偶联反应

合集下载

偶联反应在有机合成中的应用研究

偶联反应在有机合成中的应用研究

偶联反应在有机合成中的应用研究引言:有机合成是研究有机分子之间的化学反应,以构建新的有机化合物,这在药物合成和材料科学领域具有重要的应用价值。

偶联反应是一类常用的有机合成方法,通过连接两个或多个有机分子,形成新的键,构建目标分子的分子骨架。

本文将讨论几种重要的偶联反应及其在有机合成中的应用研究。

一、金属催化的偶联反应金属催化的偶联反应是现代有机合成中最具代表性和广泛应用的方法之一。

其中最著名的是钯催化的偶联反应,如Suzuki偶联、Heck偶联和Negishi偶联等。

这些反应通过利用钯催化剂促使芳环和烯烃之间的偶联反应,具有高效、高选择性和底物广泛适应性的优点。

这些反应在药物合成和材料科学中得到了广泛的应用。

例如,Suzuki偶联反应被用于合成药物、农药和功能材料,而Heck偶联反应则被广泛应用于合成天然产物和聚合物材料。

二、碳-碳键形成反应碳-碳键形成反应是有机合成中另一类重要的偶联反应,其原理是通过碳原子之间的偶联反应来构建目标分子的骨架。

这些反应通常通过碱金属或过渡金属催化剂来实现。

最常用的碳-碳键形成反应是格氏反应和克鲁普斯基反应。

格氏反应通过将硝酚和醛缩合得到苯酚类化合物,而克鲁普斯基反应则通过将已有的碳酸盐与酸酐醇缩合得到β-酮酸盐。

这些反应广泛应用于药物合成和天然产物的合成。

三、氧化还原偶联反应氧化还原偶联反应是一类利用氧化还原反应构建碳-碳键的方法。

这些反应通常通过金属催化剂或有机小分子催化剂来实现。

最常用的氧化还原偶联反应是巴甫洛夫反应和维特igler反应。

巴甫洛夫反应通过将两个醛或酮经过氢转移催化之后结合形成α-羰基酮,而维特igler反应则是通过将亚砜和羧酸酐反应生成α-烯酮。

这些反应在合成脂肪酸、天然产物和有机化学品中具有重要的应用价值。

结论:在有机合成中,偶联反应为构建新的有机化合物提供了强大的工具。

金属催化的偶联反应、碳-碳键形成反应和氧化还原偶联反应是其中最重要和最常用的方法。

偶联反应名词解释

偶联反应名词解释

偶联反应名词解释偶联反应是有机化学中用于将两种有机化合物联合制备新物质的重要方法,是近代化学研究中常见的一种反应。

偶联反应是经典的有机反应,以其特有的反应机理和广泛的应用范围而闻名。

一般来说,偶联反应涉及将两种不同的有机物,通过一种中间过渡物质形成新的产物物质。

例如,部分偶联反应使用光催化剂当做一种特殊的中间过渡物质来联结反应物,从而产生新的物质。

一般来说,偶联反应使两种不同的有机分子在活性位点发生反应,经过一系列反应步骤后,新的物质产生。

例如,偶联反应可用于合成芳香族烃、含硫化合物和脂肪酸类有机物等。

偶联反应的机理可以分为可分子机理和不可分子机理两大类。

可分子机理也称为海森堡机理,是一种经典机理,通常将偶联反应作为一种可分子机理进行研究。

可分子机理的基本步骤是,反应物分子在相互作用过程中,共价键被强化,由此产生的激发态分子重组,两个原子被从共价键中分离,并产生新的共价键,最后形成反应产物,而反应速率取决于原子间的距离与激发态的能量。

