三角函数图像的平移、变换练习题

合集下载

解三角函数的平移与伸缩的练习题

解三角函数的平移与伸缩的练习题

解三角函数的平移与伸缩的练习题三角函数是数学中重要的概念,它们在物理、工程、计算机图形等领域起着重要的作用。

本文将提供一些练习题,帮助读者巩固和理解三角函数的平移与伸缩。

一、平移平移是指将函数图像沿着横轴或纵轴方向上移动一定距离。

对于一般的三角函数,可通过函数表达式中的参数来实现平移。

下面是一道练习题:练习题1:已知函数y = sin(x)的图像,将其向左平移π/2个单位,并画出平移后的图像。

解答:将函数向左平移π/2个单位,意味着函数图像中的所有点的横坐标都减去π/2。

因此,平移后的函数可以表示为y = sin(x - π/2)。

接下来我们画出平移后的图像。

(插入图像,图像为sin(x)的图像向左平移π/2个单位)从绘制的图像我们可以看出,平移后的图像与原图像相比,整体向左平移了π/2个单位。

这是因为我们将函数中的每个x都减去了π/2。

二、伸缩伸缩是指将函数图像在横轴或纵轴方向上进行拉伸或压缩。

对于一般的三角函数,可以通过参数来实现伸缩。

下面是一道练习题:练习题2:已知函数y = cos(x)的图像,将其在纵轴方向上进行伸缩,并画出伸缩后的图像。

解答:将函数在纵轴方向上进行伸缩,可以通过在函数表达式中引入一个参数来实现。

我们可以将函数表示为y = a*cos(x),其中a表示伸缩的比例因子。

如果a>1,代表向上拉伸;如果0<a<1,代表向下压缩。

接下来我们画出伸缩后的图像。

(插入图像,图像为cos(x)的图像在纵轴方向上拉伸/压缩后的图像)从绘制的图像可以观察到,伸缩后的图像相对于原图像在纵轴方向上进行了拉伸或压缩。

伸缩因子a的大小决定了图像的变化程度。

三、综合练习题练习题3:已知函数y = 2sin(3x - π/4),请画出该函数的图像,并描述它的平移和伸缩特点。

解答:函数y = 2sin(3x - π/4)可以看做是函数y = sin(x)的平移和伸缩的组合。

根据函数的形式,可以得到以下推断:- 函数图像在横轴方向上向右平移π/12个单位(3x中的系数3意味着横坐标放大了3倍,因此平移距离也放大3倍);- 函数图像在纵轴方向上进行了拉伸,拉伸因子为2(系数2的作用)。

