运筹学 (单纯形法原理)

合集下载

运筹学单纯形法

运筹学单纯形法

只要取 x5=min{-,8/2,12}=4 就有上式成立。 x5=4时, x4=0,故决定用x5换x4 x1 =4- 1/4 x4 x5 =4-1/2 x4 +2 x3 x2 =2+1/8 x4–1/2 x3 代入得 z=14-3/2 x3 –1/8 x4 ,令x3 ,x4=0得z=14。新基可 行解为 X(3) =(4,2,0,0,4) T –为最优解,新顶点Q2 最优目标值z=14 。
§3.4 最优性检验和判别定理
线性规划解的四种可能: 1、有唯一解; 2、无穷多最优解; 3、无界解; 4、无可行解。 何时达最优解, 何种最优解?
将基本可行解X(0)和X(1)分别代入目标函数得
z z
(0)
= ∑ ci xi0
i =1 m
mቤተ መጻሕፍቲ ባይዱ
(1)
= ∑ ci [ xi0 − θ aij ] + θ ci
§3.3 从初始基可行解转换为另一基可行解
0 0 记初始基可行解为X(0),有 X ( 0 ) = (x10 x 2 L x m 0 L 0
)
Pi xi0 = b 该解满足约束方程, 即 ∑
i =1
m
(1)
非基向量可以用基向量的线性组合表示
Pj = ∑ aij Pj
i =1 m
m
(2) (3)
Pj − ∑ aij Pj = 0
从实际例子中分析单纯形法原理的基本框架为 •第一步:将LP线性规划变标准型,确定一个初始可行解 (顶点)。 •第二步:对初始基可行解最优性判别,若最优,停止;否 则转下一步。 •第三步:从初始基可行解向相邻的基可行解(顶点)转 换,且使目标值有所改善—目标函数值增加,重复第二和 第三步直到找到最优解。

