2地图投影方法及应用

合集下载

地图投影第二章地图投影方法变形分类

地图投影第二章地图投影方法变形分类



a b=r2


CHENLI
a> r,b=r 5
a≠b≠r 6
23
CHENLI
24
三、投影变形的性质和大小
长度比和长度变形:
投影面上一微小线段(变形椭圆半径)和球 面上相应微小线段(球面上微小圆半径,已按规 定的比例缩小)之比。
m表示长度比, Vm表示长度变形
m ds' ds
Vm m 1
Q(0,0),球面上的各点便以新极点Q为原点,以方
位角和天顶距 Z 表示其位置,从而构成球面极坐标系。
CHENLI
32
球面极坐标系
第二节 地理坐标
在地图测制中是把地球表面作为旋转椭球面处理。 地球椭球面上各点的位置,是以地理坐标即经度 和纬度来确定。经纬度是一种绝对的坐标系统。
P,P1—北、南极
CHENLI
2
地图投影,简单的说就是将参考椭球面上的元素 (大地坐标、角度和边长)按一定的数学法则化 算到平面上的过程。
x y
ff12((LL,,BB))
CHENLI
3
二、投影方式: 1.平行投影
CHENLI
4
2.透视投影
CHENLI
5
3. 广义投影
CHENLI
6
三、地图投影实质: 建立平面上的点(用平面直角坐标或极坐标
CHENLI
16
2. 投影变形的概念 地图投影不能保持平面与球面之间在
长度(距离)、角度(形状)、面积等方 面完全不变。
地球仪上经纬线网格和地图上比较:
CHENLI
17
球面经纬网经过投影之后,其几何特征 受到扭曲——地图投影变形:长度(距离)、 角度(形状)、面积。

第四讲 地图投影概述

第四讲 地图投影概述

利用光源把地球面上的经纬网投影到平面上的方法叫几何投影或几何 透视法。这是人们最早用来解决地球球面和地图平面矛盾的方法。 透视法。这是人们最早用来解决地球球面和地图平面矛盾的方法。
二、地图投影的基本方法
2.数学解析法:随着科学的发展,几何透视法 数学解析法:随着科学的发展, 数学解析法 远不能满足编制各类地图的需要, 远不能满足编制各类地图的需要,出现了解 析法。解析法是不借助于几何投影光源( 析法。解析法是不借助于几何投影光源(而 仅仅借助于几何投影的方式),按照某些条 仅仅借助于几何投影的方式),按照某些条 ), 件用数学分析法确定球面与平面点与点之间 一一对应的函数关系。 一一对应的函数关系。 X=f1(φ、λ) 、 Y=f2(φ、λ) 、 函数f1、 的具体形式 的具体形式, 函数 、f2的具体形式,是由给定的投影条件 确定的。有了这种对应关系, 确定的。有了这种对应关系,就可把球面上 的经纬网交点表示到平面上了。 的经纬网交点表示到平面上了。
这种在球面和平面之间建立点与点之间函数关系的数学方
称为地图投影。 法,称为地图投影。
二、地图投影的基本方法
1.几何投影(透视投影):假想地球是一个透明体,光源位于球心, 1.几何投影(透视投影):假想地球是一个透明体,光源位于球心, 几何投影 ):假想地球是一个透明体 然后把球面上的经纬网投影到平面上,就得到一张球面经纬网投影。 然后把球面上的经纬网投影到平面上,就得到一张球面经纬网投影。 地图投影面除平面之外,还有可展成平面的圆柱面和圆锥面; 地图投影面除平面之外,还有可展成平面的圆柱面和圆锥面;光源除 位于球心之外,还可以在球面、球外,或无穷远处等。 位于球心之外,还可以在球面、球外,或无穷远处等。
d o
b
d’ o’

第二章下 常用地图投影

第二章下 常用地图投影

(2)变形规律

切点没变形,离切点越远,变形越 大。 等变形线是以切点为圆心的同心圆。 切点向任意一点的方位角没变形。
斜轴等积方位投影
(3)用途

主要用于绘制水、陆半球,除非洲、南极洲以外的各 大洲(例如亚洲、欧洲、大洋洲、北美洲、南美洲)。 适合中高纬地区呈圆形区域的国家或地区。(例如包 含南海诸岛的中国全国)
(2)经纬线形状
纬线投影成一组平行直 线,经线投影成与纬线垂 直的平行直线。 纬线间距,从赤道向两极 放大,经线间距相等。
(3)变形特点

