充电系统工作原理及故障分析

合集下载

新能源汽车充电系统及其故障分析

新能源汽车充电系统及其故障分析

新能源汽车充电系统及其故障分析摘要:某车间汽车维修人员小王接到一张任务工作单:车主驾驶一辆比亚迪秦电动汽车时仪表显示剩余电量20%,就将车开到附近的充电站进行充电,但是插入充电枪后系统提示车载充电机与充电桩连接故障,重复操作了几次,均存在同样的问题。

如果你是小王,应该如何检修该故障?关键词:剩余电量、慢充故障、充电桩一、慢速充电系统的组成慢速充电系统通过慢速充电线束(家用慢速充电线束或充电桩慢速充电线束)与220 V 家用交流插座或交流充电桩相连给动力电池进行供电。

慢速充电系统将220 V 交流电转化为直流电,以实现对动力电池的电能补给。

慢速充电系统主要由供电设备(充电宝、慢充桩)、慢充口、慢充线束、车载充电机、高压控制盒和动力电池等组成。

1.供电设备慢速充电系统的供电设备主要是充电宝和慢充桩两种。

(1)充电宝(如图1)纯电动汽车的充电宝三相端接家用三相插座,另一端接车辆慢充口。

(2)慢充桩慢充桩是采用有线传输方式为具有车载充电机的纯电动汽车提供交流电能,提供人机操作界面和交流充电接口,并具备相应保护功能的专用装置。

慢充桩应用在各种大、中、小型纯电动汽车充电站,有便携式和壁挂式等类型,如图1 所示,其特点是充电功率较小,充电时间较长。

2.慢充口(如图1)慢充口适用于纯电动汽车传导充电使用,大多数位于传统汽车的油箱口位置。

打开充电盖后可以看到充电插头为7 孔式,其连接端口布置形式及端口针脚定义。

图13.慢充线束(1)慢充线束的作用及其安装位置慢充线束是连接慢充口与车载充电机之间的线束,其作用是将慢充桩输入的220 V 交流电输送到车载充电机。

慢充线束在实车上的安装位置。

(2)慢充线束两端的端口慢充线束的一端连接车载充电机交流输入端,其端口布置形式及端口针脚定义,慢充线束的另一端连接慢充口,端口针脚定义同慢充口端口针脚定义。

4.车载充电机(1)车载充电机的外观及端口车载充电机的作用是将输入的220 V 交流电转换为纯电动汽车动力电池所需的290 ~ 420 V 高压直流电,以实现动力电池电量的补给。

