子脱离原子轨道 而发生电离 13、激发如果核外电子获得的能量不足以使其形成自由电子,只能有能量较低的轨道跃迁到 能量较高的轨道 14、散射带电粒子与物质的原子核碰撞而改变运动方向的过程 15、韧致辐射带电粒子受到物质原子核电场的影响,运动方向和速度都发生变化,能量减低, 多余的能量以x射线的形式辐射出来 16、湮灭辐射正电子衰变产生的正电子具有一定的动能,能在介质中运行一定得距离,当其 能量耗尽是可与物质中的自由电子结合,而转化为 17、光电效应光子同(整个)原子作用把自己的全部能量传递给原子,壳层中某一电子获得动 能克服原子束缚跑出来,成为自由电子,光子本身消失了。

2018年《核医学与技术》考前复习(九)

2018年《核医学与技术》考前复习(九) 单选题-1/知识点:综合复习题 目前常用Tc标记白细胞的放射性药物是 A.Tc-ECD B.Tc-DTPA C.Tc-HMPAO D.Tc-EHIDA E.Tc-MAG 单选题-2/知识点:综合复习题 滤泡型甲状腺癌患者下列哪种方法检查更好 A. F-FDG PET/CT B. I-MIBG SPECT C. I SPECT D.CT E.MRI 单选题-3/知识点:综合复习题 下列哪一项不是放射自显影的用途

A.脏器显像研究 B.细胞动力学研究 C.药物的定位分布及代谢研究 D.受体的定位研究 E.毒物的定位与分布研究 单选题-4/知识点:综合复习题 影响血清TBG升高的主要因素 A.妊娠 B.新生儿期 C.高雌激素血症 D.他莫昔芬(三苯氧胺) E.以上都对 单选题-5/知识点:综合复习题 膀胱尿反流显像方法,哪项说法是正确的 A.直接法和间接法都采用通过静脉注射显像剂 B.直接法和间接法都采用通过导尿管注入显像剂 C.直接法通过静脉注射显像剂,间接法通过导尿管注入显像剂 D.间接法通过静脉注射显像剂,直接法通过导尿管注入显像剂 E.属于静态显像方法 单选题-6/知识点:综合复习题

下列关于重建断层图像的描述正确的是 A.迭代法适合解决具有严格数学分析答案的计算问题 B.迭代法较早用于图像重建,现已逐渐淘汰 C.迭代的次数越多,图像重建的越精确 D.MEML算法基于傅立叶变换,逐渐取代了迭代法 E.OSEM算法基于傅立叶变换,逐渐取代了迭代法 单选题-7/知识点:试题 肺栓塞在肺显像中的典型表现为 A.灌注显像有缺损区,通气显像正常 B.灌注显像正常,通气显像有缺损 C.灌注和通气显像均有缺损区 D.灌注和通气显像均无缺损区 E.灌注和通气显像均正常 单选题-8/知识点:试题 新型SPECT(有定位CT的)是通过下列哪项技术获得功能解剖图像的 A.定量显像技术 B.半定量显像技术 C.平面显像 D.体外分析 E.图像融合技术

核医学复习资料【纯手打】

一、总论 1. 核医学的定义和主要内容 (1)定义: 核医学是一门研究核素和核射线在医学中的应用及其理论的学科,即应用放射性核素及其标记化合物或生物制品进行疾病诊治和生物医学研究。它既是从事生物医学研究的一门新技术,又拥有自身理论和方法,在反映脏器或组织的血流、受体密度和活性、代谢、功能变化方面具有独特的优势,是用于诊治疾病的临床医学重要学科。 (2)主要内容: 核医学在内容上分为实验核医学和临床核医学两部分。 ①实验核医学利用核技术探索生命现象的本质和物质变化规律,已广泛应用于医学基础理论研究;其内容主要包括核衰变测量、标记、示踪、体外放射分析、活化分析和放射自显影等。 ②临床核医学是利用开放型放射性核素诊断和治疗疾病的临床医学学科,由诊断和治疗两部分组成。诊断核医学包括以脏器显像和功能测定为主要内容的体内诊断法和以体外放射分析为主要内容的体外诊断法(放射分析、免疫放射分析、受体分析);治疗核医学利用放射性核素发射的核射线对病变进行高度集中照射(内照射、外照射)。 2. 核医学的特点 (1)能动态地观察机体内物质代谢的变化; (2)能反映组织和器官整体和局部功能; (3)能简便、安全、无创伤的诊治疾病; (4)能进行超微量测定,灵敏度达10-12~10-15g; (5)能用于医学的各个学科和专业。 3. 放射性核素的显像原理: 是利用放射性核素示踪技术在活体内实现正常和病变组织显像的核医学检查法。 放射性核素或其标记化合物与天然元素或其化合物一样,引入体内后根据其化学及生物学特性有其一定的生物学行为,它们选择性地聚集在特定脏器、组织或受检病变部位中的主要机制为: 1)细胞选择性摄取; 2)特异性结合; 3)化学吸附; 4)微血管栓塞; 5)简单在某一生物区通过和积存等。 由于放射性核素发射能穿透组织的核射线,用显像仪器能很容易在体外探测到它在体内的动态变化及分布情况,并以影像方式显示脏器、组织或病变的形态、位置、大小及功能情