角度没有变形。 赤道没有变形,离赤道越远,面积变形越大。 等变形线是平行于纬线的直线。
(4)用途
常用于绘制世界时区图、世界交通图。 适合绘制赤道附近沿东西延伸的国家或地区 由于等角航线投影为直线,所以广泛用来绘制 海图。
2、正轴割圆锥投影(南海诸岛作插图的中国全图)

正轴等角割圆锥投影(Lambert conformal projection兰勃特) 正轴等积割圆锥投影(Albers projection亚尔勃斯)
(1)投影的几何概念
以圆锥投影作为投影面,使圆锥面与球面相割 (两条割线为标准线),按等角或等积条件将球面 上的经纬线投影到圆锥面上,然后将圆锥面展为平 面而成。

纬线投影为同心圆弧,经线投影为放射状直线。纬 线间隔从标准纬线向南向北是逐渐缩小的。
(3)变形规律
①两条标准线没有变形,离标 准线越远变形越大。 ②等变形线是平行于纬线的圆 弧。 ③在两条标准线之间,长度比 小于 1 ,为负变形;而在两 条标准线之外,长度比大于 1,为正变形。
中国地图(南海诸岛作插图)的标准线: ϕ 1=25°,ϕ 2=45/47°

地图投影的应用和变换

地图投影的应用和变换

地图投影的应用和变换1. 引言地图投影是将地球的三维表面展示在平面上的一种转换方法。

由于地球是一个球体,而大部分的地图都是平面图,为了准确地表示地球表面上的地理信息,地图投影成为了不可或缺的工具。

本文将介绍地图投影的应用和变换。

2. 地图投影的意义和应用地图投影对于地理信息的准确传达非常重要,它可以帮助我们更好地理解和解读地球上的各种地理现象和空间关系。

以下是地图投影的主要应用领域:2.1 地理信息系统(GIS)地理信息系统(GIS)是一种用于收集、存储、分析、管理和展示地理信息的系统。

地图投影在GIS中广泛应用,用于将地球表面的地理信息转换为平面图,并进行空间分析和数据处理。

2.2 地图制作和导航地图投影在地图制作和导航中起着至关重要的作用。

通过地图投影,我们可以将地球上的各种地理特征准确地展示在地图上,使人们能够更好地理解和识别地理位置,并利用地图进行导航。

2.3 气象预报地图投影在气象预报中也扮演了重要角色。

通过将地球表面的气象数据投影到平面图上,气象学家们可以更好地分析和预测天气现象,为人们提供准确的天气预报。

2.4 城市规划和地理分析地图投影在城市规划和地理分析中也得到了广泛的应用。

通过将地球表面的地理数据转换为平面图,城市规划师和地理分析师可以更好地分析城市的发展趋势、交通规划等,并为城市规划和发展提供决策支持。

3. 常见的地图投影方法地图投影有多种方法,每种方法都有其特点和适用范围。

下面介绍几种常见的地图投影方法:3.1 圆柱投影圆柱投影是最常见的地图投影方法之一。

它将地球表面的经纬线投影到一个圆柱体上,然后再将圆柱体展开成平面图。

该投影方法在赤道周围的地区表现较好,但在离赤道较远的地区会出现形变。

3.2 锥形投影锥形投影是将地球表面的经纬线投影到一个圆锥体上,然后再将圆锥体展开成平面图。

该投影方法在中纬度地区表现较好,但在靠近两极地区会出现形变。

3.3 圆锥柱面投影圆锥柱面投影是将地球表面的经纬线投影到一个圆锥体和一个圆柱体上,然后将两个表面展开成平面图。

地图投影转换的方法及注意事项

地图投影转换的方法及注意事项

地图投影转换的方法及注意事项一、引言地图投影是将地球上的曲面表示为平面投影的一种方式,在地理信息领域发挥着重要作用。

