三角函数图象的平移和伸缩

合集下载

三角函数的基本变换

三角函数的基本变换

三角函数的基本变换三角函数是数学中的重要内容,在数学、物理、工程等领域都有广泛的应用。

而三角函数的基本变换是理解和应用三角函数的基础。

本文将介绍三角函数的基本变换,包括正弦函数、余弦函数和正切函数的平移、伸缩和反射三种变换。

一、正弦函数的基本变换正弦函数的标准公式为:y = A*sin(Bx + C) + D,其中A、B、C、D 为常数,且A不等于0。

对于正弦函数的基本变换,可以通过调整A、B、C、D的值来实现平移、伸缩和反射。

1. 平移平移是指将函数图像沿x轴或y轴方向移动。

当C为正数时,正弦曲线向左平移;当C为负数时,正弦曲线向右平移。

平移的距离由C的绝对值决定,绝对值越大,平移的距离越远。

2. 伸缩伸缩是指将函数图像在x轴或y轴方向进行拉伸或压缩。

当A的绝对值变大时,正弦曲线在y轴方向上的振幅增大,即拉伸;当A的绝对值变小时,正弦曲线的振幅减小,即压缩。

当B的绝对值变大时,正弦曲线在x轴方向上的周期变短,即拉伸;当B的绝对值变小时,正弦曲线的周期变长,即压缩。

3. 反射反射是指将函数图像关于x轴或y轴进行翻转。

当A为负数时,正弦曲线关于x轴进行翻转;当B为负数时,正弦曲线关于y轴进行翻转。

二、余弦函数的基本变换余弦函数的标准公式为:y = A*cos(Bx + C) + D,其中A、B、C、D为常数,且A不等于0。

余弦函数的基本变换与正弦函数类似,分为平移、伸缩和反射三种变换。

1. 平移余弦函数的平移与正弦函数相同,通过调整C的值来实现。

当C为正数时,余弦曲线向左平移;当C为负数时,余弦曲线向右平移。

2. 伸缩余弦函数的伸缩与正弦函数类似,通过调整A和B的值来实现。

当A的绝对值变大时,余弦曲线在y轴方向上的振幅增大,即拉伸;当A 的绝对值变小时,余弦曲线的振幅减小,即压缩。

当B的绝对值变大时,余弦曲线在x轴方向上的周期变短,即拉伸;当B的绝对值变小时,余弦曲线的周期变长,即压缩。

3. 反射余弦函数的反射与正弦函数类似,通过调整A的值来实现。

三角函数中的平移与伸缩变换

三角函数中的平移与伸缩变换

三角函数中的平移与伸缩变换三角函数是数学中的重要概念之一,通过平移和伸缩变换可以对三角函数图像进行调整和变化。

本文将探讨三角函数中的平移与伸缩变换,并说明它们对函数图像的影响。

一、平移变换平移变换是指将函数图像沿着坐标轴平行移动的过程。

在三角函数中,平移变换会改变函数的水平位置。

具体而言,对于三角函数y = f(x),平移变换可以表示为y = f(x ± b),其中b为平移量。

1. 正弦函数的平移变换正弦函数y = sin(x)在平移变换下,可以写作y = sin(x ± b)。

当b为正值时,图像向左平移;当b为负值时,图像向右平移。

平移量b的绝对值越大,图像平移的距离越远。

2. 余弦函数的平移变换余弦函数y = cos(x)的平移变换形式为y = cos(x ± b)。

与正弦函数类似,当b为正值时,图像向左平移;当b为负值时,图像向右平移。

平移量b的绝对值越大,图像平移的距离越远。

3. 正切函数的平移变换正切函数y = tan(x)在平移变换下,可以写作y = tan(x ± b)。

与正弦函数和余弦函数不同,正切函数的平移变换会导致图像的水平拉伸与压缩。

当b为正值时,图像向左平移;当b为负值时,图像向右平移。

平移量b的绝对值越大,图像平移的距离越远。

二、伸缩变换伸缩变换是指将函数图像在x轴或y轴上进行拉伸或压缩的过程。

在三角函数中,伸缩变换会改变函数图像的形状和振幅。

具体而言,对于三角函数y = f(x),伸缩变换可以表示为y = af(bx),其中a为纵向伸缩因子,b为横向伸缩因子。

1. 正弦函数的伸缩变换正弦函数y = sin(x)在伸缩变换下,可以写作y = a sin(bx)。

纵向伸缩因子a决定了函数图像的振幅,a越大,则振幅越大;a越小,则振幅越小。

横向伸缩因子b决定了函数图像的周期,b越大,则周期越短;b越小,则周期越长。