不可分子机理也称为上下机理,是一种以分子像的方式进行研究的机理。

不可分子机理的基本原理是,反应物分子两个活性位点间的距离很近,分子形状接近,可以形成共价键。

中间位置处有一个活性中间物质,可以催化反应物形成活性位点,从而形成新的产物。

在有机合成和自然产物的生物合成中,偶联反应扮演着重要的角色。

偶联反应的发展为有机化学的发展和发现一些新的有机化合物奠定了基础,也加深了人们对有机物分子结构和反应机理的理解。

另外,偶联反应还可以应用于生物反应中,例如抗癌药物的合成、酶催化反应和活性生物分子的合成等。

此外,还可以应用于材料科学中,用于合成一些导电性良好的新型材料,以及其他各种用途。

综上所述,偶联反应是有机化学中的一种重要的反应形式,以其特有的反应机理和广泛的应用范围而闻名。

偶联反应可以用于有机合成,也可用于生物反应,还可以应用于材料科学中,具有广泛的应用前景。

金属催化偶联反应

金属催化偶联反应
采用连续流动反应技术
利用连续流动反应技术,实现反应物的高效混合和传质,提高反应 速率和选择性。
优化反应动力学参数
通过调整反应物浓度、催化剂用量等反应动力学参数,实现反应的 高选择性和高效率。
06
金属催化偶联反应的挑战与 未来发展
面临的挑战和问题
选择性问题
金属催化偶联反应中,如何实现高选择性地合成目标产物是一个重要挑战。不同底物和反应条件下,选择性控制需要 更加精细的策略。
过渡金属催化偶联反应
随着过渡金属催化剂的发展,金属催化偶联反应取得了重大突破。过渡金属(如铜、镍、 铁等)具有较低的毒性和成本,且可在较温和的条件下实现高效催化。这些催化剂可通过 均相或多相体系进行反应,具有广泛的应用前景。
金属有机框架(MOFs)在偶联反应中的应用
近年来,金属有机框架(MOFs)作为一类新型多孔材料,在金属催化偶联反应中展现出独 特的优势。MOFs具有高的比表面积、可调的孔径和化学功能性,可作为催化剂载体或直接 作为催化剂参与反应,提高反应的效率和选择性。
04
金属催化偶联反应在有机合 成中的应用
构建碳-碳键的方法
01
02
03
交叉偶联反应
利用不同的有机金属试剂 进行交叉偶联,构建碳-碳 键,如Suzuki偶联、 Heck偶联等。
自身偶联反应
相同的有机金属试剂在金 属催化剂作用下进行自身 偶联,生成对称与亲核试剂发生烯丙基化 反应,构建碳-碳键。
感谢您的观看
THANKS
绿色溶剂与试剂
开发可生物降解、低毒性的绿色溶剂和试剂,替代传统有毒有害的 溶剂和试剂,降低金属催化偶联反应的环境负担。
原子经济性
通过优化反应路径和提高原子利用率,实现金属催化偶联反应的高 原子经济性,减少资源浪费。

偶联反应及举例

偶联反应及举例

偶联反应[编辑]偶联反应,也写作偶合反应或耦联反应,是两个化学实体(或单位)结合生成一个分子的有机化学反应。

狭义的偶联反应是涉及有机金属催化剂的碳-碳键形成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。

在偶联反应中有一类重要的反应,RM(R = 有机片段, M = 主基团中心)与R'X的有机卤素化合物反应,形成具有新碳-碳键的产物R-R'。

[1]由于在偶联反应的突出贡献,根岸英一、铃木章与理查德·赫克共同被授予了2010年度诺贝尔化学奖。

[2]偶联反应大体可分为两种类型:•交叉偶联反应:两种不同的片段连接成一个分子,如:溴苯(PhBr)与氯乙烯形成苯乙烯(PhCH=CH2)。

•自身偶联反应:相同的两个片段形成一个分子,如:碘苯(PhI)自身形成联苯(Ph-Ph)。

反应机理[编辑]偶联反应的反应机理通常起始于有机卤代烃和催化剂的氧化加成。

第二步则是另一分子与其发生金属交换,即将两个待偶联的分子接于同一金属中心上。

最后一步是还原消除,即两个待偶联的分子结合在一起形成新分子并再生催化剂。

不饱和的有机基团通常易于发生偶联,这是由于它们在加合一步速度更快。

中间体通常不倾向发生β-氢消除反应。

[3]在一项计算化学研究中表明,不饱和有机基团更易于在金属中心上发生偶联反应。

[4]还原消除的速率高低如下:乙烯基-乙烯基> 苯基-苯基> 炔基-炔基> 烷基-烷基不对称的R-R′形式偶联反应,其活化能垒与反应能量与相应的对称偶联反应R-R与R′-R′的平均值相近,如:乙烯基-乙烯基> 乙烯基-烷基> 烷基-烷基。