然而,由于地球的曲面无法完美地映射到二维平面上,所以在进行地图投影时,我们需要选择合适的方法并注意一些事项,以确保地图的准确性和可用性。

二、地图投影方法1. 圆柱投影法圆柱投影法是最常见的一种地图投影方法。

它将地球表面投影到一个切割的圆柱体上,再将圆柱体展开成平面。

常见的圆柱投影法包括墨卡托投影、兰勃托投影和正轴等距圆柱投影。

这种投影方法适用于大范围地图,但在高纬度地区会存在形变问题。

2. 锥形投影法锥形投影法也是一种常用的地图投影方法。

它将地球表面投影到一个切割的锥体上,再将锥体展开成平面。

兰勃托锥形投影和兰勃托等面积投影是常见的锥形投影方法。

锥形投影法适用于较小范围的地图,地图形状比较真实,但在地图边缘会存在形变。

3. 平面投影法平面投影法将地球表面投影到一个切割的平面上。

根据投影中心的不同,平面投影法可分为正轴等距圆盘投影、兰勃托投影和阿波洛尼奥斯投影等。

平面投影法适用于小范围地图,投影中心附近形状准确,但离中心越远,形变越大。

三、地图投影注意事项1. 选择合适的投影方法根据地图的范围和用途选择合适的投影方法非常重要。

对于大范围的地图,圆柱投影法是不错的选择,而对于小范围的地图,平面投影法可能更适合。

考虑地图的形变和准确度,综合评估不同投影方法的优劣,选择最合适的方法。

2. 避免形变问题无论选择哪种投影方法,都无法避免地图形变的问题。

为了尽可能地减小形变,可以选择等面积投影方法,保持地区间的面积比例一致。

此外,在制作地图时,还可以通过引入坐标转换或插值的方法来修正形变。

3. 注意地图投影中心地图投影中心的选择对于地图的可用性和准确性至关重要。

选择合适的中心点可以在特定区域内确保地图形状的准确性。

同时,投影中心还影响到地图的距离和方向,因此在选择地图投影中心时要谨慎考虑。

4. 考虑投影带如果地图跨越多个经度带,应根据各经度范围的不同,选择不同的投影带,以确保地图的准确性。

地图投影的原理及应用实例

地图投影的原理及应用实例

地图投影的原理及应用实例1. 地图投影的基本概念地图投影是指将三维的地球表面投影到一个平面上,以便于进行测量、绘制和分析地理信息。

地图投影的过程中,由于地球是一个球体,不可避免地会出现一定的形变。

不同的地图投影方法会选择不同的投影面,以及不同的数学模型和变形形式,以最大程度地减小形变。

2. 常见的地图投影方法2.1 圆柱投影法•圆柱投影法是将地球投影到一个圆柱体上,再将圆柱体展开为平面的投影方法。

•常见的圆柱投影方法有墨卡托投影、等面积圆柱投影、等距圆柱投影等。

2.2 锥形投影法•锥形投影法是将地球投影到一个圆锥体上,再将圆锥体展开为平面的投影方法。

•常见的锥形投影方法有兰勃特圆锥投影、兰勃托等角圆锥投影等。

2.3 平面投影法•平面投影法是将地球投影到一个平面上的投影方法。

•常见的平面投影方法有斯体列克平面投影、等角正矩形平面投影等。

3. 地图投影的原理地图投影的原理是将地球上的地理坐标转换为平面上的坐标。

具体的计算方法有很多种,但基本思想是利用数学模型将球面的点映射到平面上的相应点,从而实现地球表面到地图平面的映射。

地球经纬度坐标转换为平面坐标的公式如下:X = R * cos(φ) * cos(λ0 - λ)Y = R * cos(φ) * sin(λ0 - λ)其中,X和Y表示地球上的点在平面上的投影坐标,R表示地球的半径,φ和λ表示地球上的点的纬度和经度,λ0表示中央子午线的经度。