2. 余弦函数的伸缩变换余弦函数y = cos(x)的伸缩变换形式为y = a cos(bx)。

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩

3得 y =A sin(x +)的图象⎯向⎯上平(⎯移kk⎯个)或单向⎯位下长⎯(k度⎯)→ 得 y = A sin(x +)+k 的图象.y = sin x纵坐标不变横坐标向左平移 π/3 个单位 纵坐标不变 横坐标缩短 为原来的1/2y = sin(x + )y = sin(2 x + )横坐标不变纵坐标伸长为原 来的3倍先伸缩后平移纵坐标伸长(A 1)或缩短(0A 1)y =sin x 的图象 ⎯⎯⎯⎯⎯⎯⎯⎯⎯→y = 3sin(2x +三角函数图象的平移和伸缩函数y = A sin(x +) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A ,,,k 来相互转 化. A ,影响图象的形状,,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由引起的变 换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左(>0)或向右(0)y = sin x 的图象⎯⎯平⎯移⎯个单⎯位长⎯度⎯→得 y = sin(x +)的图象横坐标伸长(0<<1)或缩短(>1)到原来的1(纵坐标不变)得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0<A <1) 为原来的A 倍(横坐标不变)横坐标伸长(01)或缩短(1)⎯⎯⎯⎯⎯⎯⎯⎯→ 到原来的1(纵坐标不变)向左(0)或向右(0)得 y = A sin(x ) 的图象 ⎯⎯⎯平移⎯个⎯单位⎯⎯→得 y = A sin x (x +)的图象⎯⎯平⎯移k ⎯个单⎯位长⎯度⎯→得 y = A sin(x +)+k 的图象.纵坐标不变 y = sin x横坐标缩短 为原来的1/2 纵坐标不变 横坐标向左平移 π/6 个单位横坐标不变y = 3sin(2x + )纵坐标伸长为原 3来的3倍例1 将y = sin x 的图象怎样变换得到函数y = 2sin2x + π+1的图象.解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π的图象;②将所得 图象的横坐标缩小到原来的1,得y =sin2x +π的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin2x + π的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2x + π的2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.得 y = A sin x 的图象y = sin2 xy = sin(2x + )说明:无论哪种变换都是针对字母x 而言的.由y =sin2x 的图象向左平移8π个单位长度得到的函数图象 的解析式是y = sin 2 x + π 而不是y = sin 2x + π ,把y = sin x + π 的图象的横坐标缩小到原来的1 ,得到 的函数图象的解析式是y = sin 2x + π 而不是y = sin 2 x + π .对于复杂的变换,可引进参数求解.例2 将y =sin2x 的图象怎样变换得到函数 y = cos 2x - π的图象.分析:应先通过诱导公式化为同名三角函数.=cos 2x -2a - π = cos 2 -2 - 2根据题意,有 2 x - 2a - π = 2 x - π ,得 a =-π .24 8 所以将y = sin 2x 的图象向左平移π 个单位长度可得到函数y = cos 2x - π 的图象.解: 有y = cos2( x - a ) - π y = sin2 x = cos在y =中以 x - a 代 x ,。