三角函数的图象和性质练习题及答案

三角函数的图象和性质练习题及答案

1y三角函数图像与性质练习题(一)一.选择题 〔每题5分,共100分〕1.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=-⎪⎝⎭平移,平移后的图象如下图,那么平移后的图象所对应函数的解析式是( ) A.sin()6y x π=+B.sin()6y x π=-C.sin(2)3y x π=+D.sin(2)3y x π=- 2. 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点( )A.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕B.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕C.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕 D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕3. 函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ω的最小值等于( )A.23B.32C.2D.3 4.函数y =sin(2x +3π)的图象可由函数y =sin2x 的图象经过平移而得到,这一平移过程可以是( ) A.向左平移6πB.向右平移6πC.向左平移12π D.向右平移12π 5. 要得到函数y =sin (2x -)6π的图像,只需将函数y =cos 2x 的图像( )A.向右平移6π个单位 B.向右平移3π个单位 C. 向左平移6π个单位 D. 向左平移3π个单位 6. 为了得到函数y =sin (2x-4π)+1的图象,只需将函数y =sin 2x 的图象〔〕平移得到A.按向量a=(-8π,1)B. 按向量a=(8π,1)C.按向量a=(-4π,1)D. 按向量a=(4π,1) 7.假设函数()sin ()f x x ωϕ=+的图象如图,那么ωϕ和的取值是( )A.1ω=,3πϕ= B.1ω=,3πϕ=-C.12ω=,6πϕ= D.12ω=,6πϕ=- 8. 函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )9. 函数sin(2)cos(2)63y x x ππ=+++的最小正周期和最大值分别为( ) A.,1π B.,2π C.2,1π D. 2,2π 10. 函数()sin()(0)3f x x πϖϖ=+>的最小正周期为π,那么该函数的图象( )A.关于点(,0)3π对称 B.关于直线4x π=对称 C.关于点(,0)4π对称 D.关于直线3x π=对称11.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的局部图象如图,那么( ) A.4,2πϕπω==B.6,3πϕπω==C.4,4πϕπω== D.45,4πϕπω==12. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) yx11-2π- 3π- O6ππyx11- 2π- 3π- O 6ππ yx1 1-2π-3πO 6π-πy xπ2π- 6π-1O 1-3π A.B. C. D.A.向右平移π6个单位 B.向右平移π3个单位 C.向左平移π3个单位 D.向左平移π6个单位 13. 设函数()x f ()φω+=x sin ⎪⎭⎫ ⎝⎛<<>20,0πφω.假设将()x f 的图象沿x 轴向右平移61个单位长度,得到的图象经过坐标原点;假设将()x f 的图象上所有的点的横坐标缩短到原来的21倍〔纵坐标不变〕, 得到的图象经过点⎪⎭⎫⎝⎛1,61. 那么( ) A.6,πφπω== B.3,2πφπω== C.8,43πφπω== D. 适合条件的φω,不存在 14. 设函数)()0(1)6sin()(x f x x f '>-+=的导数ωπω的最大值为3,那么f (x )的图象的一条对称轴的方程是( ) A.9π=x B.6π=x C.3π=x D.2π=x三角函数图像与性质练习题答案三角函数的图象和性质练习题(二)一、选择题1.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,那么ϕ的值是〔 〕A.0B.4πC.2πD.π2. 将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,那么ϕ等于A .12π-B .3π-C .3πD .12π 3.假设,24παπ<<那么〔 〕 (45<a<90)A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >>1 2 3 4 5 6 7 8 9 10 C C B A B B C A A A 11 12 13 14 CAAA4.函数23cos()56y x π=-的最小正周期是〔 〕A .52πB .25π C .π2 D .π5 5.在函数x y sin =、x y sin =、2sin(2)3y x π=+、2cos(2)3y x π=+中, 最小正周期为π的函数的个数为〔〕. A .1个B .2个 C .3个 D .4个6.x x x f 32cos 32sin)(+=的图象中相邻的两条对称轴间距离为 〔 〕 A .3π B .π34 C .π23 D .π677. 函数)252sin(π+=x y 的一条对称轴方程〔 〕A .2π-=xB .4π-=xC .8π=xD .=x π458. 使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值,那么ω的最小值为〔 〕 A .π25B .π45C .πD .π23二、填空题1.关于x 的函数()cos()f x x α=+有以下命题: ①对任意α,()f x 都是非奇非偶函数; ②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都不是奇函数.其中一个假命题的序号是,因为当α=时,该命题的结论不成立.2.函数xxy cos 2cos 2-+=的最大值为________.3.假设函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,那么自然数k 的值为______. 4.满足23sin =x 的x 的集合为_________________________________. 5.假设)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,那么ϖ=________.