新能源汽车电池系统的故障分析与故障树分析

新能源汽车电池系统的故障分析与故障树分析

新能源汽车电池系统的故障分析与故障树分析新能源汽车的兴起带来了许多创新和颠覆,其中电池系统作为核心部件之一,对车辆性能和安全起着至关重要的作用。

然而,随着使用时间的增加,电池系统也会面临各种故障和问题。

本文将对新能源汽车电池系统的故障进行分析,并通过故障树分析方法提供一种系统化的故障排查和解决方案。

故障分析一:电池寿命衰减在新能源汽车使用过程中,电池会随着循环充放电和时间的推移而衰减,导致续航里程下降。

这可能是因为电池材料老化、电池内阻增加或电池管理系统故障等原因所致。

故障分析二:充电故障充电故障是新能源汽车电池系统常见的问题之一。

充电故障可能是由于充电器故障、充电插头接触不良或充电线路短路等原因引起。

采用故障树分析方法,可以将充电故障进一步细化为不同的故障模式,有助于快速定位故障点。

故障分析三:安全问题电池系统的安全问题一直是新能源汽车发展的瓶颈之一。

例如,过充、过放和过热都可能引发电池系统故障甚至火灾。

这些安全问题可能与电池管理系统失效、电池外部冲击或温度过高等因素有关。

故障分析四:电池均衡电池均衡是指电池包中各个单体电池之间充放电状态的差异。

若出现电池均衡问题,则容易导致电池系统的性能下降和寿命缩短。

电池均衡问题可能是由于充电不均衡、单体电池损坏或电池管理系统逻辑错误引起的。

故障树分析方法:故障树分析是一种系统性的故障分析方法,用于确定导致系统故障的基本事件和其关联关系。

它基于逻辑关系和事件的概率,通过构建逻辑树的方式,将故障事件分解为基本事件,从而找出故障原因。

在新能源汽车电池系统的故障树分析中,我们可以将电池寿命衰减、充电故障、安全问题和电池均衡作为顶事件,逐步分解为更加具体的子事件,直至找出最基本的故障原因。

通过故障树的构建,可以为故障排查提供清晰的思路和逻辑。

综上所述,新能源汽车电池系统的故障分析和故障树分析是解决故障和提升系统性能的关键步骤。

我们需要深入了解电池系统的工作原理和常见故障模式,并运用有效的分析方法,以确保新能源汽车的可靠性、安全性和稳定性。

2017 款比亚迪E5 纯电动车充电系统故障与排除

2017 款比亚迪E5 纯电动车充电系统故障与排除
关键词:新能源汽车;充电系统结构;常见故障排除
1 比亚迪电动汽车概述
比亚迪是中国新能源电动车的佼佼者, 近几年在新能源领域持续发力,为了抢占新 能源市场,技术研发等方面已经日渐成熟。 相对于其他欧美、日本等国家传统汽车多年 的研究和发展,我国想要超越可能性微乎其 微,新能源领域将是突破方向,加上混动版 领域日本、德国发达国家起步比中国又快, 掌握了国际先进技术形成了技术壁垒,而纯 电动汽车领域相对空白,因此想要实现我国 汽车行业弯道超车,纯电动领域将是一个突 破口。之前购买车你想到的会是价格、操控、 配置、空间方面,但是随着新能源汽车的横 空出世,或许大家伙儿关注的并不是只有价 格、操控了,更加关注是续航和充电问题。 我们来分析下新能源电动车的优点和缺点:
电机输出唤醒是否正常。 (3)DC/DC 转换器不工作 应检查连接器是否正常连接,检查高压
熔丝是否熔断,检查使能信号是否输入。 5.2 常见的慢充故障案例分析及诊断 下面以 2017 款比亚迪 E5 纯电动车为案例,
分析一种比较常见的故障现象:该辆汽车充电 枪与充电桩已经连接,仪表盘显示灯亮,但是 无法充电,并且该辆汽车是无其他故障。
优点:第一,排气近乎零污染,电池污 染问题随着发展可循环回收利用就可以实现 减少污染问题。第二,新能源汽车不限号, 目前广州、深圳等大城市一牌难求,通过摇 号的希望微乎其微,这也是政策的优势。第三, 省钱,传统汽车同样路程需要的费用比新能 源汽车要高很多。
缺点:第一,充电问题。现在国内充电 设施还不完善,虽然有充电桩补贴,但安装 和维修也是一大问题,公众场所充电桩的缺 乏严重影响了电动汽车的出行。加上目前大 多数充电桩只是慢充,充满需要 6 ~ 8h,如 果车主有急事弊端就无限放大。第二,续航 里程短。目前市面上大多数新能源汽车的续 航里程技术水平在 350Km 左右。由于我国国