三角函数的伸缩变换与平移变换

三角函数的伸缩变换与平移变换

三角函数的伸缩变换与平移变换嘿,你们知道吗,三角函数其实还挺有意思的呢。

它们可以通过
伸缩变换和平移变换,变得更加灵活多变。

就好比我们平时的生活一样,有时候也需要做些变化才能更加精彩呢。

哎呀,伸缩变换就是把三角函数的图像按照一定的比例进行伸缩,就好像我们自己的身高一样。

有时候我们想变得更高更远一些,就需
要做一下伸缩变换嘛。

这样一来,三角函数的图像就可以变得更高或
者更矮,更宽或者更窄了。

咦,平移变换和伸缩变换不太一样哦。

它是把三角函数的图像沿
着坐标轴水平或者垂直方向进行移动,就好像我们在空间中移动一样。

有时候我们想要到达不同的地方,就需要做一下平移变换。

这样一来,三角函数的图像就可以在坐标轴上来回移动了。

唉呦,你们知道吗,这些伸缩变换和平移变换其实也可以帮助我们更好地理解三角函数的特点。

就好像我们在生活中需要不断调整自己的状态一样,三角函数也可以通过这些变换,变得更加灵活和多样化。

嗨,如果你们对三角函数感兴趣的话,不妨也尝试一下图像的变换,也许会有意想不到的收获呢。

就好比我们平时生活中,经历一些变化之后,也会找到更多新的乐趣和意义一样。

三角函数的伸缩平移变换

三角函数的伸缩平移变换

2014-05课堂内外在三角函数的平移变换中,我们经常会有这样的疑问:(1)函数y =sin x 的图象向左平移π6个单位得到函数y =sin(x+π6)的图象,再把横坐标缩短为原来的12,得到函数y =sin [2(x +π6)]还是函数y =sin (2x +π6)的图象?(2)函数y =sin x 的图象横坐标缩短为原来的12,得到函数y =sin2x 的图象,再把图象向左平移π6个单位,得到函数y =sin [2(x +π6)]还是函数y =sin (2x +π6)的图象?之所以出现这样的疑问,是没有抓住三角函数y =A sin (ωx +φ)+b 伸缩平移的本质.我们可大致归纳为以下四种变化.一、左右平移四个字“左加右减”,这是大家熟知的,但要注意变化的位置是“x ”而不是“φ”.把y =A sin (ωx +φ)+b 的图象向左平移m (m >0)个单位,得到的是函数y =A sin [ω(x +m )+φ]+b 的图象;把y =A sin (ωx +φ)+b 的图象向右平移m (m >0)个单位,得到的是函数y =A sin[ω(x -m )+φ]+b 的图象.所以函数y =sin x 的图象向左平移π6个单位得到的是函数y =sin (x +π6)的图象,函数y =sin2x 的图象向左平移π6个单位,得到的是函数y =sin [2(x +π6)],即y =sin (2x +π6)的图象.二、上下平移四个字“上加下减”,注意变化的位置是“b ”.把y =A sin (ωx +φ)+b 的图象向上平移n (n >0)个单位,得到的是函数y =A sin (ωx +φ)+(b+n )的图象;把y =A sin (ωx +φ)+b 的图象向下平移n (n >0)个单位,得到的是函数y =A sin (ωx +φ)+(b-n )的图象.三、横坐标伸缩两个字“反比”,注意变化的位置是“ω”.把y =A sin (ωx +φ)+b图象的横坐标变为原来的p 倍,得到的是函数y =A sin (ωp x +φ)+b的图象.四、纵坐标伸缩两个字“正比”,注意变化的位置是“A ”.把y =A sin (ωx +φ)+b 图象的纵坐标变为原来的q 倍,得到的是函数y =qA sin (ωx +φ)+b 的图象.例1.把y =sin (x+π3)横坐标缩短为原来的12,得到的图象,再把图象向右平移π6个单位,得到的图象,再把纵坐标缩短为原来的12,得到的图象.分析:变换如下:y =sin (x+π3→y =sin (2x+π3)→y =sin [2(x -π6)+π3],即y =sin2x →y =12sin2x .例2.把函数y =A sin (ωx +φ)(A >0,ω>0)的图象向左平移π3个单位,再使其图象上每个点的横坐标缩短到原来的13(纵坐标不变),得到的图象对应的函数为y =2sin (2x-π3,则原函数的解析式为()A.y =2sin (23x-π9)B.y =2sin (23x-2π3)C.y =2sin (23x-5π9)D.y =2sin (6x-7π3)分析:从正面分析,因含有未知数,较为复杂,我们可从反面入手:由y =2sin (2x-π3)变换到原函数y =A sin (ωx +φ),把变换顺序逆过去:先把横坐标伸长为原来的3倍,再把图象向右平移π3个单位.变换如下:y =2sin (2x-π3)→y =2sin (23x-π3)→y =2sin [23(x-π3)-π3],即y =2sin (23x-5π9),故选C.(作者单位山东省淄博第四中学)•编辑韩晓三角函数的伸缩平移变换文/张强对陶渊明有了一些了解,知道他洁身自好、与众不同的特点。