三、解答题1.比拟大小〔1〕00150sin ,110sin ;〔2〕00200tan ,220tan 2. (1) 求函数1sin 1log 2-=xy 的定义域. 〔2〕设()sin(cos ),(0)f x x x π=≤≤,求()f x 的最大值与最小值. 3.)33sin(32)(πω+=x x f 〔ω>0〕〔1〕假设f (x +θ)是周期为2π的偶函数,求ω及θ值; ω= 1/3 ,θ= . 〔2〕f (x )在〔0,3π〕上是增函数,求ω最大值 "三角函数的图象和性质练习题二"参考答案一、选择题 1.C [解析]:当2πϕ=时,sin(2)cos 22y x x π=+=,而cos 2y x =是偶函数2.C [解析]:函数x y 4sin =的图象向左平移12π个单位,得到)12(4sin π+=x y 的图象,故3πϕ=3.D [解析]:tan 1,cos sin 1,ααα><<αααcos sin tan >>4.D [解析]:2525T ππ== 5.C [解析]:由x y sin =的图象知,它是非周期函数6.C [解析]: ∵x x x f 32cos 32sin)(+==)432sin(2π+x∴图象的对称轴为πππk x +=+2432,即)(2383Z k k x ∈+=ππ故相邻的两条对称轴间距离为π237.A [解析]:当2π-=x 时 )252sin(π+=x y 取得最小值-1,应选A8.A [解析]:要使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值 只需要最小正周期⋅45ωπ2≤1,故πω25≥ 二、填空题1、①0[解析]:此时()cos f x x =为偶函数2、3[解析]:2cos 4cos 2412cos 2cos 2cos x x y x x x++-===----3、2,3或[解析]:,12,,2,32T k k N k kkππππ=<<<<∈⇒=而或4、|2,2,33x x k k k Z ππππ⎧⎫=++∈⎨⎬⎩⎭或 5、34[解析]:[0,],0,0,3333x x x ππωππω∈≤≤≤≤< 三、解答题1.解:〔1〕0sin110sin 70,sin150sin 30,sin 70sin 30,sin110sin150==>∴>而 〔2〕0tan 220tan 40,tan 200tan 20,tan 40tan 20,tan 220tan 200==>∴>而 2.解:〔1〕221111log 10,log 1,2,0sin sin sin sin 2x x x x -≥≥≥<≤ 22,6k x k πππ<≤+或522,6k x k k Z ππππ+≤<+∈5(2,2][2,2),()66k k k k k Z ππππππ++∈为所求.〔2〕0,1cos 1x x π≤≤-≤≤当时,而[11]-,是()sin f t t =的递增区间 当cos 1x =-时,min ()sin(1)sin1f x =-=-; 当cos 1x =时,max ()sin1f x =. 4.解:(1) 因为f (x +θ)=)333sin(32πθω++x又f (x +θ)是周期为2π的偶函数, 故∈+==k k 6,31ππθω Z(2) 因为f (x )在〔0,3π〕上是增函数,故ω最大值为61三角函数的图象专项练习一.选择题1.为了得到函数)62sin(π-=x y 的图象,可以将函数y=cos2x 的图象 ( )A .向右平移6π个单位长度B. 向右平移3π个单位长度 C. 向左平移6π个单位长度 D. 向左平移3π个单位长度2.以下函数中振幅为2,周期为π,初相为6π的函数为 ()A .y=2sin(2x+3π) B. y=2sin(2x+6π) C .y=2sin(21x+3π) D. y=2sin(21x+6π) 3.三角方程2sin(2π-x)=1的解集为 ( ) A .{x│x=2kπ+3π,k∈Z}B .{x│x=2kπ+35π,k∈Z}.C .{x│x=2kπ±3π,k∈Z}D .{x│x=kπ+(-1)K ,k∈Z}.4.假设函数f(x)=sin(ωx+ϕ)的图象〔局部〕如下图,那么ω,ϕ的取值是 ( )A .3,1πϕω==B.3,1πϕω-==C .6,21πϕω==D.6,21πϕω-==5.函数y=tan(2x+φ)的图象过点(0,12π),那么φ的值可以是 ( ) A. -6π B. 6π C.12π- D.12π6.设函数y=2sin(2x+Φ)的图象为C ,那么以下判断不正确的选项是〔 〕A .过点(,2)3π的C 唯一 B.过点(,0)6π-的C 不唯一C .C 在长度为2π的闭区间上至多有2个最高点D .C 在长度为π的闭区间上一定有一个最高点,一个最低点 7.方程)4cos(lg π-=x x 的解的个数为〔 〕A .0B .无数个C .不超过3D .大于38.假设函数y=f(x)的图像上每点的纵坐标保持不变,横坐标伸长到原2倍,然后再将整个图像沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1sin 2y x =的图像,那么y=f(x)是 ( )A .1sin(2)122y x π=++B.1sin(2)122y x π=-+ C .1sin(2)124y x π=-+ D.11sin()1224y x π=++9.()sin()2f x x π=+,()cos()2g x x π=-,那么f(x)的图像 ( )A .与g(x)的图像一样 B.与g(x)的图像关于y 轴对称C .向左平移2π个单位,得g(x)的图像 D.向右平移2π个单位,得g(x)的图像 10.函数f(x)=sin(2x+2π)图像中一条对称轴方程不可能为( )A.x=4πB. x=2πC. x=πD. x=23π11.函数y=2与y=2sinx ,x ∈3[,]22ππ-所围成的图形的面积为 ( ) A .πB.2πC.3πD.4π12.设y=f(t)是某港口水的深度y 〔米〕关于时间t 〔时〕的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asina(ωt+ϕ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A.]24,0[,6sin312∈+=t t y πB.]24,0[),6sin(312∈++=t t y ππC.]24,0[,12sin 312∈+=t t y πD.]24,0[),212sin(312t t y ππ++=二.填空题 13.函数y=5sin(3x −2π)的频率是______________。