纯电动汽车充电故障诊断与分析

纯电动汽车充电故障诊断与分析

纯电动汽车充电故障诊断与分析随着人们对环保和节能的重视,纯电动汽车逐渐成为了汽车市场的热门选择。

纯电动汽车相比传统燃油汽车具有零排放、低噪音和低运行成本等优点,深受广大消费者的青睐。

随之而来的充电问题也成为了纯电动汽车用户普遍关注的话题之一。

当纯电动汽车遇到充电故障时,不仅会影响用户的出行安排,还可能造成车辆无法正常使用。

对纯电动汽车充电故障进行诊断和分析,对解决充电问题、确保车辆正常运行具有极其重要的意义。

一、充电故障类型纯电动汽车的充电故障主要分为外部充电设备故障、车载充电系统故障、电池系统故障三大类。

1.外部充电设备故障:包括充电桩故障、充电连接线故障、电网供电故障等。

充电桩是纯电动汽车充电的关键设备之一,如果充电桩故障,会导致充电连接不上,车辆无法进行充电。

充电连接线和电网供电也是影响充电效果的因素,故障会直接影响充电速度和充电安全。

2.车载充电系统故障:车载充电系统包括充电插座、充电线束、充电控制器等部件。

当车载充电系统故障时,会导致充电插座无法正常使用,充电线束损坏或短路,充电控制器失效等问题,严重影响充电效果和安全。

3.电池系统故障:电池系统是纯电动汽车的动力来源,当电池故障时,会导致充电效率低下、充电速度慢甚至无法充电。

电池系统故障还可能导致充电过程中出现过载、过热等问题,严重影响车辆的安全性能。

二、充电故障诊断方法针对不同类型的充电故障,需要采取相应的诊断方法来快速准确地找出故障原因。

1.外部充电设备故障诊断:当纯电动汽车无法充电时,首先应检查充电桩和充电连接线是否正常。

如果发现充电桩故障,可以通过更换充电桩或者联系充电桩维修人员进行故障排查。

如果是充电连接线故障,可以尝试更换充电连接线来判断故障是否解决。

也需要注意检查电网供电是否正常,如果出现电网故障需要及时联系供电部门进行维修。

2.车载充电系统故障诊断:对于车载充电系统故障,可以通过检查充电插座是否损坏,充电线束是否出现断路或短路,充电控制器是否损坏等方式来诊断。

充电系统的原理

充电系统的原理

充电系统的原理
充电系统是指将电能转化为化学能储存起来的一套工艺、设备和传递方法。

其基本原理是使用电源将电能传导到充电器中,充电器通过一系列的转换和控制操作,将电能转化为适合储存的化学能,储存在充电电池中。

充电器中的电源主要负责提供电能。

电源可以是市电、太阳能电池板、燃料电池等,根据实际需求选择合适的电源。

电能在进入充电器后,通过变压器或变换器进行电压升降转换,使其适应充电电池的需要。

转换后的电能经过整流电路,将交流电转化为直流电,以供给充电电池充电。

为了保护充电电池不受过充或过放的危害,充电系统还配备了相应的电池管理电路。

这些管理电路利用电池特性、充电状态,控制充电电流和充电时间,以保证充电电池的安全和寿命。

在充电系统中,还可能用到温度传感器和电压传感器等装置,用于检测充电电池的温度和电压情况,以对充电系统进行监控和保护。

总之,充电系统的原理是利用电源将电能转化为适合储存的化学能,通过变换和控制操作将其储存在充电电池中,以供后续使用。

通过合适的管理电路和监测装置,保证充电电池的安全和寿命。

汽车发电机不充电的故障分析和应急处理

汽车发电机不充电的故障分析和应急处理
科 技 论 坛
・5
( 尔滨技 师 学 院 , 哈 黑龙 江 哈 尔滨 1 0 0 ) 50 0 摘 要: 汽车在 郊外长途行驶时 , 如何对汽车发 电机 充电 系统 突然不充 电作应急处理 , 是驾驶 员经常遇 到的棘手 问题。先就充 电系统 的组成 结构 以及工作原理进行介 绍, 着就 汽车发 电机不充 电的故障进行 分析 , 接 并提 出了一些应 急措施 。 关键词 : 汽车发 电机不充 电; 障分析 ; 故 应急 处理 1 汽 车 充 电 系统 的 组 成 结构 及工 作 原 理 汽车的充电系统主要是 由发 电机 、调节器 以及 蓄电池等组成 。 下面主要先就发电机充 电系统 的工作原理进行阐释。 1 发 电机 . 1 汽车的发电机是为车辆提供 电能的一种设备 。 汽车一般采用三 相交流硅整流发电机 , 由转 子总成 、 是 定子总成 、 整流器 、 前后端盖 、 风扇及皮带轮等组成的。转子 的作用是产生电磁场 , 磁场强度大小
( 内搭 铁 型 交流 发 电机 ( ) a ) b 外搭 铁 型 交 流发 电机
图 1
子磁场 的大小 , 进而稳定 发电机输 出电压 , 使发 电机 的输出电压稳
定 在 1.—1 . V之 间 。 38 42 1 蓄 电池 . 3
圈2内描 铁 变 骧 震 电 挂 蛙 鼍 圈
蓄电池的作用是在起动发动机时向起动机提供电能 , 发动机不 运转 的时候 向用 电器提供 电能 ,运 转时则存贮发 电机 所提供 的电 量, 并有一定的稳压作用 。 2汽车发电机不充电的故 障分析及应急处理 21发 电机的故障分析 . 若 汽车行驶时充 电指示灯亮 起来证 明了充电系统不充电 , 因 原 是 由于发 电机 、 调节器 或是线路 出现 了故 障 , 首先需确 定故障 的原 因。 首先 , 可检查是否是 由于皮带的松动或有油污而造成其打滑 , 使