三角函数的变换与性质

三角函数的变换与性质

三角函数的变换与性质三角函数是数学中常见的一类函数,它们在数学和物理等领域有着重要的应用。

本文将介绍三角函数的变换与性质,以帮助读者更好地理解和应用这些函数。

一、正弦函数的变换与性质正弦函数可以表示为f(x) = sin(x),其图像是一个周期性的波形。

正弦函数的变换包括平移、伸缩和翻转等操作。

1. 平移:当正弦函数的自变量加上一个常数c时,函数图像将向左平移c个单位。

例如,f(x) = sin(x + π/2)的图像将向左平移π/2个单位。

2. 伸缩:当正弦函数的自变量乘以一个常数a时,函数图像将在x轴方向上缩放。

若a>1,则图像纵向压缩;若0<a<1,则图像纵向拉伸。

3. 翻转:当正弦函数的自变量乘以-1时,函数图像将在y轴方向上翻转。

即f(x) = sin(-x)的图像将关于y轴对称。

正弦函数的性质有:1. 周期性:正弦函数的图像以x轴为对称轴,其周期为2π。

即sin(x + 2π) = sin(x)。

2. 奇偶性:正弦函数是一个奇函数,即f(-x) = - f(x)。

这意味着正弦函数的图像关于原点对称。

二、余弦函数的变换与性质余弦函数可以表示为f(x) = cos(x),它与正弦函数是相互关联的。

余弦函数的变换与正弦函数类似,也包括平移、伸缩和翻转等操作。

1. 平移:当余弦函数的自变量加上一个常数c时,函数图像将向左平移c个单位。

例如,f(x) = cos(x + π/2)的图像将向左平移π/2个单位。

2. 伸缩:当余弦函数的自变量乘以一个常数a时,函数图像将在x轴方向上缩放。

若a>1,则图像纵向压缩;若0<a<1,则图像纵向拉伸。

3. 翻转:当余弦函数的自变量乘以-1时,函数图像将在y轴方向上翻转。

即f(x) = cos(-x)的图像将关于y轴对称。

余弦函数的性质有:1. 周期性:余弦函数的图像以x轴为对称轴,其周期为2π。

即cos(x + 2π) = cos(x)。

三角函数变换公式

三角函数变换公式

三角函数变换公式三角函数是初等数学中的重要概念,在许多数学和科学领域中都有广泛的应用。

在三角函数中,最常见的函数包括正弦函数、余弦函数和正切函数,它们都具有周期性和较为规律的变化。

然而,在实际应用中,有时我们需要对三角函数进行一些变换,以适应特定的需求。

这些变换包括平移、伸缩和反转等操作,可以使得函数图像更加灵活和有用。

一、平移变换平移变换是指在函数图像中将其整个图像沿横轴或纵轴方向平移一定距离。

平移变换可以改变函数图像的位置,使其整体向左或向右移动,或者向上或向下移动。

1.横向平移:设函数f(x)的图像为y=f(x),将其沿横轴方向平移h个单位,得到函数g(x)=f(x-h)。

根据平移的定义,可知g(x)的图像在x轴上的任意点P(x,y)的坐标变为P(x+h,y)。

因此,横向平移后的函数g(x)相当于在f(x)的图像上每个点向右平移h个单位。

2.纵向平移:设函数f(x)的图像为y=f(x),将其沿纵轴方向平移k个单位,得到函数g(x)=f(x)+k。

根据平移的定义,可知g(x)的图像在y轴上的任意点P(x,y)的坐标变为P(x,y+k)。

因此,纵向平移后的函数g(x)相当于在f(x)的图像上每个点向上平移k个单位。

二、伸缩变换伸缩变换是指将函数图像在横轴或纵轴方向进行拉伸或压缩。

伸缩变换可以改变函数图像的形状和走向,使其更加符合实际情况或数学要求。

1.横向伸缩:设函数f(x)的图像为y=f(x),将其沿横轴方向进行伸缩,得到函数g(x)=f(kx)。

根据伸缩的定义,可知g(x)的图像在x轴上的任意点P(x, y)的坐标变为P(x/k, y)。

因此,横向伸缩后的函数g(x)相当于在f(x)的图像上每个点的横坐标缩小k倍。

2.纵向伸缩:设函数f(x)的图像为y=f(x),将其沿纵轴方向进行伸缩,得到函数g(x)=kf(x)。

根据伸缩的定义,可知g(x)的图像在y轴上的任意点P(x, y)的坐标变为P(x, ky)。

三角函数图象的平移和伸缩(后面有高考题练习)

三角函数图象的平移和伸缩(后面有高考题练习)