另一种假说认为,在水溶液当中的偶联反应其实是通过自由基机理进行,而不是金属-参与机理。

[5]§催化剂[编辑]偶联反应中最常用的金属催化剂是钯催化剂,有时也使用镍与铜催化剂。

钯催化剂当中常用的如:四(三苯基膦)钯等。

钯催化的有机反应有许多优点,如:官能团的耐受性强,有机钯化合物对于水和空气的低敏感性。

有机化学四大偶联反应

有机化学四大偶联反应

有机化学四大偶联反应有机化学中的偶联反应是合成有机分子的重要方法之一,广泛应用于药物合成、材料科学等领域。

以下介绍有机化学的四大偶联反应。

第一种偶联反应是格氏偶联反应(Giemsa),它是20世纪初由法国化学家格氏首次提出的。

这种反应是通过有机金属化合物与芳香化合物进行反应,形成碳-碳键。

通常使用有机锡化合物和芳香卤化物作为底物,在碱性条件下,在加热的情况下进行反应。

这种反应是高度选择性的,并且能够合成具有天然产物活性的有机化合物。

第二种偶联反应是索尼赫德烯偶联反应(Suzuky-Miyaura),该反应是由日本化学家索尼赫德和宫浦在20世纪70年代提出的。

这种反应是通过有机金属化合物与芳香卤化物进行反应,形成碳-碳键。

通常使用有机锌化合物或有机硼化合物和芳香卤化物作为底物,在碱性条件下,在加热的情况下进行反应。

索尼赫德烯偶联反应是高度选择性的合成方法,可以合成具有天然产物活性的有机化合物。

第三种偶联反应是肾上腺素偶联反应(Heck),是由丹麦化学家肯格赫首次提出的。

这种反应是通过有机金属化合物与不饱和化合物(通常是烯烃)进行反应,形成碳-碳键。

通常使用有机铜化合物和不饱和化合物作为底物,在碱性条件下,在加热的情况下进行反应。

肾上腺素偶联反应具有高效、高选择性和底物适用范围广的特点,广泛应用于药物合成和天然产物的全合成。

第四种偶联反应是叠氮偶联反应(Azide-Alkyne),又称为"CuAAC"反应,由美国化学家哈斯利首次提出。

在这种反应中,叠氮化合物与炔烃发生反应,生成1,4-二取代三氮唑化合物。

这种反应是通过铜催化剂的存在实现的,即铜催化的炉二碳合成反应。

这种反应具有高效、高选择性和底物适用范围广的特点,并且它是药物合成中的重要方法。

以上是有机化学的四大偶联反应的介绍。

这些偶联反应不仅拓宽了有机合成的范围,还为合成具有特定结构和功能的有机化合物提供了重要的手段。

研究人员可以根据这些偶联反应的特点选择合适的反应体系,并结合自己的研究目标进行合成路线的设计。

偶联反应实验报告

偶联反应实验报告

一、实验目的1. 掌握偶联反应的基本原理和操作方法。

2. 了解不同偶联反应条件对反应结果的影响。

3. 学会利用偶联反应合成特定有机化合物。

二、实验原理偶联反应是一种重要的有机合成方法,它涉及两个或多个分子在特定条件下形成新的共价键。

本实验以卡迪奥-肖德凯维奇偶联反应为例,通过末端炔烃与卤代末端炔烃在亚铜盐和碱催化下发生偶联,合成丁二炔的衍生物。

三、实验材料与仪器1. 实验材料:- 末端炔烃(如:1-丁炔)- 卤代末端炔烃(如:2-溴丁炔)- 亚铜盐(如:氯化亚铜)- 碱(如:氨水、一级胺、吡啶、哌啶)- 盐酸羟胺- 甲醇、乙醇、二甲基甲酰胺、四氢呋喃或水- 反应容器(如:圆底烧瓶、锥形瓶)2. 实验仪器:- 热浴搅拌器- 真空泵- 红外光谱仪- 核磁共振波谱仪四、实验步骤1. 准备反应物:将末端炔烃、卤代末端炔烃、亚铜盐、碱和盐酸羟胺按一定比例混合,加入反应容器中。