关于三角函数图像的平移变换

关于三角函数图像的平移变换

三角函数图像的平移、变换一、 引入以简单函数为例,解说“左加右减、上加下减” 。

讲清横移的实质是把全部x 替代为 x+a ;二、三角函数图像的平移之历年高考真题1、为了获得函数y sin(2 x) 的图像,只需把函数 y sin(2 x) 的图像( A )向左平移个长度单364位( B )向右平移 个长度单位4( C )向左平移个长度单位( D )向右平移个长度单位22【答案】 B2、将函数 ysin x 的图像上全部的点向右平行挪动个单位长度, 再把所得各点的横坐标伸长到本来的102 倍(纵坐标不变) ,所得图像的函数分析式是( A ) ysin(2 x ) (B ) ysin(2 x)sin( 1x10sin( 1x 5 ( C ) y) ( D ) y )2102 20分析:将函数 y sin x 的图像上全部的点向右平行挪动个单位长度, 所得函数图象的分析式为 y = sin( x10-)再把所得各点的横坐标伸长到本来的 2 倍(纵坐标不变) ,所得图像的函数分析式是10y sin( 1x) . 【答案】 C 210以本题为例,解说横向变换的实质也是替代。

可发问:上述步骤反演,结果怎样?3、( 2010 天津文)( 8)右图是函数 y Asin ( x+ )( xR )在区间 - 5上的图象,为了获得这个函数的图象,只,6 6要将 y sin x ( x R )的图象上全部的点(A) 向左平移 个单位长度,再把所得各点的横坐标缩短到原3来的 1倍,纵坐标不变2(B) 向左平移个单位长度, 再把所得各点的横坐标伸长到原3来的 2 倍,纵坐标不变(C) 向左平移个单位长度,再把所得各点的横坐标缩短到本来的1倍,纵坐标不变621【答案】 A【分析】本题主要考察三角函数的图像与图像变换的基础知识,属于中等题。

由图像可知函数的周期为,振幅为1,因此函数的表达式能够是y=sin(2x+ ).代入( - , 0)可得的6一个值为,故图像中函数的一个表达式是y=sin(2x+ ),即 y=sin2(x+ ),因此只需将 y=sinx ( x∈ R)3 3 6 1倍,纵坐标不变。

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换一、单选题(共8道,每道12分)1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( )A.2B.3C.4D.5答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( )A.1B.2C.3D.4答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( )A.πB.C. D.答案:D解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换7.函数的图象如图所示,为了得到的图象,则只要将f(x)的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换8.将函数的图象向左平移个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换。

三角函数的图像和变换以及经典习题和答案

三角函数的图像和变换以及经典习题和答案

3.4函数sin()y A x ωϕ=+的图象与变换【知识网络】1.函数sin()y A x ωϕ=+的实际意义;2.函数sin()y A x ωϕ=+图象的变换(平移平换与伸缩变换) 【典型例题】 [例1](1)函数3sin()226x y π=+的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 .(1)32; 14π;26x π+;6π (2)函数2sin(2)3y x π=-的对称中心是 ;对称轴方程是;单调增区间是 . (2)(,0),26k k Z ππ+∈;5,212k x k Z ππ=+∈; ()5,1212k k k z ππππ⎡⎤-++∈⎢⎥⎣⎦(3) 将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+ B .sin()6y x π=- C .sin(2)3y x π=+D .sin(2)3y x π=- (3)C 提示:将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=. (4) 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点 ( )(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (4)C 先将R x x y ∈=,sin 2的图象向左平移6π个单位长度,得到函数2sin(),6y x x R π=+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数R x x y ∈+=),63sin(2π的图像(5)将函数x x f y sin )(= 的图象向右平移4π个单位后再作关于x 轴对称的曲线,得到函数x y 2sin 21-=的图象,则)(x f 的表达式是 ( )(A )x cos (B )x cos 2 (C )x sin (D )x sin 2 (5)B 提示: 212sin cos 2y x x =-=的图象关于x 轴对称的曲线是cos 2y x =-,向左平移4π得cos 2()sin 24y x x π=-+=2sin cos x x =[例2]已知函数2()2cos 2,(01)f x x x ωωω=+<<其中,若直线3x π=为其一条对称轴。