核医学重点整理(仅供参考)

核医学考试: 题型:选择题(单选20*1,多选5*2) 名词解释5个*4 问答题4道+ 病例题1道共50分 所给重点混合分布在A,B卷;病例题重点仅此一道,AB卷相同,请重点背下来。 录音已存放至教室电脑,同时上传一份重点(仅供参考)。 所给重点价值80-85分,请自行把握。 注意:试卷答案以上课PPT内容为标准,其次参照课本内容。请认真对照录音复习课件。 选择题内容跟所给重点有关,或分布在所提及重点的相关章节。 放射免疫章节较不重要,可简要看看。 名词解释: 闪烁现象:骨转移癌患者在治疗中定期做全身骨显像时,少数患者在化疗或放疗后近期(2~3个月)内可见病灶显像剂浓集增加,似有恶化,但临床上却属改善,这种不匹配的现象称“闪烁现象”。 超级骨显像:指肾影不明显,全身骨影普遍异常增浓且清晰,软组织本底低,是弥漫性骨转移的一种表现,亦见于甲状旁腺功能亢进和软骨病。肾功能衰竭时肾影也不明显,但血液中存留多量99mTc-MDP致软组织明显而骨影不清晰。 放射性活度:是用来描述放射性物质衰变强弱的物理量,表示单位时间内发生衰变的原子核数。国际单位是贝可(Bq),定义1Bq 等于每秒内发生一次核衰变,可写成1Bq=1s-1。常用单位是居里(Ci)。两者换算关系:1Ci=3.7x1010Bq 1 Bq=2.703X10-11Ci 传能线密度(LET):直接电离粒子在其单位长度径迹上消耗的平均能量,常用单位为KeV/um,其值取决于两个因素:1、粒子所载的能量高低和粒子在组织内的射程。高LET射线的电离能力强,能有效杀伤病变细胞;低LET的射线电离能力弱,不能有效杀伤病变细胞。 SUV(标准化摄取值):是描述病灶放射性摄取量的半定量分析指标,在18F-FDG PET 显像时,SUV对于鉴别病变良恶性具有一定参考价值。SUV=(单位体积病变组织显像剂活度(Bq/ml)/显像剂注射剂量(Bq))x体重(g) 有效半减期及其计算公式:是指生物体内的放射性核素由于从体内排出和物理衰变两个因素作用,减少至原有放射性活度的一半所需要的时间。 T e=(T p xT b)/(T p+T b) 内放射治疗:是将非密封辐射源(放射性核素治疗药物)引入人体内病变的器官或组织,通过射线的辐射生物学效应破坏病变,达到治疗病变的目的,能用于治疗体内各器官和组织病变。 韧致辐射:粒子在介质中受到阻滞而急剧减速时能将部分能量转化为电磁辐射,即X射线。它的发生概率与β-粒子的能量及介质的原子序数成正比。因此在防护上β-粒子的吸收体核屏蔽物应采用低密度材料,如有机玻璃、铝等。 湮没辐射:当β+粒子与物质作用能量耗尽时和物质中的自由电子结合,正负电荷抵消,两个电子的静止质量转化为两个方向相反、能量各为0.511MeV的两个γ光子,这一过程称为湮没辐射或光化辐射。正电子发射CT的探测原理就是利用湮没辐射事件发生两个方向互为相反的γ光子,并通过符合电路对这一事件进行空间定位。 同质异能素书上P4 可逆性心肌缺血(本次未提及):在负荷影像存在缺损,而静息或者延迟显像又出现显像剂分布或充填,应用201TI显像时,这种随时间改善称为“再分布”,常提示心肌可逆性缺血。 问答题: 2、肾上腺髓质显像的正常及异常表现 正常影像:利用131I-MIBG显像时,正常人肾上腺髓质一般不显影。利用123I-MIBG显像时,常于注射后24小时肾上腺髓质对称显影,唾液腺、心肌显影尤其清晰,心肌显影程度也与血浆去甲肾上腺素浓度呈负相关。

核医学考试 分章重点总结

K L M N 原子核结构: X为元素符号 Z为质子数 N为中子数 A为质量数 元素——具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I 和127I; 核素——质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。同一元素可有多种核素,如131I、127I、3H、99m Tc、99Tc分别为3种元素的5种核素; 同位素——凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。eg 131i 127i 同质异能素——质子数和中子数都相同,但处于不同的核能状态原子,如99mTc、99Tc .基态:能量处于量低的稳定能级状态称之为基态。