新能源汽车充电系统及其故障分析

新能源汽车充电系统及其故障分析

新能源汽车充电系统及其故障分析随着环保意识的逐渐增强和科技的不断发展,新能源汽车作为清洁能源车辆的代表,正逐渐成为人们关注的焦点。

而新能源汽车的充电系统作为其核心组成部分之一,具有重要的意义。

本文将对新能源汽车充电系统及其可能出现的故障进行分析。

一、新能源汽车充电系统概述新能源汽车充电系统主要包括充电接口、智能充电桩、充电线路、电池以及控制器等部分。

充电接口是新能源汽车与外部充电桩连接的通道,智能充电桩则是提供电能输入输出的设备,充电线路负责传输电能,电池则是储存电能的关键组件,控制器则是调控整个充电系统运行的大脑。

这些组件密切配合,确保新能源汽车能够顺利充电,并实现高效稳定的充电效果。

二、充电系统可能出现的故障1. 充电接口故障充电接口作为新能源汽车与外部充电桩连接的关键部分,其故障将直接影响充电效果。

可能出现的问题包括接口接触不良、接线松动等,导致充电桩无法正常与汽车通信,影响充电的进行。

解决方法通常是及时清洁接口,检查接线是否牢固。

2. 智能充电桩故障智能充电桩是新能源汽车外部充电设备的核心,其故障会造成充电效率低下甚至无法充电的情况。

常见的故障包括断电、充电功率异常、充电功率无法调节等,这些问题可能是由于设备老化、电源问题等引起的。

解决方法一般是检查电源供应是否正常,如有异常及时更换设备。

3. 充电线路故障充电线路作为传输电能的关键通道,其故障将导致电能传输受阻,影响充电效果。

可能出现的问题包括线路老化、绝缘破损等,造成电能传输不畅。

解决方法是定期检查线路情况,如发现异常及时更换线路。

4. 电池故障电池是新能源汽车储存电能的关键组件,其故障将导致新能源汽车无法正常充电。

可能出现的问题包括电池内部损伤、容量下降等,造成储能能力减弱。

解决方法一般是及时更换电池。

5. 控制器故障控制器是新能源汽车充电系统的大脑,其故障将导致整个充电系统无法正常工作。

可能出现的问题包括控制器程序异常、通讯故障等,造成充电无法启动或无法停止。

汽车充电系统的故障分析与诊断

汽车充电系统的故障分析与诊断

汽车充电系统的故障分析与诊断随着电动汽车的普及,汽车的充电系统已成为其关键的部件之一,而充电系统也因此成为了车主们关注的重点。

然而,由于充电系统包括多个部件,类似于电池、电机、控制器、电子元件、电线、插头、充电桩等,一旦出现故障,诊断和维修都变得困难。

本文将分析汽车充电系统的故障分析与诊断方法,以帮助车主了解汽车充电系统的故障及其处理方法。

1. 故障分析汽车充电系统的故障原因较多,如电池损坏、插头接触不良、配件损坏、充电桩过载等。

不同种类故障的原因和表现是不同的。

如下图所示,对于不同的故障原因及其表现,我们需要采取不同的处理方法。

a. 电池故障电池故障常见于电缆连接不良、电极片触点损坏或老化、电池内部短路等。

当电池故障时,车辆充不了电甚至不能启动。

此时,需要通过检查电池的电压是否正常来判断故障原因。

如果电池电压正常,说明可能是电缆连接不良或插头接触不良,此时需要对电缆和插头进行检查和更换。

b. 充电桩故障充电桩故障最常见的原因是过载,其他因素还包括输电电源问题、充电桩本身损坏等。

当充电桩故障时,充电速度变慢甚至停止。

此时,需要检查充电桩的电源是否正常,并检查充电器是否正常工作。

如发现充电桩本身存在问题,则需要进行更换或维修。

c. 控制器故障控制器故障包括电子元件损坏、电路烧坏、接线不良等。

当控制器故障时,会导致充电状态异常、控制板亮灯异常、信号异常等。

需要对控制器进行检查和更换。

