拓扑学的产生
数学发展中的历史人物与成就

数学发展中的历史人物与成就数学是一门古老而重要的学科,它的发展历程中涌现出了许多杰出的历史人物,他们的贡献对数学学科的发展起到了重要作用。
本文将介绍几位数学史上的重要人物及其成就,带领读者一起回顾数学的演进历程。
1. 毕达哥拉斯毕达哥拉斯(公元前570年-公元前495年)是古希腊数学史上的重要人物之一。
他提出了著名的毕达哥拉斯定理,即直角三角形斜边的平方等于两直角边的平方和。
这个定理为几何学和三角学的发展奠定了基础。
他还发现了整数的奇偶性与平方数的关系,为数论的研究做出了重要贡献。
2. 欧几里得欧几里得(公元前330年-公元前275年)是古希腊数学家,《几何原本》的作者。
他以其几何学的成就而闻名于世。
欧几里得的《几何原本》是一部系统而完整的几何学教科书,内容包括了平面几何和立体几何的基本定理与推论。
这部作品对后世的几何学研究产生了深远的影响,直到现代仍然被广泛应用。
3. 阿基米德阿基米德(公元前287年-公元前212年)是古希腊科学家和数学家,被誉为科学史上最有天赋的人之一。
他在数学、物理学和工程学等领域都有重要贡献。
阿基米德在几何学中使用了方法论和证明技巧,提出了许多关于测量和计算的理论和方法。
他发明了杠杆原理、浮力定律,并计算了圆周率的上限和下限,为解析几何学的发展奠定了基础。
4. 卡尔·弗里德里希·高斯卡尔·弗里德里希·高斯(1777年-1855年)是德国著名数学家、物理学家和天文学家。
他是现代数学的奠基人之一,对数学的发展做出了深远的贡献。
高斯的贡献涵盖了数论、代数学、几何学和物理学等多个领域。
他提出了高斯消元法,并发现了正多边形的构造方法。
他的研究对数学分析和数论的发展产生了重要影响,并被广泛应用于科学和工程领域。
5. 埃米尔·勒雅维尔埃米尔·勒雅维尔(1882年-1968年)是法国著名数学家,被誉为20世纪最伟大的数学家之一。
拓扑心理学

第五,在民主型群体中,群体结构更为稳定,而 在专制型群体中,群体的统一性依赖于领导者的 努力,当领导者的影响力不发生作用时,群体的 结构就趋于解体。
第六,民主型群体中,“我们”的意识很强,而 在专制型群体中,自我意识更加明显。
第七,放任型群体中的一个明显的特点是缺乏明 确的目标,工作效率低,情绪低沉。
团体动力学理论
Kurt Lewin
一、 勒温心理动力场理论
(一)心理环境 行为公式: B=f(PE): B 行为 f 函数 P个体 ,E 环境 即行为随环境和人这两个因素的变化而变化。即不同的人对同一
环境可产生不同的行为,同一个人对不同的环境可产生不同的行为。
不是指客观的环境事实,而指我们头脑里的事实或者说实际影 响一个人发生某一行为的心理事实
状态。这种状态或使人念念不忘某事,或使人坐立不安。只有需求得到 满足,这个紧张系统才能消除,心理才能恢复平静。其公式是需求导致 紧张,心理状态出现不平衡;需求满足,紧张消除,心理状态恢复平衡。
蔡格尼克效应:对未完成任务记忆要比已完成任务记忆更为长久这一倾向
激发勒温对动机问题研究的是他对心理学研究所 街对面咖啡馆的一个男招待的观察。一天晚上, 他与他的一些研究生在那个咖啡馆聚会,
--- 需求又两种:即生理需求和准需求。 准需求:指在心理环境中对心理事件起实际影响的需求,如做出许 诺就会产生完成许诺的愿望,考试的日期接近了想要复习,这是一种 心理需要。勒温所说的需求一般指对心理事件有实际影响的准需求。
(三) 行为动力
2.紧张 需求导致了一种紧张的心理系统,也就是产生了一种具有动力的心理
第十四章勒温的拓扑心理学