激发态:原子获得能量时,即具有较高的能级状态时称为原子的激发态。 退激:处于激发态时电子不稳定,非常容易将多余的能量以光子的形式辐射释放出来而回到基态的过程称为退激。 一、核衰变方式 1. α衰变:α粒子得到大部分衰变能,α粒子含2个质子,2个中子 α衰变:241Am(镅)→237Np(镎)+4He α衰变:射程短、能量大、破坏力强、屏蔽用低原子序数物质即可 2. β衰变 ?β-衰变:3215P → 3216S + β- + Ue + 1.71MeV(富中子)β-衰变:3H→3He+ β- ? ?正电子衰变:137N → 136C + β++ υ + 1.190MeV(贫中子)正电子衰变:11C→11B+ β+ ? β射线本质是高速运动的电子流 β衰变:射程、能量适中适合治疗、显像、屏蔽首先低原子序数物质再用高原子序数物质 γ衰变 γ衰变往往是继发于α衰变或β衰变后发生,这些衰变后,原子核还处于较高能量状态,由激发态回复到基态时,原子核释放出γ射线。 ?99Mo → 99m Tc + β-→ 99Tc + γ (T : ①66.02d; ②6.02h) 1/2 ?131I → 131Xe + β- +γ :8.04d) (T 1/2 γ衰变:99m Tc→99Tc γ衰变射程长、能力低、适合显像屏蔽用高原子序数物质 γ衰变特点: 1.从原子核中发射出光子 2.常常在α或β衰变后核子从激发态退激时发生 3.产生的射线能量离散 4.可以通过测量光子能量来区分母体的核素类别 P26 对于由大量原子组成的放射源,每个原子核都可能发生衰变,但不是所有原子在同一时刻都发生衰变,某一时刻仅有极少数原子发生衰变,但其衰变数目与原子核数目的比率是固定不变化,这个的概率称之为衰变常数(λ) 带电粒子与物质的作用(α,β) Ionization 电离 Excitation 激发

13核医学总结

13核医学总结 13核医学总结 13核医学总结本文简介:核医学绪论核医学是一门利用开放型放射性核素诊断和治疗疾病的学科将放射性核素引入拟检查的脏器内,利用放射性核素探测仪器实现脏器和病变显示的方法称作放射性核素显像。是一种独特的功能显像,显示的是器官的血供、功能与代谢活动。凡不将放射性核素引入体内者称体外检查法或体外核医学,最有代表性的是放射免疫分析(R。 13核医学总结 核医学 绪论 核医学是一门利用开放型放射性核素诊断和治疗疾病的学科 将放射性核素引入拟检查的脏器内,利用放射性核素探测仪器实现脏器和病变显示的方法称作放射性核素显像。是一种独特的功能显像,显示的是器官的血供、功能与代谢活动。 凡不将放射性核素引入体内者称体外检查法或 体外核医学,最有代表性的是放射免疫分析(Radioimmunoassay

RIA) 元素:具有相同质子数的原子,化学性质相同,但其中子数可以不同,因而物理性 能不同,如131I和127I 。 核素:质子数相同,中子数也相同,且具有相同能态的原子,称为一种核素。 同位素:凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。 每秒钟1次核衰变,称为1贝克 核医学必备的物质条件:放射性药物 放射性试剂 核医学仪器 放射性药物 凡引入体内用作诊疗的放射性核素及其标记化合物。分为:诊断用药(γ射线) 治疗用药(β- 射线 ) 放射性试剂 不需引入体内的放射性核素及其标记化合物。 静态显像(static

imaging) 当显像剂在脏器内或病变处的浓度处于稳定状态时进行显像称为静态显像。 多用作观察脏器和病变的位置、形态、大小和放射性分布。 阳性显像(positive imaging) 又称热区显像(hot spot imaging)指在静态影像上主要以放射性比正常增高为异常的显像 阴性显像(negative imaging) 又称为冷区显像(cold spot imaging)指在静态影像上主要以放射性比正常减低为异常的显像 中枢神经系统 脑血流灌注显像 原理 应用一类能自由通过血脑屏障(BBB Blood

(医疗知识)核医学知识点笔记复习整理

四、心血管系统 心肌灌注显像显像剂:99m Tc-MIBI 心肌葡萄糖代谢显像显像剂:18F-FDG 极坐标靶心图:影像的中心为心尖,周边为基底,上部为前壁,下部为下壁和后壁,左侧为前、后间壁,右侧为前、后侧壁。 心肌灌注显像和心肌葡萄糖代谢显像临床应用: 1、冠心病心肌缺血的评价 ⑴冠心病心肌缺血的早期诊断。 ①心肌缺血的典型表现是负荷试验心肌灌注影像出现显像分布稀疏或缺损,而静息或再分布影像呈正常或明显充填,提示为可逆性心肌缺血。 ②可以准确评价心肌缺血的部位、范围、程度和冠脉的储备功能。 ③可检出无症状的心肌缺血。 ⑵冠心病危险度分级。 Ⅰ高危的影像有以下特征: ①在两支以上冠状动脉供血区出现多发性可逆性缺损或出现较大范围的不可逆性灌注。 ②定量或半定量分析有较大范围的可逆性灌注缺损。 ③运动负荷后心肌显像剂肺摄取增加。 ④运动后左心室立即呈暂时性扩大或右心室暂时性显影。 ⑤左主干冠状动脉分布区的可逆性灌注缺损。 ⑥休息时LVEF降低。 Ⅱ若低危表现或SPECT负荷心肌灌注显像正常,提示心脏事件年发生率低于1%,预后良好。