三角函数的图像的变换

三角函数的图像的变换

三角函数的图像的变换1.已知函数f(x)=sin(2x﹣),则要得到函数g(x)=sin2x的图象,只需将函数f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位2.将函数y=sin4x的图象向左平移个单位,得到y=sin(4x+φ)的图象,则φ等于()A.B.C.D.3.将函数y=2cos2x的图象向左平移个单位长度,则平移后新函数图象的对称轴方程为()A.x=﹣+(k∈Z)B.x=﹣+(k∈Z)C.x=+(k∈Z)D.x=+(k∈Z)4.将函数f(x)=sin2x+cos2x的图象上的所有点向右平移个单位长度,得到函数g(x)的图象,则g(x)图象的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(,0)5.函数g(x)的图象是函数f(x)=sin2x﹣cos2x的图象向右平移个单位而得到的,则函数g(x)的图象的对称轴可以为()A.直线x=B.直线x=C.直线x=D.直线x=6.将函数f(x)=sin(πx+)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图象上所有的点向右平移1个单位,得到函数g(x)的图象,则函数g(x)的单调递减区间是()A.[2k﹣1,2k+2](k∈Z)B.[2k+1,2k+3](k∈Z)C.[4k+1,4k+3](k∈Z)D.[4k+2,4k+4](k∈Z)7.已知f(x)=sin(ωx+)(ω>0)的图象与y=﹣1的图象的相邻两交点间的距离为π,要得到y=f(x)的图象,只需把y=cos2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位8.将函数图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移个单位得到函数g(x)的图象,在g(x)图象的所有对称轴中,离原点最近的对称轴方程为()A.B.C.D.9.把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为.10.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=.11.把函数的图象向右平移φ个单位,所得的图象正好关于y轴对称,则φ的最小正值为.12.已知函数f(x)=sin(ωx+φ)(ω>0),若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则ω的最小值为.13.已知函数f(x)=sin(2x+)+cos(2x﹣),x∈R.(1)求f(x)的最小正周期;(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)的图象,求函数y=g(x)的单调递增区间.14.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.15.已知函数f (x )=sin(2x+)+cos(2x+)+2sin x cos x.(Ⅰ)求函数f (x)图象的对称轴方程;(Ⅱ)将函数y=f (x)的图象向右平移个单位,再将所得图象上各点的横坐标伸长为原来的4 倍,纵坐标不变,得到函数y=g (x)的图象,求y=g (x)在[,2π]上的值域.16.已知函数f(x)=1+2sinxcosx﹣2sin2x,x∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若把f(x)向右平移个单位得到函数g(x),求g(x)在区间[﹣,0]上的最小值和最大值.三角函数的图像的变换参考答案与试题解析一.选择题(共8小题)1.已知函数f(x)=sin(2x﹣),则要得到函数g(x)=sin2x的图象,只需将函数f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【解答】解:g(x)=sin2x=sin[2(x+)﹣],要得到函数g(x)=sin2x的图象,只需将函数f(x)的图象向左平移个单位即可,故选:C.2.将函数y=sin4x的图象向左平移个单位,得到y=sin(4x+φ)的图象,则φ等于()A. B. C.D.【解答】解:函数y=sin4x的图象向左平移个单位,得到的图象,就是y=sin(4x+φ)的图象,故故选:C.3.将函数y=2cos2x的图象向左平移个单位长度,则平移后新函数图象的对称轴方程为()A.x=﹣+(k∈Z)B.x=﹣+(k∈Z)C.x=+(k∈Z)D.x=+(k∈Z)【解答】解:函数y=2cos2x的图象向左平移个单位长度,可得y=2cos2(x+)=2cos(2x+),由余弦函数的性质:可得2x+=kπ,∴x=,k∈Z.故选:A.4.将函数f(x)=sin2x+cos2x的图象上的所有点向右平移个单位长度,得到函数g(x)的图象,则g(x)图象的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(,0)【解答】解:将函数f(x)=sin2x+cos2x=2(sin2x+sin2x)=2sin(2x+)图象上所有点向右平移个单位长度,得到函数g (x)=2sin2x的图象,令2x=kπ,求得x=,k∈Z,令k=1,可得g(x)图象的一个对称中心为(,0),故选:D.5.函数g(x)的图象是函数f(x)=sin2x﹣cos2x的图象向右平移个单位而得到的,则函数g(x)的图象的对称轴可以为()A.直线x=B.直线x=C.直线x=D.直线x=【解答】解:∵f(x)=sin2x﹣cos2x=2sin(2x﹣),∴向右平移个单位而得到g(x)=2sin[2(x﹣)﹣]=﹣2cos2x,∴令2x=kπ,k∈Z,可解得x=,k∈Z,k=1时,可得x=,故选:C.6.将函数f(x)=sin(πx+)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图象上所有的点向右平移1个单位,得到函数g(x)的图象,则函数g(x)的单调递减区间是()A.[2k﹣1,2k+2](k∈Z)B.[2k+1,2k+3](k∈Z)C.[4k+1,4k+3](k∈Z)D.[4k+2,4k+4](k∈Z)【解答】解:将函数f(x)=sin(+πx)=cosπx 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=cos(πx)图象;再把图象上所有的点向右平移1个单位,得到函数g(x)=cos[π(x﹣1)]═cos(πx﹣)=sin(πx)的图象.