2. 加入溶剂:根据实验要求,选择甲醇、乙醇、二甲基甲酰胺、四氢呋喃或水作为溶剂,加入反应容器中。

3. 搅拌:使用热浴搅拌器将反应混合物在室温下搅拌一定时间,以确保反应充分进行。

4. 后处理:反应结束后,将反应混合物过滤,收集固体产物。

将固体产物用适量溶剂溶解,进行后续的表征分析。

5. 表征分析:使用红外光谱仪和核磁共振波谱仪对产物进行表征,确定产物的结构和纯度。

五、实验结果与分析1. 反应条件对产率的影响:- 亚铜盐的种类:在实验中,我们比较了氯化亚铜和溴化亚铜对反应的影响。

结果表明,氯化亚铜的催化效果优于溴化亚铜。

- 碱的种类:实验中使用了氨水、一级胺、吡啶和哌啶作为碱。

结果表明,氨水的催化效果最好。

- 溶剂的选择:实验中比较了甲醇、乙醇、二甲基甲酰胺、四氢呋喃和水作为溶剂对反应的影响。

结果表明,甲醇和乙醇的催化效果较好。

2. 反应产物的表征:- 红外光谱分析:产物的红外光谱图显示,在1650 cm^-1、2100 cm^-1和2300 cm^-1处有明显的吸收峰,分别对应于C=C、C≡C和C≡C的伸缩振动。

偶联反应的反应条件

偶联反应的反应条件

偶联反应的反应条件1. 偶联反应啊,那反应条件就像公主选驸马一样挑剔,不但需要合适的催化剂,还得温度刚刚好,差一点都不行,就像温度高一点像把驸马烤焦了,低一点又像把驸马冻成冰坨子。

2. 偶联反应的反应条件哟,好似厨师做菜,碱就像盐一样,少了没味,多了就咸得发苦,得精准控制,这碱的量稍微不对,就像菜里突然多了一堆沙子,整个反应就完犊子了。

3. 偶联反应的条件那叫一个讲究,就像火箭发射似的。

溶剂得像火箭燃料一样纯净,稍微有点杂质,就好比火箭燃料里混进了泥巴,这反应还能好得了?直接就像火箭在发射台上爆炸一样失败。

4. 偶联反应条件呀,像搭积木一样,配体这个小零件可不能马虎。

配体要是不合适,就像用方形的积木去搭圆形的城堡,整个反应就会像摇摇欲坠的危楼,随时崩塌。

5. 偶联反应的反应温度得像温水煮青蛙那样恰到好处,高了像直接把青蛙扔到开水里,青蛙受不了反应也受不了;低了像把青蛙扔到冰水里,反应就会慢悠悠得像个蜗牛爬。

6. 这偶联反应的反应条件跟找对象似的,底物之间要像情侣一样匹配。

要是底物不匹配啊,就像两个互相看不顺眼的人硬凑在一起,这反应就会像一场无休止的战争,根本没法好好进行。

7. 偶联反应条件中气氛也很关键呢,就像人呼吸的空气一样。

气氛不对,就好比人在充满毒气的环境里,反应会像得了重病的人一样奄奄一息。

8. 偶联反应的反应条件中的压力啊,像给气球打气。

压力太大,就像气球过度充气会爆炸,反应就会失控;压力太小,就像气球没气瘪瘪的,反应也没什么活力。

9. 偶联反应的光照条件(如果有),就像植物晒太阳。

光照太强,像把植物直接扔到太阳核心去烤,反应会被烤糊;光照太弱,像把植物放在小黑屋里,反应就像营养不良的小豆芽。

10. 偶联反应的反应条件像是一场交响乐演奏,每种试剂就像不同的乐器。

催化剂就是指挥棒,要是指挥棒不灵了,就像交响乐乱成一锅粥,反应也就乱套了。

11. 偶联反应的反应条件啊,跟走钢丝似的。

底物浓度要保持平衡,高了像人在钢丝上突然长胖了一百斤,直接掉下去;低了像突然瘦成皮包骨,也站不稳,反应就歇菜了。

stille偶联反应原理

stille偶联反应原理

stille偶联反应原理Stille偶联反应原理Stille偶联反应是一种重要的有机化学反应,其原理是基于有机锡化合物和有机卤化物在存在钯催化剂的条件下发生的偶联反应。