⑶负荷心肌灌注显像对冠心病的预测价值。 在冠心病概率较低的人群中阳性结果预测价值为36%,而在冠心病概率较高的人群中阳性结果预测价值为99%。 ⑷缺血性心脏病治疗后的疗效评估。 冠心病患者在治疗前表现为病变部位可逆性缺损,治疗后择期进行心肌灌注显像,如出现可逆性损伤,则高度提示再狭窄或治疗无效。如出现正常,则提示血管通畅,治疗有效。 2、心肌梗死的评价 ⑴急性心梗的诊断。 ①负荷/静息心肌灌注图像表现为病变部位不可逆损伤。 ②可较准确地判断心肌梗死的部位、大小和并发症的缺血面积。 ③急性心梗是负荷试验的禁忌症,只能做静息显像。心梗6h后即可表现为病变部位的灌注异常。 ⑵急性胸痛的评估。 ①在急性心梗的患者,一般静息心肌显像时都会发现有灌注缺损。 ②临床上急诊心肌显像为正常的患者中,几乎没有急性心梗或不稳定性心绞痛发生,而心肌显像为异常的患者,80%以上的病人后来证实为急性心梗可不稳定性心绞痛。 ⑶指导溶栓治疗。 治疗前的病变部位存在放射性缺损区。治疗后显像,如果显示缺损区缩小或消失,治疗有效;如果显示缺损区无缩小,治疗无效。 ⑷急性心梗预后的早期估计。 ①所谓高危患者的指征主要包括梗死周围有明显的残留缺血灶(危险心肌),急性梗死的远处出现缺血(多支血管病变)和心肌显像剂摄取增高等。

核医学复习重点

核医学复习重点 填空: 1.核医学定义、内容 核医学是利用核素及其标记物进行临床诊断、疾病治疗以及生物医学研究的一门学科,是核科学技术与医学相结合的产物,是现代医学的重要组成部分。 核医学的主要内容就是放射性核素分子水平的靶向显像诊断,放射性核素分子水平的靶向治疗,利用放射性核素靶向、灵敏特点进行医学研究。 2.放射性药物定义,99m Tc、131I及18F的特性(射线,能量,半衰期等) 放射性药物指含有放射性核素供医学诊断和治疗用的一类特殊药物。用于机体内进行医学诊断或治疗的含放射性核素标记的化合物或生物制剂。 3.SPECT,PET中文名称 单光子发射计算机断层成像术SPECT PET 正电子发射型计算机断层显像 4.显像类型 书本P24 5.放射性核素显像特点 P28 6.放射性核素发生器,物理半衰期,放射性活度及国际制、旧单位及换算。 放射核素发生器是从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置。常用的发生器有:Mo–Tc发生器、W–Re发生器、Sr–Rb发生器、Rb–Kr发生器 7.脑血流灌注显像临床应用 脑血管疾病:脑梗死、短暂性脑缺血发作;癫痫;阿尔兹海默症;帕金森氏病;

脑积水、脑脊液漏、脑脊液分流术后疗效观察;脑肿瘤脑功能研究、脑外伤、脑死亡、颅内感染等 8.甲状腺摄131I率检查适应症,禁忌症,诊断甲亢的重要指标。P74 9.甲状腺显像(冷、凉、温、热结节,甲状腺炎) P76 表8-3、P78 10.外照射的防护措施有那些? 时间、距离、设置屏蔽 P56 11.最常用的心室收缩功能参数及正常值,最常用的心室舒张功能参数? P102~103 12.目前评价心肌活力最可靠的无创性检查方法是( PET心肌代谢显像)。名词解释 1.放射性核素:原子核不稳定,它能自发放射出一种或几种核射线,由一种核素衰变为另一种核素者。 2.物理半衰期:放射性核素因物理衰变减少至原来的一半所需的时间 放射性活度:单位时间内衰变的原子数量等于原子核衰变常数与其核数目之乘积。核医学中反映放射性强弱的常用物理量。国际单位:贝克勒尔(Bq)、旧单位是居里(Ci) 1居里(Ci)=3.7×1010贝可(Bq) 3.放射性核素发生器: 放射核素发生器是从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置。常用的发生器有:Mo–Tc发生器、W–Re 发生器、Sr–Rb发生器、Rb–Kr发生器 4.心肌可逆性缺损:负荷显像出现的灌注缺损于静息显像基本恢复,一般代表负荷诱发的心肌缺血 不可逆性缺损:又称固定性灌注缺损,是指静息和负荷显像比较,灌注缺损在部位、面积和程度上无变化 5.反向运动:又称矛盾运动,指心脏舒张时病变心肌向中心凹陷,收缩时向外膨出,与正常室壁运动方向相反,是诊断室壁瘤的特征影像。 6.超级影像:超级骨显像显像剂在全身骨骼分布呈均匀对称性异常浓聚,软组织分布很少,骨骼影像非常清晰,而肾影常缺失 7.热结节,冷结节,凉结节,温结节 P76