d. 电线、插头等故障电线、插头等配件故障通常是由于接触不良、接头松动、线路破损等原因引起。

当出现这种情况时,应检查所有连接点,查找损坏点,并进行维修或更换。

2. 诊断方法对充电系统进行诊断除了人工检查以外,还有一些专业的方法能更准确地检测和定位故障。

a. OBD检测方法OBD是车载故障诊断系统的缩写,它包括专门的硬件和软件,在车辆运行过程中随时检测车辆各个系统的状态,并记录错误代码。

当出现故障时,OBD会自动诊断问题,提供故障码和问题的详细信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随着国家政策的调整,新能源汽车越来越普遍,其中纯电动汽车就占据了很大的比例。

纯电动汽车的充电也逐渐成为大家关注的内容,为了使用方便,纯电动汽车一般配有2个充电口,即交流充电口(慢充)和直流充电口(快充),本文简要介绍了2种充电系统的接头端子含义,阐述了大致的充电过程,同时列出了充电系统常见故障及检修方法,谨供参考。

一、充电系统简介纯电动汽车充电系统可以分成2大部分,分别为充电设施主要包括充电桩、充电线束,和车载充电装置,包括车载充电器、高压控制盒、动力电池、DC/DC转换器、低压蓄电池以及各种高压线束和低压控制线束等。

充电系统的结构组成如图1所示。

纯电动汽车动力电池出现电量不足时的处理方法主要有直流快速充电、交流慢速充电以及更换电池的方式等。

直流充电系统和交流充电系统的区别在于:直流充电系统(快充)主要是通过充电站的充电桩将直流高压电直接通过位于汽车车身前部的直流充电口给动力电池充电,但由于充电方式的限制,只能解决应急,快速充电到动力电池恢复80%左右的电量,并且对动力电池损伤较大。

交流充电系统(慢充)主要是将交流充电桩的充电接头接入位于车身后部侧边的交流充电口,通过车载充电器将220V交流电转为直流电给动力电池进行充电,这种方式能将动力电池的电量充满,并且对动力电池损伤小,时间允许时,推荐使用交流充电方式。

二、交流充电系统工作过程交流充电系统的接口按国标GB/T 20234.2-2011使用7针接口,端子分别是CP、CC、N、L、NC1、NC2和PE,其接口形状及含义如图所示。

交流充电系统与车载充电机之间的接口及端子含义,如图所示。

该端口使用6针接头,其中端子CC、CP、PE、L、N等端子与车辆充电接口的相应端子分别相连,但4号端子是空脚。

交流充电系统工作电路,如图所示,充电桩中的供电控制装置通过检测CC连接确认信号后,把S1开关从12V端切换到PWM端;当检测点1电压降到6V时,充电桩控制K1、K2开关闭合输出电流。

充电过程大致分为以下几个步骤:(1)CC充电连接确认。

当充电插头与车身交流充电口完全连接后,充电桩中供电控制装置通过检测点4检查到端子CC连接确认信号后,将S1开关从+12V挡切换至PWM信号挡(脉冲宽度调制信号)。

(2)CP控制确认。

S1开关切换至PWM挡后,供电控制装置同时进行PWM信号的发送和检测点1电压的测量,以此来确认充电线路连接情况;车辆控制装置凭借对检测点2上接收到的PWM信号的监测,来判断供电设备的供电能力,并完成充电装置完全连接的确认。

(3)车辆控制装置通过检测点3测量端子CC和端子PE之间的电阻Re。

线路中开关S3为车辆插头的内部常闭开关,与插头上的机械锁止装置相关联,按下机械锁止开关,S3开关即断开。

当插头与插座完全连接后,车辆控制装置通过测量检测点3与PE之间的阻值,确认完全连接,得到充电连接信号,完成了充电唤醒过程。

(4)系统确认充电装置完全连接后,供电控制装置通过测量检测点1的电压判断车辆是否准备就绪,当电压值达到规定值时,供电设备控制装置接通开关K1、K2分别为供电插头的L、N端子供电。