单纯形法的基本原理

单纯形法的基本原理

单纯形法的基本原理单纯形法是一种用于求解线性规划问题的数学方法,它的基本原理是通过不断地移动解空间中的顶点来逼近最优解。

在解决实际问题中,我们经常会遇到一些资源有限,而需要在这些资源限制下最大化或最小化某个指标的情况,这时就需要用到线性规划问题。

而单纯形法正是针对这类问题提出的一种高效的求解方法。

单纯形法的基本原理可以用几个关键步骤来概括。

首先,我们需要将线性规划问题转化为标准型,即目标函数为最大化,约束条件为等式的形式。

接着,我们需要找到一个初始可行解,这个可行解需要满足所有的约束条件。

然后,我们通过一系列的基本变量的替换,不断地移动解空间中的顶点,直到找到最优解为止。

在单纯形法中,我们需要利用单纯形表来进行计算。

单纯形表是一个表格,其中包含了目标函数、约束条件、基本变量等信息。

通过对单纯形表的不断变换和计算,我们可以逐步逼近最优解。

在每一步的计算中,我们需要选择一个入基变量和一个出基变量,通过一系列的行变换和列变换来更新单纯形表,直到找到最优解为止。

单纯形法的基本原理虽然看起来比较复杂,但实际上它是建立在一些简单的数学原理之上的。

通过对解空间中的顶点进行移动,我们可以逐步逼近最优解,这是单纯形法能够高效求解线性规划问题的关键所在。

在实际应用中,单纯形法已经被证明是一种非常有效的方法,它可以帮助我们在资源有限的情况下做出最优的决策。

总的来说,单纯形法是一种用于求解线性规划问题的高效方法,它的基本原理是通过不断地移动解空间中的顶点来逼近最优解。

通过对单纯形表的计算和变换,我们可以逐步找到最优解。

在实际应用中,单纯形法已经被广泛地应用于各个领域,它为我们解决资源有限的最优化问题提供了一个强大的工具。

希望本文对单纯形法的基本原理有所帮助,谢谢阅读!。

运筹学第5章 单纯形法

运筹学第5章 单纯形法

0 0 1
在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的 各列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基 本可行解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作 为初始可行基,我们将构造初始可行基,具体做法在以后详细讲述。
8Leabharlann §1 单纯形法的基本思路和原理
二、 最优性检验 所谓最优性检验就是判断已求得的基本可行解是否是最优解。
5
§1 单纯形法的基本思路和原理
线性规划解之间的关系:
1.可行解与最优解: 最优解一定是可行解,但可行解不一定是最优解。
2. 可行解与基本解: 基本解不一定是可行解,可行解也不一定是基本解。
3. 可行解与基本可行解: 基本可行解一定是可行解,但可行解不一定是基本可行解。
4. 基本解与基本可行解: 基本可行解一定是基本解, 但基本解不一定是基本可行解。
9
§1 单纯形法的基本思路和原理
2.最优解判别定理
对于求最大目标函数的问题中,对于某个基本可行解,如
果所有检验数 j≤0,则这个基本可行解是最优解。 下面我
们用通俗的说法来解释最优解判别定理。设用非基变量表示
的目标函数为: z z0 j xj jJ 由于所有的xj的取值范围为大于等于零,当所有的 j都小
由线性代数的知识知道,如果我们在约束方程组系数矩阵中找
到一个基,令这个基的非基变量为零,再求解这个m元线性方程组就
可得到唯一的解了,这个解我们称之为线性规划的基本解。
在此例中我们不妨找到
1 1 0 B3 1 0 0
为A的一个基,令这个基的非
1 0 1
基变量x1,s2为零。这时约束方程就变为基变量的约束方程:
第五章 单 纯 形 法

运筹学单纯形法

运筹学单纯形法

单纯形表
max z=x1+2x2 s.t. x1+x23 x2 1 x1, x2 0
Cj CB XB b 0 0 Z X3 3 X4 1 0 1 2 0 0
标准化
max z=x1+2x2 s.t. x1+x2+ x3 =3 x2 +x4=1 x1, x2 ,x3, x40
X1 X2 X3 X4 1 0 1 1 1 2 1 0 0 0 1 0
Z=x1+2x2 x1+x2+ x3 =3 x2 +x4=1 单纯形表
Cj
1
2
0
0
单纯形法原理 单纯形表 CB XB b
z=x1+2x2 x3 =3-x1-x2 x4=1 -x2
x2进基,x4离基
X1 X2 X3 X4

3/1 11
0
1 0
1 1
1 1
2 2 0 1 0 2 0 1 0 0 1 0 -1 0
max z=x1+2x2 s.t. x1+x2+x3 =3 x2 +x4=1 x1, x2, x3, x40
x1=0
(x1,x2,x3,x4)= (0,1,2,0), z=2 C (x1,x2,x3,x4)= (2,1,0,0), z=4,最优解
B
x4=0 x3=0
(x1,x2,x3,x4)= (0,0,3,1), z=0
1 0
0 0
0 1
0
CB XB b 0 2 Z Cj CB XB b 1 2 Z X1 2 X2 1 4 X3 2 X2 1 2 1 1 0 0
X1 X2 X3 X4 1 0 1 1 0 0 0 -1 1 -1

运筹学单纯形法

运筹学单纯形法
总结:①在迭代过程中要保持常数列向量非负,这能确保基 可行解旳非负性。最小比值能做到这一点。 ②主元素不能为0。因为行旳初等变换不能把0变成1。 ③主元素不能为负数。因为用行旳初等变换把负数变成1会 把常数列中相应旳常数变成负数。
16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2

第1章-线性规划及单纯形法-课件(1)

第1章-线性规划及单纯形法-课件(1)

✓ x1、 x2 0
IБайду номын сангаас
设备
1
原材料 A 4
原材料 B 0
利润
2
II 资源限量
2 8 台时
0
16kg
4
12kg
3
第一章 线性规划及单纯形法 运筹学
该计划的数学模型
✓ 目标函数 ✓ 约束条件
Max Z = 2x1 + 3x2
x1 + 2x2 8 4x1 16 4x2 12 x1、 x2 0
x1
✓ 美国航空公司关于哪架飞机用于哪一航班和哪些 机组人员被安排于哪架飞机的决策。
✓ 美国国防部关于如何从现有的一些基地向海湾运 送海湾战争所需要的人员和物资的决策。
✓ ……
第一章 线性规划及单纯形法 运筹学
二、线性规划问题的数学模型
✓ 1、一般形式 ✓ 2、简写形式 ✓ 3、表格形式 ✓ 4、向量形式 ✓ 5、矩阵形式
1、唯一最优解
max Z 2 x 1 3 x 2
2 x 1 2 x 2 12 ⑴
x1 4 x1
2 x2
8 16
⑵ ⑶
4 x 2 12 ⑷
x 1 0 , x 2 0
1 234 56
x2
⑶ ⑷
(4,2)
0 1 234 5678
x1