健康管理师考试重点归纳总结

第一章健康管理概论 健康管理是以现代健康概念(生理、心理和社会适应能力)和新的医学模式(生理、心理、社会)以及中医治未病为指导,通过采用现代医学和现代管理学的理论、技术、方法和手段,对个体或群体整体健康状况及其影响健康的危险因素进行全面检测、评估、有效干预与连续跟踪服务的医学行为及过程。 其目的是以最小投入获取最大健康效益。 健康管理的八大目标: 1.完善健康和福利 2.减少健康危险因素 3.预防疾病高危人群患病 4.易化疾病的早期诊断 5.增加临床效用、效率 6.避免可预防的疾病相关并发症的发生 7.消除或减少无效或不必要的医疗服务 8.对疾病结局作出度量并提供持续的评估和改进 健康管理的特点: 标准化足量化个体化系统化 健康管理的三个基本步骤: 1.了解和掌握健康,开展健康信息收集和健康检查 2.关心和评价健康,开展健康风险评价和健康评估 3.干预和促进健康,开展健康风险干预和健康促进 健康风险评估是手段,健康干预是关键,健康促进是目的 健康管理的五个服务流程: 1.健康调查与健康体检 2.健康评估 3.个人健康咨询 4.个人健康管理后续服务 5.专项的健康和疾病管理服务 健康管理的六个基本策略: 1.生活方式管理 2.需求管理 3.疾病管理 4.灾难性病伤管理 5.残疾管理 6.综合群体健康管理 生活方式管理的特点: 1.以个体为中心,强调个体的健康责任和作用

2.以预防为主,有效整合三级预防 生活方式的四大干预技术: 教育激励训练营销 影响需求管理的四大主要因素: 1.患病率 2.感知到的需要 3.消费者选择偏好 4.健康因素以外的动机(残疾补贴、请病假的能力等) 需求管理的策略: 1.小时电话就诊和健康咨询 2.转诊服务 3.基于互联网的卫生信息数据库 4.健康课堂 5.服务预约 疾病管理的三个特点: 1.目标人群是患有特定疾病的个体 2.不以单个病例和(或)其单次就诊事件为中心,而关注个体或群体连续性的健康状况与 生活质量 3.医疗卫生服务以及干预措施的综合协调至关重要 灾难性病伤管理的五大特点: 1.转诊及时 2.综合考虑各方面因素,制订出适宜的医疗服务计划 3.具备一支包含多种医学专科及综合业务能力的服务队伍,能够有效应对可能出现的多种 医疗服务需要 4.最大程度地帮助病人进行自我管理 5.尽可能使患者及其家人满意 残疾管理的八大目标: 1.防止残疾恶化 2.注重功能性能力 3.设定实际康复和返工的期望值 4.详细说明限制事项和可行事项 5.评估医学和社会心理学因素 6.与病人和雇主进行有效沟通 7.有需要时要考虑复职情况 8.实行循环管理 《健康中国2030规划纲要》 1.强调预防为主,防患未然

核医学重点总结

第一张绪论 核医学概念:利用放射性示踪技术探索生命现象、研究疾病机制和诊断疾病的学科;是利用放射性核素及其制品进行内照射治疗和近距离治疗的学科。 第二章核医学物理基础、设备和辐射防护 衰变类型:α衰变(产生α粒子);β–衰变(产生βˉ粒子(电子));β+衰变(正电子衰变)与电子不同的是带有正电荷;电子俘获;γ衰变。韧致辐射带电粒子受到物质原子核电场的影响,运动方向和速度都发生变化,能量减低,多余的能量以x射线的形式辐射出来 电子俘获:质子从核外取得电子变为中子。由于外层电子与内层能量差,形成的新核素的不稳定常产生:特征性X射线-能量转化;俄歇电子:能量 使电子脱离轨道。 衰变规律:放射性核素原子数随时间以指数规律减少。指数衰减规律 e-λt N = N (t = 0)时放射性原子核的数目 N 0: N: 经过t时间后未发生衰变的放射性原子核数目 λ:放射性原子核衰变常数大小只与原子核本身性质有关,与外界条件无关; 数值越大衰变越快 带电粒子与物质的相互作用(电离作用、激发作用) γ射线与物质的相互作用(光电效应、康普顿效应、电子对生成)光电效应:康普顿效应:电子对生成: 辐射防护目的:防止有害的确定性效应, 限制随机效应的发生率,使之达到可以接受的水平。 总之是使一切具有正当理由的照射保持在可以合理做到的最低水平。 非随机效应有阈值正相关; 随机效应无阈值严重程度与剂量无关。 基本原则:实践正当化;防护最优化;个人剂量限制。外照射防护措施:1.时间2.距离3.屏蔽电离辐射生物学效应对机体变化:按效应出现的对象,分为躯体效应(somatic effect)及遗传效应(genetic effect)。按效应出现的时间,分为近期效应(short-term effect)及远期效应( long-term effect)。按效应发生的规律,分为随机效应(stochastic effect)及非随机效应( non-stochastic effect)。 2、正电子显像常用标记核素 11C、13N、15O和18F 18F-FDG半衰期:110分钟 第四章放射性示踪与显像技术 放射性核素制备1.核反应堆制备。 2.医用回旋加速器制备。3.放射性核素发生器(长半衰期核素产生短半衰期核素)。应用最广的是99Mo(钼)66h-99mTc