三角函数图象的平移和伸缩函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.sin y x =2sin 214y x =++ ⎪⎝⎭解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原1π⎛⎫π⎛⎫x+)﹣sin2x+、向左平移个单位个单位个单位个单位按向量A 、B 、C 、D 、3、将函数的图象按向量平移,得到y=f (x )的图象,则f (x )=( )A 、B 、C 、D 、sin (2x )+34、把函数y=(cos3x﹣sin3x)的图象适当变化就可以得到y=﹣sin3x的图象,这个变化可以是()A、沿x轴方向向右平移B、沿x轴方向向左平移C、沿x轴方向向右平移D、沿x轴方向向左平移5、为了得到函数y=的图象,可以将函数y=sin2x的图象()A、向右平移个单位长度B、向右平移个单位长度倍(纵坐标不变),然后个单位,则所得到图象对应的函数解析式为(、、、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数图象的平移和伸缩
函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩
sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度
得sin()y x ϕ=+的图象()ωωω
−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()
A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度
得sin()y A x k ϕ=++的图象.
先伸缩后平移
sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)
得sin y A x =的图象(01)(1)1()ωωω
<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位
得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度
得sin()y A x k ωϕ=++的图象.
x y sin =)3sin(π+=x y )32sin(π+=x y )32sin(3π+=x y 纵坐标不变
横坐标向左平移
π/3 个单位
纵坐标不变
横坐标缩短
为原来的1/2
横坐标不变
纵坐标伸长为原
来的3倍
例1 将sin y x =的图象怎样变换得到函数π2sin 214
y x ⎛⎫=++ ⎪⎝⎭的图象. 解:(方法一)①把sin y x =的图象沿x 轴向左平移π4
个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝
⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝
⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214
y x ⎛⎫=++ ⎪⎝⎭的图象.
(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12
,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭
的图象;④最后把图象沿y 轴向上平移1个单位长度得到
π2sin 214y x ⎛⎫=++ ⎪⎝⎭的
图象.
)32sin(3π+=x y x y sin =x y 2sin =)32sin(π+=x y 纵坐标不变
横坐标缩短
为原来的1/2
纵坐标不变
横坐标向左平移
π/6 个单位
横坐标不变
纵坐标伸长为原
来的3倍
说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12
,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭
. 对于复杂的变换,可引进参数求解.
例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭
的图象. 分析:应先通过诱导公式化为同名三角函数. 解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭
, 在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭
. 根据题意,有ππ22224x a x --=-,得π8
a =-. 所以将
sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.。

相关文档
最新文档