场论: 库尔特·勒温(1890-1947)
✓ 德裔犹太人,美国心理学家;心脏病死于1947年; ✓ 拓朴心理学的创始人,因为其在研究内容及其研
拓扑学的起源

THANKS
感谢您的观看
20世纪的拓扑学家及其贡献
总结词
20世纪的拓扑学家在拓扑学领域做出了卓 越的贡献,推动了拓扑学的进一步发展。
详细描述
在20世纪,许多杰出的数学家投身于拓扑 学的研究,如艾伦伯格、霍普夫、吴文俊等 。他们的工作在拓扑学领域做出了卓越的贡 献,推动了拓扑学的进一步发展,使得拓扑
学成为数学领域中一门重要的学科。
欧几里得的几何学
欧几里得几何学是古希腊数学家欧几里得创立的几何体系,它为拓扑学的发展奠定了基 础。欧几里得几何学强调图形的内在性质和不变性,对后来的拓扑学发展产生了深远影
响。
近代的拓扑研究
19世纪的拓扑研究
19世纪是拓扑学发展的关键时期。数学家们开始深入研究图 形的拓扑性质,并逐渐形成了专门的拓扑学分支。其中,德 国数学家费利克斯·克莱因和德国数学家埃德蒙·诺伊维奇等人 在这一时期做出了重要贡献。
20世纪的拓扑学发展
20世纪是拓扑学迅速发展的时期。在这一时期,拓扑学的研 究领域不断扩大,涉及到了代数拓扑、微分拓扑、几何拓扑 等多个方向。同时,拓扑学与其他数学分支的交叉研究也取 得了重要进展。
现代的拓扑学发展
拓扑学与其他领域的交叉研究
随着科学技术的发展,拓扑学逐渐与其他领域产生了越来越多的交叉研究。例 如,拓扑学与物理学、化学、生物学等领域的结合,为解决实际问题提供了新 的思路和方法。
拓扑学的起源
• 拓扑学的历史背景 • 拓扑学的数学基础 • 拓扑学的应用领域 • 拓扑学与其他数学分支的关系 • 拓扑学的重要人物与事件
目录
Part
01
拓扑学的历史背景
古代的拓扑观念
古代文明中的拓扑思考
古埃及、古希腊和古罗马的数学家们通过对几何形状的观察和比较,开始形成了早期的 拓扑观念。例如,他们研究了图形的内在性质,如封闭性、连通性和对称性。
拓扑学的基本概念-定义说明解析

拓扑学的基本概念-概述说明以及解释1.引言1.1 概述拓扑学是数学中的一个分支,研究的是空间中的形状、连通性和变化性质。
它主要关注的是不同空间对象之间的关系,而不考虑其具体的度量尺寸或几何特征。
拓扑学起源于18世纪,经过数学家们的不断探索和研究,逐渐形成了一套完整的理论体系。
在拓扑学中,我们关注的是空间对象之间的相互关系,而不关心它们的形状如何变化或者具体的度量尺寸。
例如,我们可以将两个球看作是相同的,因为它们都具有一个孔,而不关心它们的大小或者表面的形状。
这种抽象的思维方式使得拓扑学成为解决很多实际问题的强大工具,例如网络连通性分析、形状识别等。
拓扑学的基本概念包括拓扑空间、拓扑结构、连通性等。
拓扑空间是指一个具有拓扑结构的集合,通过给定的一组开集来定义集合中元素的关系。
拓扑结构则是用来描述集合中元素之间的邻近性和连通性的规则。
而连通性则是指一个空间对象是否是连通的,即是否可以通过一条连续的路径将其所有点连接起来。
拓扑学作为一门基础学科,在多个领域都有广泛的应用。
例如,在计算机科学中,拓扑学被用来描述网络中节点之间的连通性和通信路径;在物理学中,拓扑学被用来研究物质的相变性质;在生物学中,拓扑学被用来研究DNA的结构和蛋白质的折叠等。
这些应用领域的发展与拓扑学的基本概念密不可分。
本文将从拓扑学的起源、基本概念、拓扑空间与拓扑结构以及拓扑学的应用领域等方面进行介绍。
通过对这些内容的系统阐述和分析,旨在帮助读者更好地理解拓扑学的基本概念和应用,以及其在解决实际问题中的重要性。