令2kπ+≤x≤2kπ+,求得4k+1≤x≤4k+3,k∈Z,可得函数g(x)的单调递减区间是[4k+1,4k+3](k∈Z,故选:C.7.已知f(x)=sin(ωx+)(ω>0)的图象与y=﹣1的图象的相邻两交点间的距离为π,要得到y=f(x)的图象,只需把y=cos2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【解答】解:∵f(x)=sin(ωx+)(ω>0)的图象与y=﹣1的图象的相邻两交点间的距离为π,∴f(x)=sin(ωx+)的周期T=π,又ω>0,T==π,∴ω=2;∴f(x)=sin(2x+).令g(x)=cos2x=sin(2x+),则g(x)=sin(2x+)g(x﹣)=sin[2(x﹣)+)]=sin(2x+)=f(x),∴要想得到f(x)=sin(2x+)的图象,只需将y=g(x)=cos2x=sin(2x+)的图象右平移个单位即可.故选:B.8.将函数图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移个单位得到函数g(x)的图象,在g(x)图象的所有对称轴中,离原点最近的对称轴方程为()A.B.C.D.【解答】解:将函数图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,得到y=2sin(4x+),再将所得图象向左平移个单位得到函数g(x)的图象,得到g(x)=2sin[4(x+)+]=2sin(4x+),由4x+=+kπ,k∈Z,得x=kπ﹣,k∈Z,当k=0时,离原点最近的对称轴方程为x=﹣,故选:A.二.填空题(共4小题)9.把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为y=cosx.【解答】解:把函数y=sin2x的图象向左平移个单位长度,得,即y=cos2x的图象,把y=cos2x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx的图象;故答案为:y=cosx.10.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=.【解答】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T=2×(﹣)=2π.所以ω=1,所以f(x)=sin(x+φ),故+φ=+kπ,k∈Z,所以φ=+kπ,k∈Z,又因为0<φ<π,所以φ=,故答案为:11.把函数的图象向右平移φ个单位,所得的图象正好关于y轴对称,则φ的最小正值为.【解答】解:把函数的图象向右平移φ个单位可得函数y==的图象,若所得的图象正好关于y轴对称,则=+kπ,k∈Z,解得:φ=+kπ,k∈Z,当k=1时,φ的最小正值为;故答案为:.12.已知函数f(x)=sin(ωx+φ)(ω>0),若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则ω的最小值为4.【解答】解:函数f(x)=sin(ωx+φ)(ω>0),把f(x)的图象向左平移个单位所得的图象为y=sin[ω(x+)+φ]=sin(ωx++φ),把f(x)的图象向右平移个单位所得的图象为y=sin[ω(x﹣)+φ]=sin(ωx﹣+φ),根据题意可得,y=sin(ωx++φ)和y=sin(ωx﹣+φ)的图象重合,故+φ=2kπ﹣+φ,求得ω=4k,故ω的最小值为4,故答案为:4.三.解答题(共4小题)13.已知函数f(x)=sin(2x+)+cos(2x﹣),x∈R.(1)求f(x)的最小正周期;(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)的图象,求函数y=g(x)的单调递增区间.【解答】解:(1)∵函数f(x)=sin(2x+)+cos(2x﹣)=sin2x•cos+cos2xsin+cos2xcos+sin2xsin=sin2x+cos2x=2sin(2x+),∴f(x)的最小正周期为=π.(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)=2sin(2x++)=2cos(2x+)的图象,令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,可得函数g(x)的增区间为[kπ﹣,kπ﹣],k∈Z.14.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.15.已知函数f (x )=sin(2x+)+cos(2x+)+2sin x cos x.(Ⅰ)求函数f (x)图象的对称轴方程;(Ⅱ)将函数y=f (x)的图象向右平移个单位,再将所得图象上各点的横坐标伸长为原来的4 倍,纵坐标不变,得到函数y=g (x)的图象,求y=g (x)在[,2π]上的值域.【解答】解:(Ⅰ)∵f (x )=sin(2x+)+cos(2x+)+2sinxcosx=sin2x+cos2x+cos2x﹣sin2x+sin2x=cos2x+sin2x=2sin(2x+),∴令2x+=kπ+,k∈Z,解得函数f (x)图象的对称轴方程:x=+,k∈Z,(Ⅱ)将函数y=f (x)的图象向右平移个单位,可得函数解析式为:y=2sin[2(x﹣)+]=2sin (2x+),再将所得图象上各点的横坐标伸长为原来的 4 倍,纵坐标不变,得到函数解析式为:y=g (x)=2sin (+),∵x∈[,2π],∴+∈[,],可得:sin(+)∈[﹣,1],∴g (x)=2sin(+)∈[﹣1,2].16.已知函数f(x)=1+2sinxcosx﹣2sin2x,x∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若把f(x)向右平移个单位得到函数g(x),求g(x)在区间[﹣,0]上的最小值和最大值.【解答】解:(Ⅰ)∵函数f(x)=1+2sinxcosx﹣2sin2x=sin2x+cos2x=2sin(2x+),(Ⅰ)令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数f(x)的单调增区间为[kπ﹣,kπ+],k∈Z;令2kπ+≤2x+≤2kπ+,求得kπ+≤x≤kπ+,可得函数f(x)的单调减区间为[kπ+,kπ+],k∈Z.(Ⅱ)若把函数f(x)的图象向右平移个单位得到函数g(x)=2sin[2(x﹣)+]=2sin(2x﹣)的图象,∵x∈[﹣,0],∴2x﹣∈[﹣,﹣],∴sin(2x﹣)∈[﹣1,],∴g(x)=2sin(2x﹣)∈[﹣2,1].故g(x)在区间上的最小值为﹣2,最大值为1.。