卫生法律法规知识点

1.医师职责:防病治病、救死扶伤、保护人民健康。 2.中专1年→助理5年→执医,大专1年→助理2年→执医,本科1年→执医。 3.医师执业向县级以上人民政府卫生行政部门申请注册。 30日内准予注册。30日内变更注册。刑法完毕或决定吊照起不满2年不予注册。中止执业满2年注销注册。重新注册:3~6个月的培训,并考核合格。15日内申请行政复议或提起诉讼。申请个体行医须执业满五年。 4.对急危患者应当立即抢救,及时转诊。 5.受县级以上人民政府卫生行政部门委托的机构或组织对业务水平、工作成绩和职业道德状况定期考核,不合格者暂停执业3~6个月,再不合格注销注册。 6.违反规定一般暂停执业6个月以上1年以下,情节严重吊照,犯罪刑事。 7.非法行医:取缔,没收,罚款,吊照,造成损害赔偿,犯罪刑事。 8.阻碍医师执业:治安管理处罚条例,犯罪刑事。 9.医疗机构须将《医疗机构执业许可证》、诊疗科目、诊疗时间、收费标准悬挂明显处。必须按照核准登记的诊疗科目开展诊疗活动。不得使用非卫生技术人员从事医疗卫生技术工作。加强医德教育。佩戴载有姓名、职务或职称的胸牌。 10.无法取得患者或家属意见,须取得医疗机构负责人或被授权负责人员的批准。 11.医疗事故:医疗机构及其医务人员在医疗活动中过失造成患者人身损害。非法行医不属于。 12.根据对患者人身造成的损伤程度分为四级:一级:死亡、重度残疾;二级:中度残疾、严重功能障碍;三级:轻度残疾、一般功能障碍;四级:明显人身损害。 13.抢救病历可在抢救结束后6h内补记。 14.病历复印:客观可复印,主观不复印。

15.医务人员在医疗过程中发现医疗事故向科室负责人报告,文都医考,医友互动:480572459。医疗机构向卫生行政部门报告(重大在12h内)。 16.尸检:48h内,最多7日。尸体火化后:让院方拿出充分证据证明自己的医疗行为无过错。 17.当事人对医疗事故鉴定结论不服:15日内再次申请鉴定。 18.鉴定的回避原则:医疗事故争议当事人或近亲属;与医疗事故争议有利害关系;与医疗事故争议当事人有其他关系可能影响公正鉴定的。 19.紧急抢救和特殊体质不属于医疗事故。 20.残疾生活补助费:最长赔偿30年,60周岁以上不超过15年,70周岁以上不超过5年。 21.婚前保健:卫生指导,卫生咨询,医学检查。 22.婚前医学检查:遗传病,传染病(艾滋、淋病、梅毒、麻风),精神病。 23.孕产期保健:母婴,孕妇、产妇,胎儿,新生儿。 24.产前诊断→终止妊娠。按规定终止妊娠或结扎手术免费服务。 25.技术鉴定:对婚前医学检查、遗传病诊断和产前诊断结果有异议。 26.医疗保健机构须经许可,保健工作人员须经考核。 27.法律责任:有证:行政处分,严重吊照;无证:刑事责任。 28.传染病防治原则:预防为主,防治结合,分类管理,依靠科学,依靠群众。 29.甲类:鼠疫,霍乱。 乙类:非典,艾滋,病毒性肝炎,禽流感,肺结核,甲流等。 丙类:手足口病等。 乙类甲制:非典,禽流感,甲流,肺炭疽。 30.预防接种制度:免费,相互配合。

核医学知识点总结

核医学知识点总结 1.核医学(Nuclear medicine) :是用放射性核素及其标记物进行诊断、治疗疾病和医学研究的医学学科。 2.核医学常用设备: 3.放射性药物含有放射性核素, 用于医学诊断和治疗的一类特殊制剂。 放射性药品获得国家药品监督管理部门批准文号的放射性药物 4.核素(nuclide):是指质子数、中子数均相同,并且原子核处于相同能级状态的原子称为一种核素。 同位素(isotope):凡具有相同质子数但中子数不同的核素互称同位素。 同质异能素:(isomer)是指质子数和中子数都相同,但原子核处于不同能态的原子 放射性核素(radionuclide):原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素称为放射性核素。 放射性衰变:放射性核素自发的释放出一种或一种以上的射线并转化为另一种原子的过程。 半衰期:放射性原子核数从N0衰变到N0的1/2所需的时间 5.α衰变:α粒子含2个质子,2个中子,质量大,带电荷,故射程短,穿透力弱。主要用于治疗 β衰变: β-衰变:射线的本质是高速运动的电子流,主要发生于富中子的核素。 特点:穿透力弱,在软组织中的射程仅为厘米水平。可用于治疗。 β+衰变:射线的本质是正电子,主要发生于贫中子的核素。 特点:正电子射程短. 在通常环境中不可能长时间稳定地存在,它碰到电子就会发生湮灭,产生一对能量为511kev、方向相反的γ光子。主要用于正电子发射断层仪显像(PET) 电子俘获原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程。电子俘获导致核结构的改变伴随放出多种射线。如特征X射线、俄歇电子、γ射线、内转换电子。应用:核医学显像、体外分析、放射性核素治疗 γ衰变:原子核从激发态回复到基态时,以发射光子形式释放过剩的能量。 往往是继发于α衰变或β衰变后发生特点:本质是中性的光子流,不带电荷,运动速度快(光速),穿透力强。适合放射性核素显像(radionuclide imaging)。 6.天然本底辐射:在人类生存的环境中,自然存在的多种射线和放射性物质。包括宇宙射线、宇宙射线感生放射 性核素和地球辐射 7.确定性效应:指辐射损伤的严重程度与所受剂量成正相关,有明显的阈值,剂量未超过阈值不会发生有害效应。 如辐射致眼晶体损伤引发白内障,辐射致皮肤反应(干性或湿性脱皮)、或血液系统疾病如再障等。消化系统反应等。 随机性效应:指效应的发生机率(或发病率而非严重程度)与剂量相关,不存在阈值。如辐射致癌、致畸变的效应。这种效应多是远期效应。 8.辐射防护的目的:防止有害的确定性效应,限制随机效应的发生率,使之得到可以接受的水平。总的是使一切 具有正当理由的照射应保持在可以合理做到的水平。 辐射防护的原则:实践的正当化放射防护最优化个人剂量限值