接下来的章节将详细介绍这些内容,以期能够为读者提供一个全面而深入的拓扑学知识框架。
1.2 文章结构文章结构部分的内容可以根据以下方式进行编写:文章结构部分:本篇文章将按照以下结构组织和介绍拓扑学的基本概念:1. 引言:首先,我们将概述本文的主题和目的,为读者提供一个整体的概览。
接着,我们将介绍文章的结构,明确每个部分的内容和安排。
几何学的发展简史 学习课件

本章的知识结构为:
点 轨迹
第一章 第二章
坐标 方程
曲曲 面线
普参 通数
第三章 平面与直线
方程与关系
一般曲面 第四章 常见曲面和二次曲面
一般曲线 第五章 二次曲线的一般理论
第一章 矢量与坐标
为了把代数的方法引入到几何中来,首 先必须把空间的几何结构代数化,这是解析
几何的基础. 本章的主要目的是系统地介绍矢 量代数的基本知识,这实质上就是一个使空间 结构代数化的过程. 矢量虽然不是数,但是可 以像数那样去运算,因此在几何中引进了矢量, 就把代数运算带到几何中来了,从而使我们 可以利用矢量代数的方法来研究几何问题。
空间直线之间位置关系的解析表达式,给出
距离、夹角等计算公式.
点位式
本章的知识结构为:平面的方程 一般式
点向式 →直线的方程 一般式
点法式 → 相关位置
射影式
第四章 柱面、锥面、旋转曲面与二次曲面
本章介绍柱面、锥面、旋转曲面与二次曲
面,其中柱面、锥面、旋转曲面具有较为突
(黎曼:双曲几何,罗氏:椭圆几何)
五.几何学的尖端----拓扑学的产生(1900年~)
﹜ ﹛ 初等代数
解析几何
数学分析
初等数学
高等数学
初等几何
高等代数
﹛平面几何
初等几何 立体几何
﹛ 解析几何 平面解析几何 空间解析几何
数学的三个发展时期现代数学时期

数学的三个发展时期——现代数学时期现代数学时期是指由19世纪20年代至今,这一时期数学主要研究的是最一般的数量关系和空间形式,数和量仅仅是它的极特殊的情形,通常的一维、二维、三维空间的几何形象也仅仅是特殊情形。
抽象代数、拓扑学、泛函分析是整个现代数学科学的主体部分。
它们是大学数学专业的课程,非数学专业也要具备其中某些知识。
变量数学时期新兴起的许多学科,蓬勃地向前发展,内容和方法不断地充实、扩大和深入。
18、19世纪之交,数学已经达到丰沛茂密的境地,似乎数学的宝藏已经挖掘殆尽,再没有多大的发展余地了。
然而,这只是暴风雨前夕的宁静。
19世纪20年代,数学革命的狂飙终于来临了,数学开始了一连串本质的变化,从此数学又迈入了一个新的时期——现代数学时期。
19世纪前半叶,数学上出现两项革命性的发现——非欧几何与不可交换代数。
大约在1826年,人们发现了与通常的欧几里得几何不同的、但也是正确的几何——非欧几何。
这是由罗巴契夫斯基和里耶首先提出的。
非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。
它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。
后来证明,非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。
从这个意义上说,为确立和发展非欧几何贡献了一生的罗巴契夫斯基不愧为现代科学的先驱者。
1854年,黎曼推广了空间的概念,开创了几何学一片更广阔的领域——黎曼几何学。
非欧几何学的发现还促进了公理方法的深入探讨,研究可以作为基础的概念和原则,分析公理的完全性、相容性和独立性等问题。
1899年,希尔伯特对此作了重大贡献。
在1843年,哈密顿发现了一种乘法交换律不成立的代数——四元数代数。