三角函数图象的平移伸缩变换问题

三角函数图象的平移伸缩变换问题
三角函数图象的平移伸缩变换问题
【典例】(2015·青岛模拟)把函数y=sin(3x- )的图象向左平移 4 3
个单位长度,再把所得图象上各点的横坐标扩大为原来的2倍(纵坐标
不变),则所得函数的解析式为(
A.y=sin(6x+ )
12 C.y=sin( 3 x+ ) 12 2
)
4
B.y=sin(6x+ 3 )
D.y=sin( 3 x 3 )
2 4
【解题过程】
【错解分析】分析上面解题过程,你知道错在哪里吗? 提示:解题过程中没能正确理解左右平移的实质,平移后误得函数解 析式为y=sin(3x+ );另外对横向的伸缩变换理解不到位,误得函
12
数解析式为y=sin(6x+
). 12
【规避策略】正确理解函数图象的平移变换和伸缩变换 (1)图象的左右平移是针对单个x而言的. (2)图象的伸缩变换,在变换中纵坐标不变,横坐标伸长,周期变大, x的系数缩小,反之,横坐标缩短,周期变小,x的系数扩大,即横坐 标变为原来的ω 倍,则x的系数相应变为原来的
1 .
【自我矫正】选D.把函数y=sin(3x- )的图象向左平移 个单位长
度,可得y=sin[3(x+ )- ]的图象, 4 即函数解析式为y=sin(3x+ 3 ), 4 3 4 3
再把所得图象上各点的横坐标扩大为原来的2倍(纵坐标不变),
ቤተ መጻሕፍቲ ባይዱ
可得y=sin( 3 x 3 )的图象.
即所得函数的解析式为y=sin( 3 x 3 ).
2 4 2 4