4. 地图投影的应用实例4.1 航空航天地图投影在航空航天领域中起着重要的作用。

航空航天中常用的地图投影方法是墨卡托投影。

墨卡托投影能将地球表面的航线直观地展示出来,便于飞行员进行导航和飞行计划。

4.2 地理信息系统地图投影在地理信息系统(GIS)中的应用非常广泛。

GIS系统中的地图投影方法需要考虑到形变问题,并且需要选择适合不同应用场景的投影方法。

例如,在城市规划中,会使用等面积圆柱投影;在区域分析中,会使用兰勃特圆锥投影等。

测绘技术中如何进行地图投影的选择与变换

测绘技术中如何进行地图投影的选择与变换

测绘技术中如何进行地图投影的选择与变换地图投影是测绘技术中的一个重要环节,它将地球上的三维地理信息转换为二维地图,方便人们阅读和使用。

然而,由于地球是一个椭球体而非一个平面,所以对地球表面进行投影变换是不可避免的。

在实际应用中,选择合适的投影方式以及进行投影变换是至关重要的。

一、地图投影选择的基本原则地图投影选择的基本原则是根据使用需求和地理特征来确定。

首先,我们需要考虑使用地图的目的和应用范围。

例如,如果用于海洋航行,就需要选择能够保持航线真实性质的等角投影;如果用于地理信息系统分析,就需要选择能够保持面积和形状相对真实的等积投影。

其次,需要考虑地理特征,如纬度范围、地形复杂度等。

因为不同的投影方式会对这些特征产生不同的失真效果。

二、常用的地图投影方式1.等角投影:等角投影是保持角度真实性的投影方式,它保持了地球上任意两点之间的角度关系。

其中最常用的是墨卡托投影,它将地球投影为一个矩形图形。

墨卡托投影适用于大范围的地图制作,如全球地图或大洲地图。

2.等积投影:等积投影是保持面积相对真实的投影方式,即在二维平面上保持地球上任意区域的面积比例。

其中最常用的是兰勃托投影,它将地球投影为一个圆形图形。

兰勃托投影适用于地理分析和区域规划等应用。

3.等距投影:等距投影是保持距离真实性的投影方式,即在二维平面上保持地球上任意两点之间的距离比例。

其中最常用的是矩形方位投影,它将地球投影为一个矩形图形。

矩形方位投影适用于航空航天和军事测绘等应用。

三、地图投影变换的方法在选择了适合的地图投影方式之后,还需要进行地图投影变换,将地球表面上的三维坐标转换为平面上的二维坐标。

常见的变换方法有以下几种:1.正算法:正算法是由地球表面的球面坐标计算得到平面坐标的过程。

它是通过将地球表面上的经度和纬度转换为平面上的投影坐标来实现的。

2.反算法:反算法是由平面坐标反推地球表面坐标的过程。

它是通过将平面上的投影坐标反向转换为地球表面上的经度和纬度来实现的。

地图投影的名词解释

地图投影的名词解释

地图投影的名词解释地图投影是将三维的地球表面投影到二维平面上的一种方法。

由于地球是一个近似于椭球体的形状,而平面是一个无限大的二维表面,所以在将地球表面转化为平面的过程中,必然会出现形状、面积、方向等的变形,这就是地图投影的本质所在。