不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。
它的革命思想打开了近代代数的大门。
另一方面,由于一元方程根式求解条件的探究,引进了群的概念。
拓扑学的产生-PPT精品文档

经过过20世纪30年代中期起布尔巴基学 派的补充(一致性空间、仿紧性等)和整理, 一般拓扑学趋于成熟,成为第二次世界大战 后数学研究的共同基础。从其方法和结果对 于数学的影响看,紧拓扑空间和完备度量空 间的理论是最重要的。紧化问题和度量化问 题也得到了深入的研究。公理化的一般拓扑 学晚近的发展可见一般 学,为拓扑学开拓了新的面貌。拓扑学的研 究就变成了关于任意点集的对应的概念。拓 扑学中一些需要精确化描述的问题都可以应 用集合来论述。 因为大量自然现象具有连续性,所以拓 扑学具有广泛联系各种实际事物的可能性。 通过拓扑学的研究,可以阐明空间的集合结 构,从而掌握空间之间的函数关系。
上面的几个例子所讲的都是一些和几何 图形有关的问题,但这些问题又与传统的几 何学不同,而是一些新的几何概念。这些就 是“拓扑学”的先声。 拓扑学是数学中一个重要的、基础性的 分支。它最初是几何学的一个分支,主要研 究几何图形在连续变形下保持不变的性质, 现在已成为研究连续性现象的重要的数学分 支。
之间的几何关系来表示网络结构,反映出网 络中各个实体之间的结构关系。拓扑设计是 建设计算机网络的第一步,也是实现各种网 络协议的基础,它对网络性能、可靠性与通 信代价有很大影响。网络拓扑主要是指通信 子网的拓扑构型。
组合拓扑学的奠基人是H.庞加莱。他是在分析 学和力学的工作中,特别是关于复函数的单值化和 关于微分方程决定的曲线的研究中,引向拓扑学问 题的,但他的方法有时不够严密,他的主要兴趣在 n维流形。 在1895~1904年间,他创立了用剖分研究流 形的基本方法。他引进了许多不变量:基本群、同 调、贝蒂数、挠系数,并提出了具体计算的方法。 他引进了许多不变量:基本群、同调、贝蒂数、挠 系数,他探讨了三维流形的拓扑分类问题,提出了 著名的庞加莱猜想。他留下的丰富思想影响深远, 但他的方法有时不够严密,过多地依赖几何直观。 特别是关于复函数的单值化和关于微分方程决定的 曲线的研究中,
拓扑学的产生

他们把代数拓扑学的基本精神概括为: 把拓扑问题转化为代数问题,通过计算来求 解。同调群,以及在30年代引进的上同调环, 都是从拓扑到代数的过渡(见同调论)。 直到今天,三角形与圆形同胚;而直线 与圆周不同胚,同调论(包括上同调)所提 供的不变量仍是拓扑学中最易于计算的,因 而也最常用的。不必加以区别。
拓扑学的另一渊源是分析学的严密化。他是在 分析学和力学的工作中, 实数的严格定义推动G.康托尔从1873年起系统 地展开了欧氏空间中的点集的研究,得出许多拓扑 概念,如聚点(极限点)、开集、闭集、稠密性、 连通性等。在点集论的思想影响下,分析学中出现 了泛函数(即函数的函数)的观念,把函数集看成 一种几何对象并讨论其中的极限。这终于导致抽象 空间的观念。这样,B.黎曼在复函数的研究中提出 了黎曼面的几何概念, 到19、20世纪之交,已经形成了组合拓扑学与 点集拓扑学这两个研究方向。这是萌芽阶段。
L.E.J.布劳威尔在1910~1912年间提出 了用单纯映射逼近连续映射的方法, 许多重 要的几何现象,用以证明了不同维的欧氏空 间不同胚,它们就不同胚。引进了同维流形 之间的映射的度以研究同伦分类,并开创了 不动点理论。他使组合拓扑学在概念精确、 论证严密方面达到了应有的标准,成为引人 瞩目的学科。 紧接着,J.W.亚历山大1915年证明了贝 蒂数与挠系数的拓扑不变性。如连通性、紧 性),