放射卫生学复习资料(可编辑修改word版)

一:名词解释:天然放射源、人工辐射源、松散型污染,控制区、监督区、医疗照射、职业照射,封闭源,开放源(选三个) 1、人工辐射源:人工生产的能释放电离辐射的装置或经过加工提炼的天然辐射源 2、天然辐射源:自然界存在的能释放出放射线的物质 3、松散型污染:既非固定性污染,污染物与表面结合差,可轻易转移的污染 4、控制区:要求或可能要求采取专门防护措施或安全手段的任何区域,以便在正常工作条件下控制正常照射或防止 污染扩展和防止潜在照射或限制其程度。 5、监督区:未被确定为控制区,通常不需要采取专门防护措施的安全手段的、但要不断检查其职业照射条件的任何 区域。 6、医疗照射:在医学检查和治疗过程中被检者或病人受到电离辐射的内、外照射。 7、职业照射:除了国家有关法规和标准所排除的照射以及根据国家有关法规和标准予以豁免的实践或辐射源所产生的照射以外,工作人员在其工作过程中所受的所有的照射。 8.、封闭源:永久地密封在包壳内并于某种材料紧密结合的放射性物质 9、开放源:非密封的,与环境介质接触的放射源 二:1、人类受到在照射包括哪些?天然辐射有哪些类型? 天然照射与人工照射。天然照射包括宇宙射线和天然放射性核素发出的射线(陆地辐射、增加了的天然照射、天然本地照射致人类有效剂量) 2、各种类型的放射性核素(天然、人工、宇生、原生、氡等)致成人年有效剂量,以及新建房屋和 已建房屋氡浓度的要求。 天然:2.4mSv 宇生放射性核素的年有效剂量,14C 是12μSv,22Na 是0.15μSv,3H 是0.01μSv,7Be 是0.03μSv。 原生放射性核素(即天然放射性核素):外照射:0.46mSv,内照射(Rn 除外):0.23Rn 人工辐射源人均年有效剂量:医学X 射线诊断:0.4mSv 大气层核试验:0.005mSv 切尔诺贝利核电站事故:0.002mSv 核能发电小于0.2μSv 人工辐射源对职业人员的照射年有效剂量:0.6mSv Rn 致成人年有效剂量:1.2mSv(室内:1.0mSv;室外:0.095mSv) 3、放射防护的目的?辐射防护发展几个阶段特点 目的:防止确定性效应的发生;减少随机性效应的诱发 ?防护发展几个阶段特点:1928 年,“国际X 射线与镭防护委员会”成立 ?1930 年,出现加速器,防护跟不上 ?1934 年,国际X 射线与镭防护委员会提出以每天0.2R 或每周1R 作为“耐受剂量” ?1942 年,美国建成反应堆,防护需要激增 ?1950 年,“国际X 射线与镭防护委员会”更名“国际放射防护委员会”(ICRP),“耐受剂 量”下降为每周0.3R,同时易名“容许剂量” ?1953 年,导出90 种放射性核素最大容许浓度 ?1958 年,ICRP 第1 号出版物,公布剂量限值5rem(50mSv) ?1977 年,26 号出版物,从放射生物学、剂量限制制度、辐射防护标准等方面提出许多 新建议 ?1990 年,60 号出版物,我国新的防护标准等效采纳其中剂量限值 ?

(完整word版)核医学重点[1]