高二数学三角函数图象变换试题答案及解析

高二数学三角函数图象变换试题答案及解析

高二数学三角函数图象变换试题答案及解析1.函数的图象向左平移个单位, 再向上平移1个单位,所得图象的函数解析式是()A.B.C.D.【答案】D【解析】将函数的图象向左平移个单位, 得到再向上平移1个单位,得到,所得图象的函数解析式是,故选D.【考点】三角恒等变换.2.将函数的图像向左平移个单位,再向上平移1个单位,所得图像的函数解析式是()A.B.C.D.【答案】B【解析】函数y=sin2x的图象向左平移个单位得y=sin(2x+),再向上平移1个单位得y=sin(2x+)+1=1+cos2x=2cos2x,故答案为:y=2cos2x.【考点】函数y=Asin(ωx+φ)的图象变换.3.为了得到函数的图象,可以将函数的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】B【解析】,所以为了得到函数的图象,可以将函数的图象向右平移个单位长度,故选B.【考点】函数y=Asin(ωx+φ)的图象变换.4.为了得到函数的图像,只需把函数的图像()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【答案】D【解析】三角函数的左右平移就是x的值的变化,相应y值的变化.所以要将函数中的x变为,就可得函数,所以图像是向右平移了个单位.即选D.【考点】三角函数图像的平移.5.已知为锐角,且,则=_________.【答案】【解析】因为,为锐角,且,所以,。

=。

【考点】三角函数诱导公式,两角和的三角函数,特殊角的三角函数值。

点评:简单题,利用三角函数公式,转化成特殊角的三角函数值。

关键是注意变角。

6.如图是函数在区间上的图像,为了得到这个函数的图象,只要将的图象上所有的点A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A【解析】观察函数的图象可知,A=1,T=π,即,将(,0)代入得,,取,,故只要将的图象上所有的点向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数图像的平移、变换练习题
1、为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6
y x π=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4
π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2
π个长度单位 2、将函数sin y x =的图像上所有的点向右平行移动10
π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是
(A )sin(2)10y x π=- (B )sin(2)5
y x π=- (C )1sin()210y x π=- (D )1sin()220
y x π=- 5y Asin x x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦
右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的( )
(A)向左平移
3π个单位长度,再把所得各点的横坐标缩短到原来的12
倍,纵坐标不变 (B) 向左平移3
π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
(C) 向左平移
6
π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 4、若将函数()tan 04y x πωω⎛
⎫=+> ⎪⎝⎭的图像向右平移6
π个单位长度后,与函数tan 6y x πω⎛⎫=+ ⎪⎝
⎭的图像重合,则ω的最小值为( ) A .16 B. 14 C. 13 D. 12
5、已知函数()sin()(,0)4f x x x R π
ϖϖ=+∈>的最小正周期为π,为了得到函数
()cos g x x ϖ=的图象,只要将()y f x =的图象( )
A 向左平移8π个单位长度
B 向右平移8
π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度6、为了得到函数y=x x x cos sin 3sin 2+的图象,可以将函数y=sin2x 的图象( ) A.向左平移6π
个单位长度,再向下平移21
个单位长度
B.向右平移6π
个单位长度,再向上平移21
个单位长度
C.向左平移12π
个单位长度,再向下平移21
个单位长度
D.向右平移12π个单位长度,再向上平移21
个单位长度
7、为得到函数cos(2)3y x π
=+的图象,只需将函数sin 2y x =的图象(
) A .向左平移512π
个长度单位 B .向右平移512π
个长度单位 C .向左平移56π
个长度单位 D .向右平移56π
个长度单位
8、)33sin(32)(π
ω+=x x f (ω>0)
(1)若f (x +θ)是周期为2π的偶函数,求ω及θ值
(2)f (x )在(0,3π
)上是增函数,求ω最大值。

相关文档
最新文档