二,拓扑学的发展阶段
十九世纪中期,黎曼在复函数的研究 中强调研究函数和积分就必须研究形势分析 学。从此开始了现代拓扑学的系统研究。 拓扑学建立后,由于其它数学学科的发 展需要,它也得到了迅速的发展。特别是黎 曼创立黎曼几何以后,他把拓扑学概念作为 分析函数论的基础,更加促进了拓扑学的进 展。
在点集论的思想影响下,黎曼本人解决了 可定向闭曲面的同胚分类问题。如聚点(极 限点)、开集、闭集、稠密性、连通性等。 在几何学的研究中黎曼明确提出n维流形的概 念(1854)。得出许多拓扑概念,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二十世纪以来,集合论被引进了拓扑 学,为拓扑学开拓了新的面貌。拓扑学的研 究就变成了关于任意点集的对应的概念。拓 扑学中一些需要精确化描述的问题都可以应 用集合来论述。
因为大量自然现象具有连续性,所以拓 扑学具有广泛联系各种实际事物的可能性。 通过拓扑学的研究,可以阐明空间的集合结 构,从而掌握空间之间的函数关系。
拓扑学的另一渊源是分析学的严密化。他是在 分析学和力学的工作中,
实数的严格定义推动G.康托尔从1873年起系统 地展开了欧氏空间中的点集的研究,得出许多拓扑 概念,如聚点(极限点)、开集、闭集、稠密性、 连通性等。在点集论的思想影响下,分析学中出现 了泛函数(即函数的函数)的观念,把函数集看成 一种几何对象并讨论其中的极限。这终于导致抽象 空间的观念。这样,B.黎曼在复函数的研究中提出 了黎曼面的几何概念,
L.E.J.布劳威尔在1910~1912年间提出 了用单纯映射逼近连续映射的方法, 许多重 要的几何现象,用以证明了不同维的欧氏空 间不同胚,它们就不同胚。引进了同维流形 之间的映射的度以研究同伦分类,并开创了 不动点理论。他使组合拓扑学在概念精确、 论证严密方面达到了应有的标准,成为引人 瞩目的学科。
经过过20世纪30年代中期起布尔巴基学 派的补充(一致性空间、仿紧性等)和整理, 一般拓扑学趋于成熟,成为第二次世界大战 后数学研究的共同基础。从其方法和结果对 于数学的影响看,紧拓扑空间和完备度量空 间的理论是最重要的。紧化问题和度量化问 题也得到了深入的研究。公理化的一般拓扑 学晚近的发展可见一般拓扑学。
到19、20世纪之ቤተ መጻሕፍቲ ባይዱ,已经形成了组合拓扑学与 点集拓扑学这两个研究方向。这是萌芽阶段。
最早研究抽象空间的是M.-R.弗雷歇,在 1906年引进了度量空间的概念。
F.豪斯多夫在《集论大纲》(1914)中 用开邻域定义了比较一般的拓扑空间,标志 着用公理化方法研究连续性的一般拓扑学的 产生。
L.欧拉1736年解决了七桥问题,随后波 兰学派和苏联学派对拓扑空间的基本性质 (分离性、紧性、连通性等)做了系统的研 究。
欧氏空间中的点集的研究,例如,一直是拓 扑学的重要部分,已发展成一般拓扑学与代数拓扑 学交汇的领域,也可看作几何拓扑学的一部分。
50年代以来,即问两个映射,以R.H.宾为代表 的美国学派的工作加深了对流形的认识,是问两个 给定的映射是否同伦,在四维庞加莱猜想的证明中 发挥了作用。从皮亚诺曲线引起的维数及连续统的 研究,习惯上也看成一般拓扑学的分支。
拓扑学的产生
哥尼斯堡七桥问题
哥尼斯堡(今俄罗斯加里宁 格勒)是东普鲁士的首都,普莱 格尔河横贯其中。十八世纪在这 条河上建有七座桥,将河中间的 两个岛和河岸联结起来。人们闲 暇时经常在这上边散步,一天有 人提出:
能不能每座桥都只走一遍, 最后又回到原来的位置?