一、地图投影的基本原理地图投影是地理学与地图制图学中的重要内容,其基本原理可以理解为建立地球和平面之间的映射关系。

在投影过程中,地球表面上的点被映射到平面上的相应点,形成了地图上的数据。

而为了准确地表示地球表面的形状、地理特征等信息,需要选择适合的投影方案。

二、地图投影的分类根据不同的目的和需求,地图投影可以分为多种类型,常见的包括等距投影、等面积投影、等角投影和混合投影等。

1. 等距投影等距投影是指投影后的地图上的任意两点之间的距离与地球上的相应两点之间的距离保持一致。

这种投影方法在测量和导航等领域非常有用,常见的等距投影有墨卡托投影和极射同圆投影等。

2. 等面积投影等面积投影是指在地球表面的任意区域上,被投影到地图上的区域与地球上相应区域的面积保持一致。

这种投影方法在研究地区的面积分布、资源分布等方面非常有用,常见的等面积投影有兰勃托投影和豪森投影等。

3. 等角投影等角投影是指投影后的地图上的任意两条曲线之间的夹角与地球上的相应两条曲线之间的夹角保持一致。

这种投影方法在表示地球表面的形状、方向等方面非常有用,常见的等角投影有兰勃托投影和伪卫星投影等。

4. 混合投影混合投影是指将两种或多种投影方法结合起来使用,通过调整参数或变换过程来达到更好的投影效果。

这种投影方法在综合考虑地球表面的形状、面积、方向等特征上非常有用,常见的混合投影有兰勃托-兰勃托投影和兰勃托-极射同圆投影等。

三、地图投影的应用领域地图投影在地理信息系统、导航、城市规划等领域具有广泛的应用。

通过合适的投影方法,可以制作出形状准确、信息完整的地图,为人们的生产、生活与研究提供参考和支持。

1. 地理信息系统地图投影在地理信息系统中是至关重要的,它将实际地球表面上的数据转化为平面上的点、线、面等要素,使得地理数据在计算机中得以处理和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k k r 2 tan (45 / 2) U
tan(45 / 2) U tan e (45 / 2)
sin esin
三.地图投影的变形 ——地图投影变形的概念
1 2
• 地图投影变形的概念
– 指球面转换成平面后,地图上所产生的长度、 角度和面积误差。
三.地图投影的变形 ——变形椭圆
2 3
• 变形椭圆:
– 取地面上一个微分圆(小到可忽略地球曲面的影响, 把它当作平面看待),它投影到平面上通常会变为 椭圆,通过对这个椭圆的研究,分析地图投影的变 形状况。这种图解方法就叫变形椭圆。
Y' X' n 为纬线长度比 m 为经线长度比; Y X
三.地图投影的变形 ——变形椭圆
S
S
S
正轴 切园柱投影
横轴 割园锥投影
斜轴 切方位投影
4 5
四.地图投影的分类 ——按构成方法分类
3 4
• 几何(简单)投影:是把地球球面上的经纬线 网投影到几何面上,然后将几何面展为平面 而得到的。
–方位投影
–圆柱投影 –圆锥投影
四.地图投影的分类 ——按构成方法分类
3 5
• 非几何(条件) 投影:根据某些条件,用数学解
析法确定球面与平面之间点与点的函数关系。
四.地图投影的分类 ——按变形性质分类
4 1
形状不变
四.地图投影的分类 ——按变形性质分类
4 2
等角投影
等积投影
等距投影
任意投影
四.地图投影的分类
4 3
按变形性质分为:
等积投影、等角投影、任意投影
按承影面的形状分为:
方位投影、圆锥投影、园柱投影
按承影面与地轴的关系分为:
正轴投影、横轴投影、斜轴投影
1
目录:
2
一、地图投影的概念 二、地图投影的基本方法
三、地图投影的变形
四、地图投影的分类 五、地图投影的命名
一.地图投影的概念
3
地图表面和地球球面的矛盾
一.地图投影的概念
4
一.地图投影的概念
5
一.地图投影的概念
6
地图投影是在几何投影基础上发展起来的 数学上的几何投影--透视原理
灯源
物体
承影面
(投)影
一.地图投影的概念
7
•概念
–地图投影就是在球面与平面之间建立其经纬度 与直角坐标函数关系的数学方法
• 实质
– 是研究将地球椭球面上的经纬线网按照一定的 数学法则转移到平面上的方法及其变形问题。
球 面
平面
F(,)=f(x,y)
二.地图投影的基本方法
8
–几何透视法 –数学解析法
– 伪方位投影
– 伪圆柱投影
– 伪圆锥投影 – 多圆锥投影
四.地图投影的分类 ——伪方位投影
3 6
• 伪方位投影:在方位投影的基础上,根据某些条 件改变经线形状而成,除中央经线为直线外,其 余均投影为对称中央经线的曲线。
四.地图投影的分类 ——伪圆柱投影
3 7
• 伪圆柱投影:在圆柱投影基础上,根据某些条件 改变经线形状而成,无等角投影。除中央经线为 直线外,其余均投影为对称中央经线的曲线。
长轴方向(极大值)a
短轴方向(极小值)b
经线方向 m ;纬线方向 n 统称 主方向
据阿波隆尼定理,有 m2 + n2 = a2 + b2
m· n· sinq = a· b
三.地图投影的变形 ——地图投影分析
2 6
• 地图投影分析:借助变形椭圆和微小圆的 比较,说明变形的性质和大小。
– 椭圆半径与小圆半径的比较——长度变形; – 椭圆面积与小圆面积的比较——面积变形;
ds ' ds