(5)BMS(动力电池管理系统)检测充电需求,同时给车载充电机发送工作指令并控制车辆低压电路中的相关继电器吸合,车载充电机执行充电程序,同时点亮充电指示灯。

(6)充电过程中,系统会周期性地检测相关检测点的电压值,确认供电线路的连接情况。

车辆控制装置测量检测点2和检测点3、供电控制装置测量检测点1和检测点4的电压。

监测周期不大于50 ms。

另外车辆控制装置持续地监测检测点2收到的PWM信号,当占空比信号发生变化时,调节车载充电机的输出功率,监测周期不大于5s。

(7)充电完成。

当BMS检测充电完成后,或达到车辆设置的充电完成条件,或驾驶员执行停止充电的指令时,车辆控制装置断开S2开关,使车载充电机停止充电;供电控制装置将S1开关切换至+12V挡。

在检测到S2开关断开的信号后,供电控制装置断开K1、K2供电回路。

一般采用恒流—恒压充电方法,在不同温度范围内以恒定电流充电至动力电池组总电压达到或最高单体电压达到此温度条件下的规定电压值,以恒定电压充电至电流小于0. 8A后停止充电。

充电温度通常为0~55℃,此时以10A的电流充电;当单体电池最高电压高于3.6V时,降低充电电流到5A,当电芯电压达到3.7V时,充电电流为0A,请求停止充电。

三、直流充电系统工作过程直流充电系统接口按国标GB/T20234.3-2011使用9针接口,分别为D C+、DC-、PE、S+、S-、CC1、CC2、A+、A-等9个端子,接口形状及端子含义如图所示。

线束自车辆接口后方将高低压分开布置,高压线束部分端子1、端子2分别对应DC-和DC+,同时在其中增加互锁端子;低压线束部分的端子1-6分别对应交流充电口的A-、A+、CC2、S+、S-和CC1。

与交流充电系统接口相比,直流充电系统使用CC 1、CC2端子替代了交流充电中的CC端子,使用S+、S-端子作为交换信息通讯线,替代了交流充电中的CP端子,使用DC+、DC-直流端子替代了交流充电系统中的L、N交流电源端子,另外增加了A+、A-这2个辅助蓄电池低压连接线端子。

直流充电系统工作原理图如图所示。

从图中可以看到,以车辆接口处划分,左侧为充电桩及插头,右侧为车辆及直流充电接口。

充电桩中开关5为常闭开关,与直流充电插头上的机械锁相关联,按下机械锁,开关S就打开。

电阻R 1~R5分别连接于CC 1、CC2这2条连接确认检测线路中,其阻值约为1kΩ; U1、1:2分别为充电桩和车辆控制装置中提供的参考电压,电压值为12V。

直流充电系统的工作过程可分为以下几个阶段:(1)准备阶段:将直流充电接头与汽车充电口连接后,U1通过电阻R1、R4、端子CC1与车身接地形成回路,U2通过电子R5、R3、端子CC2与充电桩设备接地形成回路,分别完成工作电路的连接。

直流充电系统中的非车载充电机控制装置监测检测点1的电压值达到4V时,则确认充电线路完全连接。

(2)自检阶段:充电系统完成连接后,充电桩闭合K3、K4,低压辅助供电回路导通,12V低压电则通过A+、A-端子与车辆形成通路。

车辆控制装置通过监测检测点2的电压值,当电压达到6V时,车辆控制装置与充电桩之间通过S+、S-这2个通讯连接线发送通信信号,确认充电准备完成,同时控制开关K1、K2闭合,进行绝缘测试,保证充电过程的安全进行。

绝缘测试完成后,开关K1、K2断开。

自检阶段完成。

(3)充电阶段:车辆控制装置闭合K5 、K6,充电桩验证充电条件是否满足,即与原数据通讯时相比电压差小于5%,并且车辆电池电压处于充电机最高输出电压与最低输出电压之间,充电桩控制开关K1、K2闭合,形成直流充电回路。