返回
多面体的欧拉定理
这个定理内容是:如果一个凸多面体的顶点数是v、棱 数是e、面数是f,那么它们总有这样的关系:f+v-e=2。
根据多面体的欧拉定理,可以得出这样一个有趣的事 实:只存在五种正多面体。它们是正四面体、正六面体、 正八面体、正十二面体、正二十面体。
返回
四色问题
英国。1852年,毕业于伦敦大学的弗南西斯. 格思里来到一家科研单位搞地图着色工作时,发现 了一种有趣的现象:“看来,每幅地图都可以用四 种颜色着色,使得有共同边界的国家都被着上不同 的颜色。”
1872年,英国当时最著名的数学家凯利正式向 伦敦数学学会提出了这个问题,于是四色猜想成了 世界数学界关注的问题。世界上许多一流的数学家 都纷纷参加了四色猜想的大会战。
返回
上面的几个例子所讲的都是一些和几何 图形有关的问题,但这些问题又与传统的几 何学不同,而是一些新的几何概念。这些就 是“拓扑学”的先声。
二,拓扑学的发展阶段
十九世纪中期,黎曼在复函数的研究 中强调研究函数和积分就必须研究形势分析 学。从此开始了现代拓扑学的系统研究。
拓扑学建立后,由于其它数学学科的发 展需要,它也得到了迅速的发展。特别是黎 曼创立黎曼几何以后,他把拓扑学概念作为 分析函数论的基础,更加促进了拓扑学的进 展。
在点集论的思想影响下,黎曼本人解决了
组合拓扑学的奠基人是H.庞加莱。他是在分析 学和力学的工作中,特别是关于复函数的单值化和 关于微分方程决定的曲线的研究中,引向拓扑学问 题的,但他的方法有时不够严密,他的主要兴趣在 n维流形。
在1895~1904年间,他创立了用剖分研究流 形的基本方法。他引进了许多不变量:基本群、同 调、贝蒂数、挠系数,并提出了具体计算的方法。 他引进了许多不变量:基本群、同调、贝蒂数、挠 系数,他探讨了三维流形的拓扑分类问题,提出了 著名的庞加莱猜想。他留下的丰富思想影响深远, 但他的方法有时不够严密,过多地依赖几何直观。 特别是关于复函数的单值化和关于微分方程决定的 曲线的研究中,
拓扑学是数学中一个重要的、基础性的 分支。它最初是几何学的一个分支,主要研 究几何图形在连续变形下保持不变的性质, 现在已成为研究连续性现象的重要的数学分 支。
连续性和离散性是自然界与社会现象中普遍存 在的。拓扑学对连续性数学是带有根本意义的,对 于离散性数学也起着巨大的推动作用。拓扑学的基 本内容已经成为现代数学的常识。拓扑学的概念和 方法在物理学、生物学、化学等学科中都有直接、 广泛的应用。
拓扑学是几何学的一个分支,它是从图论演变 过来的。拓扑学将实体抽象成与其大小、形状无关 的点,将连接实体的线路抽象成线,进而研究点、 线、面之间的关系。网络拓扑通过结点与通信线路
之间的几何关系来表示网络结构,反映出网 络中各个实体之间的结构关系。拓扑设计是 建设计算机网络的第一步,也是实现各种网 络协议的基础,它对网络性能、可靠性与通 信代价有很大影响。网络拓扑主要是指通信 子网的拓扑构型。