该反应具有广泛的适用性和高效性,被广泛应用于有机合成领域。

1. 反应机理Stille偶联反应的机理可以分为三个关键步骤:配体交换、还原消除和还原消除被动。

在反应开始时,钯催化剂与有机锡化合物发生配体交换,形成活性钯催化剂。

然后,有机锡化合物与有机卤化物发生还原消除反应,生成有机钯化合物和有机锡化合物的消除产物。

最后,有机钯化合物与还原消除产物发生还原消除被动反应,生成偶联产物和还原消除产物。

2. 反应条件Stille偶联反应的反应条件相对温和,一般在常温下进行。

反应溶剂可以选择常见的有机溶剂,如二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)等。

此外,反应中还需要添加一定量的碱,以中和反应产生的酸性物质,提高反应效率。

3. 应用领域Stille偶联反应在有机合成中具有广泛的应用。

首先,它可以用于构建碳-碳键和碳-锡键,从而实现复杂有机分子的构建。

其次,该反应还可以用于合成具有生物活性的化合物,如药物和天然产物。

此外,Stille偶联反应还可以用于材料化学领域,用于合成具有特殊功能的有机材料,如光电材料和液晶材料。

4. 优点和局限性Stille偶联反应具有许多优点,使其成为有机合成领域中的重要工具。

首先,该反应适用于多种官能团的偶联,具有高度的官能团容忍性。

其次,反应条件温和,对底物的官能团和功能组不敏感,因此具有较高的反应选择性。

此外,该反应也可以在水相条件下进行,具有环境友好性。

然而,该反应的局限性在于对底物的取代基和官能团有一定的限制,不适用于所有的有机化合物。

5. 进一步发展随着有机化学领域的不断发展,人们对Stille偶联反应进行了不断的改进和发展。

例如,引入了新型的配体和催化剂,提高了反应的活性和选择性。

此外,还发展了不对称Stille偶联反应,实现了手性化合物的合成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属钯催化Sonogashira偶联反应
(芳基炔与芳基卤偶联)
一、实验题目:
金属钯催化Sonogashira偶联反应(芳基炔与芳基卤偶联)
二、实验日期:
实验地点:
实验指导老师:
三、实验目的
1. 学习金属催化的有机偶联反应
2. 掌握Sonogashira偶联的反应机理。

3. 熟练氮气保护、金属催化、回流反应等有机基本操作。

四、实验原理
Sonogashira偶联反应现代有机合成中一种非常重要的形成碳碳键的偶合技术。

用于在不饱和碳原子之间形成碳碳单键。

反应是碘代乙烯或芳香烃与端炔之间经催化生成炔烯化合物的反应。

反应催化剂为钯和氯化亚铜。

反应需要碱性条件下进行。

反应催化循环如下:
钯与碘乙烯发生氧化加成反应,生成乙烯基碘化钯;氯化亚铜在碱性条件下与炔生产炔化铜,后者与乙烯基碘化钯发生金属交换反应,生成乙烯基炔化钯,然后发生还原消除反应生成零价钯和烯炔,完成一个催化循环。

同大多数钯介导的偶合反应一样,该反应一般只适用于不饱和碳原子之间的偶合。

在传统有机合成中,乙烯基卤素都是惰性化合物,很难发生取代反应,但在现代有机合成中这种观念发生了彻底的变化。

在钯催化下乙烯基卤素化合物变得相当活泼,能发生一系列取代反应。

而Sonogashira偶联反应就是其中一个反应代表。

烯炔结构是天然产物中常见的结构,特别是菊科植物的次生代谢产物富含这种结构。

在全合成研究中Sonogashira偶联反应无疑是一种有力的合成手段。

本次实验是将碘苯和对乙基苯乙炔进行Sonogashira偶联反应,使得苯和碳碳三键直接相连。

反应方程式如下:
I
CuI,
PPh
K2CO32
+
120C
Pd(PPh)Cl
实验装置:
五、实验部分
1、实验仪器:10 mL圆底烧瓶、球形冷凝管、酒精灯、针头、橡胶塞、空气球
2、实验药品:碘代苯、对乙基苯乙炔、碘化亚铜、三乙胺、二氯-二-(三苯基磷)钯
3、实验内容、现象与解释:
实验内容实验现象解释
在10 mL圆底烧瓶里
加入催化剂碘化亚铜
1mg,二氯-二-(三苯基
磷)钯1mg,三乙胺
2mL,对乙基苯乙炔
78.05mg,碘代苯
102.01mg,组成回流装
置,加热。

(1)未加热前,反应物为黄
色浑浊液体。

(2)加热四十分钟后,溶液
由黄色渐渐变为橘黄
色,最后变为橘红色。

在Pd催化下,反
应较快速地进行。

随着反应物颜色
的变化,说明有产
物的生成。

反应2h后,进行TLC 点板监测。

基线上1、2为纯的对乙基苯
乙炔和碘代苯的样点,中间的
为烧瓶内反应溶液的样点。


点板上,前端的是对乙基苯乙
炔和碘代苯的斑点(与1、2
样点的斑点对比得出),而后
端浅浅的斑点为反应溶液。

说明反应体系中
仍有较多的反应
物对乙基苯乙炔
和碘代苯,有少量
的反应物生成。


应还在进行中,反
应物没有完全反
4、实验注意事项:
(1)需在冷凝管上口套一个氮气球,以维持反应体系绝氧绝空气,维持在氮气的氛围里,防止零价的钯和碘化亚铁被氧化而失去催化功能。