核医学:采用核技术来诊断、治疗和研究疾病的一门新兴学科。它是核技术、电子技术、计算机技术、化学、物理和生物学等现代科学技术与医学相结合的产物。 核素:质子数中子数相同,原子核处于相同能级状态的原子 同位素:质子数相同,中子数不同的核素互称同位素 同质异能素:质子数和中子数相同,核能状态不同的原子 放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素 放射性衰变:放射性元素自发地释放放射线和能量,最终转化为其他稳定元素的过程 物理半衰期:表示原子核由于自身衰变从N0衰变到N0/2的时间,以1/2T表示,是恒定不变的。 生物半衰期Tb:指生物体内的放射性核素由于机体代谢从体内排出一半所需要时间。 放射性活度:表示为单位时间内原子核的衰变数量 SPECT单光子发射型计算机断层仪 PET(正电子发射型计算机断层仪)的原理:通过化学方式,将发射正电子的核素与生物学相关的特定分子连接而成的正电子放射性药物注入体内后,正电子放射性药物参加相应生物活动,同时发出正电子射线,湮灭后形成的能量相同(511keV)方向相反的两个γ光子 放射性药物:含有放射性核素供医学诊断和治疗用的一类特殊药物 放射性药物的特点:具有放射性,具有特定的物理半衰期和有效期,计量单位和使用量,脱标及辐射自分解 光子量范围100~250keV最为理想,目前使用较多的放射性核素衰变方式是β-衰变组织内的射程在纳米水平,在这样短的射程内释放所有能量,其生物学特性接近于高LET射线,治疗用放射性药物的有效半衰期不能太短,也不宜过长,以数小时或数天比较理想 吸收剂量:单位质量被照射物质吸收任何电离辐射的平均能量。 确定性效应:辐射损伤的严重程度与所受剂量呈正相关,有明显的阈值,剂量未超过阈值不会发生有害效应 随机效应:研究的对象是群体,是辐射效应发生的几率与剂量相关的效应,不存在具体的阈值 辐射防护的原则:1.实践的正当化2.放射防护最优化3.个人剂量限值 外照射防护措施:1.时间2.距离3.设置屏蔽 放射性核素示踪技术的方法特点:1.灵敏度高2.方法相对简便、准确性较好3.合乎生理条件 4.定性、定量与定位的相对研究相结合 5.缺点与局限性方法学原理:1.合成代谢:根据甲状腺内131I分布的影像可判断甲状腺的位置、形态、大小以及甲状腺结节的功能状态2.细胞吞噬3.循环通路4.选择性浓聚5.选择性排泄6.通透弥散7.离子交换和化学吸附8.特异性结合 静态显像:当显像剂在脏器内或病变处的浓度到达高峰且处于较为稳定状态时进行的显像 动态显像:在显像剂引入体内后,迅速以设定的显像速度动态采集脏器的多帧连续影像或系列影像 局部显像:仅限于身体某一部位或某一脏器的显像 全身显像:利用放射性探测器沿体表做匀速移动,从头至足依序采集全身各部位的放射性,将它们合成为一幅完整的影像 平面显像:将放射性显像装置的放射性探测器置于体表的一定位置采集某脏器的放射性影像 断层显像:用可旋转的或环形的放射性探测装置在体表连续或间断采集多体位平面影

核医学考试重点

第一章核物理基础知识 元素:凡是质子数相同,核外电子数相同,化学性质相同的同一类原子称为一组元素。 同位素(isotope):凡是质子数相同,中子数不同的元素互为同位素如: 1H、2H、3H。 同质异能素:凡是原子核中质子数和中子数相同,而处于不同能量状态的元素叫同质异能素。 核素:原子核的质子数、中子数、能量状态均相同原子属于同一种核素。例如:1H、2H、3H、12C、14C 198Au 、99m Tc、99Tc 1.稳定性核素(stable nuclide) 稳定性核素是指:原子核不会自发地发生核变化的核素,它们的质子和中子处于平衡状态,目前稳定性核素仅有274种, 2.放射性核素(radioactive nuclide) 放射性核素是一类不稳定的核素,原子核能自发地不受外界影响(如温度、压力、电磁场),也不受元素所处状态的影响,只和时间有关。而转变为其它原子核的核素。 核衰变的类型 1.α衰变(αdecay): 2.-衰变(- decay): 3.+衰变: 4.γ衰变: 核衰变规律 1.物理半衰期(physical half life,T1/2):放射性核素衰变速率常以物理半衰期T1/2表示,指放射性核素数从No衰变到No的一半所需的时间。物理半衰期是每一种放射性核素所特有的。数学公式T1/2 =0.693/λ 2.生物半衰期(T b):由于生物代谢从体内排出原来一半所需的时间,称为之。 3.有效半衰期(T e):由于物理衰变与生物的代谢共同作用而使体内放射性核素减少一半所需要的时间,称之。Te、Tb、T1/2三者的关系为:Te= T1/2·Tb / (T1/2+ Tb)。 4.放射性活度(radioactivity, A):是表示单位时间内发生衰变的原子核数。放射性活度的单位是每秒衰变次数。其国际制单位的专用名称为贝可勒尔(Becquerel),简称贝可,符号为Bq。数十年来,活度沿用单位为居里(Ci)1Ci=3.7×1010/每秒。 带电粒子与物质的相互作用 1.电离(charged particles):带电粒子通过物质时和物质原子的核外电子发生静电作用,使电子脱离原子轴道而形成自由电子的过程称电离。 2.激发:如果原子的电子所获得能量还不足以使其脱离原子,而只能从内内层轴道跳到外层轴道。这时,原子从稳定状态变成激发状态,这种作用称为激发。 2.散射:射线由于质量小,进行途中易受介质原子核电场力的作用而改变原来的运动方向,这种现象称为散射。 3.韧致辐射:快速电子通过物质时,在原子核电场作用下,急剧减低速度,电子的一部分或全部动能转化为连续能量的X射线发射出来,这种现象称为韧质辐射。 4.湮没辐射:正电子衰变产生的正电子,在介质中运行一定距离,当能量耗尽时可与物质中的自由电子结合,而转化成两个方向相反,能量各自为0.511Mev的γ光子而自身消失,称湮没辐射。5.吸收(absorption):射线在电离和激发的过程中,射线的能量全部耗尽,射线不再存在,称作吸收。吸收前所经的路程称为射程。吸收的最终结果是使物质的温度升高。 6.光电效应:γ光子和原子中内层(K、L层)电子相互作用,将全部能量交给电子,使之脱离原

相关文档
最新文档