在充电过程中,车辆与充电桩会通过S+、S一端子持续地进行数据通讯,并发送实时充电需求,按照动力电池充电状态及时调整充电电压和充电电流。

(4)结束阶段:车辆控制装置实时监测动力电池的充电状态或通过是否收到“充电机中止充电报文”的指令来判断是否完成充电。

当满足充电完成的条件、或者接收到驾驶员的停止充电指令时,系统确认充电电流小于5A后,车辆控制装置断开开关K5、K6,充电机控制装置断开K1、K2,最后断开K3、K4,完成充电过程。

四、注意事项充电时需保证以下条件满足要求:(1)充电机:充电线连接确认信号正常;充电机供电电源正常(含220V和12V)及充电机工作正常;充电唤醒信号输出正常(12V);充电机、VCU、SMS 之间通信正常(主继电器闭合、发送电流强度需求)。

(2)动力电池:动力电池电芯温度0~45℃; SOC电压差小于0.3V;单体电池最高温度与最低温度差小于15℃;实际单体最高电压不大于额定单体电压0.4V。

(3)绝缘性能:绝缘良好,阻值大于20MΩ。

(4)高、低压电路连接正常(远程控制开关关闭状态)。

五、充电系统常见故障及诊断1.快充常见的故障与检修(1)充电桩显示车辆未连接检查快充口CC1端与PE端是否有1kΩ电阻;检查快充口导电层是否脱落;检查充电枪CC2与PE是否导通。

(2)动力电池继电器未闭合检查充电桩输出正极唤醒信号是否正常;检查充电桩输出负极唤醒信号与PE是否导通;检查充电桩CAN通信是否正常。

(3)电池继电器正常闭合,但无输出电流检查充电桩与动力电池BMS软件版本是否匹配;检查高压连接器及线缆是否正确连接;用诊断仪查看充电监控状态。

(4)DC/DC转换器不工作检查连接器是否正常连接;检查高压熔断丝是否熔断;检查使能信号输入是否正常(12V)。

2.慢充常见的故障与检修以北汽EV 150车辆为例,介绍慢充常见的故障诊断与排除方法。

(1)车辆无法充电故障现象:车辆在使用充电桩充电时,充电桩指示灯亮,充电器电源工作灯亮,车辆无法充电。

可能原因:动力电池控制器故障、动力电池故障、通信故障。

故障诊断与排除:根据上述故障现象,充电桩和充电器工作指示灯正常,第1个检查对象应为通信和动力电池内部。

用故障检测仪检测故障码及数据流,读出故障码:P1048 (SOC过低保护故障)、P1040(电池单体电压欠压故障)、P1046电池电压不均衡保护故障)、P0275电池电压不均衡保护故障);读出数据流:动力电池单体电芯最低电压为2.56V、动力电池单体电电压差大于500mV 时动力电池管理系统(BMS)启动充、放电保护而无法充电,更换动力电池单体电芯,动力电池故障解除,车辆恢复充电。

故障分析:通过以上故障诊断与排除过程,总结以下动力电池具备充电的条件。

①充电桩与充电器或快充桩与动力电池的通信要匹配。

②车载充电器要能正常工作,无故障。

③整车控制器与充电器、动力电池控制器通信要正常。

④唤醒信号要正常。

⑤整车控制器和动力电池控制器的信号要正常。

⑥单体电芯之间电压差小于500mV。

⑦高压电路无绝缘故障。

⑧动力电池内部温度在充电的温度范围内。

(2)充电时充电桩跳闸故障现象:车辆在使用充电桩充电时,出现充电桩跳闸,充电器无法充电。

可能原因:充电器内部短路。

故障诊断与排除:检查充电桩交流220V电压、充电桩CP线与充电器连接正常,再检查充电线束、高压线束、充电器、动力电池的绝缘均正常,更换充电器,故障排除。

故障分析:因为此车的故障现象是充电桩跳闸,说明唤醒信号和互锁电路正常,基本可以断定是充电器内部短路故障。

(3)充电器指示灯不亮故障现象:车辆在使用充电桩充电时,充电器指示灯不亮,车辆无法充电。

可能原因:充电器内部故障、充电唤醒信号中断或互锁电路故障。

故障诊断与排除:检查FU低压熔断丝盒内的电池充电熔断丝和充电器低压电源,将万用表旋到直流电压挡测量充电器低压电源正常,再检查充电系统连接插件无退针、锈蚀现象,更换充电器,故障排除。

相关文档
最新文档