(2)制作氮气球需先充氮气,再排掉,如此反复进行三次,最后再充入氮气,这样便完成氮气球的制作。

六、结果与讨论
通过此次实验,学习了金属钯Sonogashira偶联反应的原理,掌握了氮气保护的基本操作,并了解了这类反应在有机合成中的应用。

(1)对于金属钯Sonogashira偶联反应的原理的理解:
卤代烃与末端炔的偶联反应是制备非末端炔烃一个很重要并得到广泛应用的反应。

其反应机理与Heck反应不同,这里没有发生碳-碳三键对碳-钯键的插入反应,而是末端炔基金属试剂与钯中间体12发生金属交换反应生成新的钯中间体13,13发生还原消除生成产物14,同时再生成零价钯。

零价钯有催化效果,而+2价的钯无,所以要用CuI还原+2价的钯以得到有催化效果的零价钯。

在本实验中,三乙胺作为碱,提供碱性环境。

钯与碘乙烯发生氧化加成反应,生成乙烯基碘化钯;氯化亚铜在碱性条件下与炔生产炔化铜,后者与乙烯基碘化钯发生金属交换反应,生成乙烯基炔化钯,然后发生还原消除反应生成零价钯和烯炔,完成一个催化循环。

本实验通过此方法将苯基和碳-碳三键直接相连,有重要的有机合成意义。

此反应是由日本化学家Sonogashira首次发展的,一般只适用于溴化物、碘化物,后来发现碱非常重要,如果用六氢吡啶作碱,反应大大加快,且烯基氯化物也能发生反应。

(2)将本实验(加了Pd)与未加Pd 的实验进行对比:
比较点比较结果
未加热前反应物
的颜色、状态
加Pd 未加Pd
加了Pd的溶液颜色为黄色,未加Pd的溶液颜色
为乳白色,两者都为浑浊的液体。

加热后溶液变色的快慢加热后两者颜色都会慢慢加深,逐渐变为橘红色,但加了Pd的溶液的变色速度明显快于没有加Pd 的。

加了Pd的溶液在加热大约四十分钟后观察到较为明显的变色,而未加Pd的大约九十分钟后观察到较为明显的变色。

TLC点板结果从同时加热的两个反应体系(一个是加了Pd的,
一个是没有加Pd的)中取样进行TLC点板监测,
发现加了Pd的反应体系中的产物含量多于未加Pd
的,说明Pd能催化反应,使反应加快。

七、实验思考
(1)本实验中CuI的作用是什么?
答:将二氯-二-(三苯基磷)钯中+2价的钯还原为零价钯,零价钯才有催化功能。

(2)本实验中氮气球的作用是什么?
答:以维持反应体系绝氧绝空气,维持在氮气的氛围里,防止零价的钯和碘化亚铁被氧化而失去催化功能。

(3)本实验中三乙胺的作用是什么?
答:三乙胺作碱,提高碱性环境,因为反应需在碱性条件下进行。

(4)本实验中采用了什么方法进行监测?
答:采用了TLC点板方法进行监测,简单、方便、快捷。

八、参考文献和网站
[1] 肖唐鑫,刘立,强琚莉,王乐勇.钯催化的交叉偶联反应——2010年诺贝尔化学奖简介[J].自然杂志,2010,32(6):332-337.
[2] 李媛,马宏佳,葛春洋,杨民富.钯催化的交叉偶联反应——2010诺贝尔化学奖简介[J].化学教与学,2010(11):2-4.
[3] 杨发丽,刘克文,杨光.钯催化交叉偶联反应———2010年诺贝尔化学奖成果介绍[J].中国校外教育,2011(7):66-67.
[4] 维基百科
/wiki/Wikipedia:%E9%A6%96%E9%A1%B5
.
[5] 中国期刊网/
[6] 百度文库
[7] 如有侵权请联系告知删除,感谢你们的配合!
[8]
[9]
[10]
精品。

相关文档
最新文档