V 1
= 0 不变 > 0 变大 < 0 变小
表示长度比,V表示长度变形
三.地图投影的变形 ——地图投影分析
2 9
• 面积比和面积变形:
– 投影平面上微小面积(变形椭圆面积)与球 面上相应的微小面积(微小圆面积)之比。 – 面积比是变量,随位置的不同而变化。
dF ' πab P 2 a b dF πl
设A点的坐标为(x、y),A′点的坐标为(x′、y′),则
y tan x y' tan ' x'
y' x' b a y x
三.地图投影的变形 ——地图投影分析
3 1
by b tan ' tan ax a
将上式两边各减和加 tan 即:
b b tan tan ' tan tan (1 ) tan a a b b tan tan ' tan tan (1 ) tan a a sin( ') a b tan 将两式相除,得: cos cos ' a sin( ') a b sin( ') a b
• (主比例尺与局部比例尺)
–面积变形(Vp):(微分圆)面比P与1的差值
–角度变形:投影后与投影前角度之差ω
• 变形的表示:变形椭圆、等变形线
三.地图投影的变形 ——等变形线
2 2
• 等变形线: –就是变形值相等的各点的连线,它是根据计算 的各种变形的数值(如p,w)绘于经纬线网格 内的,如面积等变形线。 – 常用等变形线来表示制图区域的变形分布特征
三.地图投影的变形 ——地图投影分析
3 2 显然当( + ‘)= 90°时,右端取最大值,则 最大方向变形:
a b sin( ') sin( ') ab
a b sin( ') 以表示角度最大变形: ab ' (180 2 ') (180 2 ) 2( ')
1 4 • 所有经线圈都是通过两极的大圆;长度相等;
• 所有纬线除赤道是大圆外,其余都是小圆,并且 从赤道向两极越来越小,极地成为一点。
三.地图投影的变形 ——地球仪上经纬网的特点
1 5 • 经线和纬线是相互垂直的。 ——角度 • 纬差相等的经线弧长相等;同一条 纬线上经差相等的纬线弧长相等, 在不同的纬线上,经差相等的纬线 弧长不等,而是从赤道向两极逐渐 缩小的。 ——长度 • 同一纬度带内,经差相同的经纬线 网格面积相等,不同纬度带内,网 格面积不等,同一经度带内,纬度 越高,梯形面积越小。由低纬向高 纬逐渐缩小。 ——面积
四.地图投影的分类 ——按变形性质分类
4 0
• 等角投影:
– 投影面上某点的任意两方向线夹角与椭球面上相应 两线段夹角相等,即角度变形为零 ω=0(或 a=b, m=n)。
• 等积投影:
– 投影面与椭球面上相应区域的面积相等,即面积变 形为零 Vp=0(或 P=1,a=1/b)。
• 任意投影:
– 投影图上,长度、面积和角度都有变形,它既不等 角又不等积。其中,等距投影是在特定方向上没有 长度变形的任意投影(m=1)。
四.地图投影的分类 ——伪圆锥投影
3 8
• 伪圆锥投影:在圆锥投影基础上,根据某些条件 改变经线形状而成,无等角投影。除中央经线为 直线外,其余均投影为对称中央经线的曲线。
四.地图投影的分类 ——多圆锥投影
3 9
• 多圆锥投影:设想有更多的圆锥面与球面相切, 投影后沿一母线剪开展平。纬线投影为同轴圆弧, 其圆心都在中央经线的延长线上。中央经线为直 线,其余经线投影为对称于中央经线的曲线。
—— 以正轴圆锥投影为例
经线 投影为放射直线,经差 与投影面上d成正比:d = c· (c为 圆锥系数,0 < c < 1)。 纬线 投影为同心圆弧,其半径 r 是纬度 的函数, r = f()。 圆锥投影的一般公式为:
X = r s - r cosδ
Y = r sin d
r = f( ) d = c·
– 椭圆上两方向线的夹角和小圆上相应两方向
线的夹角的比较——角度变形;
三.地图投影的变形 ——地图投影分析
2 7
三.地图投影的变形 ——地图投影分析
2 8
• 长度比和长度变形:
– 投影面上一微小线段(变形椭圆半径)和球面 上相应微小线段(球面上微小圆半径,已按规 定的比例缩小)之比。
– 长度比是变量,随位置和方向的变化而变化。
a b sin 2 ab
b tan( 45 ) 2 a


m 2 n 2 2mn sin q 若已知 m, n, q ,则: sin 2 m 2 n 2 2mn sin q

三.地图投影的变形 ——地图投影变形的分布规律
3 3
Байду номын сангаас
• 任何地图都有投影变形 • 不同区域大小的投影其投影变形不同 • 地图上存在没有变形的点(线)—标准点(线) • 距没有变形的点(线)越远,投影变形越 大,反之亦然 • 地图投影反映的实地面积越大,投影变形 越大,反之越小
2 4
X' m X
2
Y' n Y
2
代入: X + Y = 1,得
X' Y' 2 1 2 m n
2
2
微小圆 → 变形椭圆
该方程证明:地球面上的微小圆,投影后通常 会变为椭圆,即:以O'为原点,以相交成q角的 两共轭直径为坐标轴的椭圆方程式。
三.地图投影的变形 ——变形椭圆
2 5
特别方向: 变形椭圆上相互垂直的两个方向及经向和纬向
• 变形是必然的--球面不可展
• 没有变形的投影是不存在的
相关文档
最新文档