✓最优解:x1 = 4,x2 = 2,有唯一最优解Z=14。
第一章 线性规划及单纯形法 运筹学
三、线性规划模型的标准形式
✓ 1、标准形式 ✓ 2、转换方式
第一章 线性规划及单纯形法 运筹学
1、标准形式
maZx cjxj
xj
aijxj 0
bi

运筹学 单纯形法的迭代原理讲解

运筹学 单纯形法的迭代原理讲解

运筹学单纯形法的迭代原理讲解
单纯形法是一种用于解决线性规划问题的常用方法,其基本思想是通过迭代的方式逐步接近最优解。

下面是单纯形法的迭代原理的讲解:
1. 初始解的选择:首先需要选择一个初始解,通常选择的方法是构造一个基可行解,即使所有的约束条件都满足的解。

2. 判断最优性:在每一次迭代中,需要判断当前解是否为最优解。

首先,计算当前解对应的目标函数值。

然后,检查是否存在非基变量的系数大于等于0(对于最小化问题)或者小于等于0(对于最大化问题),如果存在这样的非基变量,则当前解不是最优解;如果不存在这样的非基变量,则当前解是最优解。

3. 生成新解:如果当前解不是最优解,则需要生成新的解。

首先,选择一个非基变量,使得目标函数的值可以通过增加(对于最小化问题)或减少(对于最大化问题)该变量的值来改善。

然后,需要计算这个非基变量能够增加或减少的最大量,称为变量的进步长度。

最后,通过调整基变量的值来生成新的解。

4. 更新目标函数和约束条件:在生成新解之后,需要更新目标函数和约束条件,以便于下一次迭代。

具体操作包括计算新解对应的目标函数值,计算新解对应的约束条件的值,调整目标函数和约束条件的系数。

5. 重复迭代:根据判断最优性的结果,进行下一次迭代。

如果当前解是最优解,
则算法结束;否则,继续进行下一次迭代。

通过不断重复这一迭代过程,直到找到最优解或者确定问题无解为止。

单纯形法的迭代过程一般会在有限次数内结束,并且能够得到最优解。

运筹学-第一章-单纯形法基本原理

运筹学-第一章-单纯形法基本原理
初始基本可行解:
X (0) (x10 , x20 ,, xm0 ,0,0,...,0)T (b1,b2,......,bm ,0,0,...,0)T
单纯形法基本原理
2、基变换 定义:两个基可行解称为相邻的,如果它们之间变换 且仅变换一个基变量。 初始基可行解的前m个为基变量,
X (0) (x10, x20,...xm0, o,...o)T
0 0
1 0

0
1

当线性规划的约束条件均为≤,其松弛变量的系数矩阵为单位 矩阵;当线性规划的约束条件均为≥或=,为便于找到初始基 可行解,构造人工变量,人为产生一个单位矩阵。
单纯形法基本原理
式中p1,…,pm 为基变量,同其所对应的 x1,x2,…..,xm为基变量;其它变量 xm+1,xm+2,……,xn为非基变量。令所有的非基变量 等于零。
0 1
...
0
a2,m1
..... a2, j
. a2,n
b2

. . . . . . . . . .
0 0
.
1 am,m1
.
am, j
.
am,n
bm

因为p1,…,pm,是一个基,其他向量pj可以这个基
的线性组合表示:
m
p j ai法基本原理
问题 ①如果限制条件中既有“≤”类型的约束, 又有“≥”或“=”类型的约束,怎么办?
构造单位阵
②初始可行基一定要选单位阵?
b列正好就是基变量的取值,因此称b列
为解答列
单纯形法基本原理
(2)写出初始基可行解——
令非基变量取0,基变量对应b(i),一起构 成初始基可行解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x3 = 6 – 2x1 + 2/5x5 x4 = 16 – 4x1 x2 = 3 –1/5 x5
x3 = 6 – 2 θ ≥0 x4 = 16 – 4 θ ≥0 x2 = 3 ≥0
即:
x1 = θ =min{6/2,16 /4 ,~}=3 相应地有:
x3 = 6 – 2 × 3 =0 x4 = 16 – 4 × 3=4 x2 = 3
xni bi aij x j
j 1
n
(i 1, 2,L , m)
3.代入目标消去基变量,得到非基变量xj的检验数 j
Z c j x j cni xni
j 1 i 1
n Z c j x j cni b a x i ij j j 1 i 1 j 1 n m
b1 M M M 0 .1L bi M M M 0 0L 1 bm
表格单纯形法
max Z c1 x1 c2 x2 cn xn cn1 xn1 cnm xnm
标准型:

a11 x1 a12 x 2 a1n x n x n 1 b1 a x a x a x x b 21 1 22 2 2n n n2 2 s.t. a x a x a x x m2 2 mn n n m bm m1 1 x1 , x 2 , , x n , x n 1 , , x n m 0
m
cni bi (c j cni aij ) x j
i 1 j 1 i 1
m
n
m
j cj zj
n j 1
Z Z 0 (c j z j ) x j Z 0 j x j
j 1
n
4.判断最优;
最优性判别定理:若
X0 (0, 0, L , 0, b 1, b 2 ,L , b m)
n
m
xn i bi aij x j
j 1
n
(i 1, 2,L , m)
Z 0 cn i bi
i 1 m
cni bi c j x j cni aij x j
i 1 j 1 i 1 j 1
m
n
m
n
z j cn i aij
i 1
5.没有有限最优解的判断;
无最优解判别定理:若
,L , bm ) X (0) (0,0,L ,0, b1, b2 是对应于B的基本可行解, 非基变量x k的检验数k >0 , 且对于i=1,2,……,m 均有aik ≤0, 则原问题没有有限最优解。
该证明留作课后练习
6.改进目标
若k >0,则选xk进基; 用最小比值法确定xk的最大值θ, 使基变量xl取0值,其它基变量非负;
max Z c j x j
max Z c j x j
j 1
n
nm
j n 1
0x
j

1 0 B ( pn 1 , pn 2 , L , pn m ) M 0
0 L 1 L M 0 L
0 0 M 1
基本可行解
X (0,0,L ,0, b1, b2 ,L , bm )
(4)第一次迭代。 每一次迭代,得到一个新的基本可行解。因此,哪些变量作为 基变量,哪些非基变量,就要发生变化。 由于目标函数中x2的系数大于x1的系数,因此,可以选择x2使它 作为基变量,而且让它取尽可能大的值,同时, x1仍作为非基变量 取值为零。从原来的基变量x3 、 x4 、 x5中选出一个作为非基变量。 x2的取值不能任意地增加,它要受到约束方程的限制:
x1
+ 1/2 x3 – 1/5x5 = 3 – 2 x3 + x4 + 4/5x5 = 4 x2 + 1/5 x5 = 3
移项后得到: x1 = 3 – 1/2 x3 + 1/5x5 x4 = 4 + 2 x3 – 4/5x5 x2 = 3 –1/5 x5 将上式代入目标函数,得目标函数用非基变量x3 、 x5表示的表达式 z =15 – x3 – 1/5x5 这时,目标函数中非基变量的系数都不大于零,可见目标函数的值不 可能再继续增大,目标函数已经取得最大值15 ,故为X (2)最优解。
移项后得到: x3 = 6 – 2x1 + 2/5x5 x4 = 16 – 4x1 x2 = 3 –1/5 x5
将上式代入目标函数,得目标函数用非基变量x1 、 x5表示的表达式
z =9+2x1 – 3/5x5 由于非基变量x1的系数是正数,如果把非基变量转换为基变量,则 会使目标函数的值增加。可见X (1)不是最优解。 (6)第二次迭代 和第一次迭代同样的道理,应选取非基变量x1使它成为基变量,而且 让它取尽可能大的值,同时, x5仍作为非基变量取值为零。从原来的基 变量x2 、 x3 、 x4中选出一个作为非基变量。 x1的取值也按同样的方法确 定: 将x1 = θ , x5 = 0代入:
2x1 +2x2 + x3 = 12 4x1 + x4 = 16 5x2 + x5 = 15
x3 = 12 –2x1 – 2x2 x4= 16 – 4x1 x5 = 15 – 5x2
将x1 = 0, x2 = θ代入上面约束方程,为了让θ取尽可能大的值,同时 又要考虑到x3 、 x4 、 x5必须满足非负约束,从而θ的值应满足:
可见,从原来的基变量x2 、 x3 、 x4中选出x3作为非基变量,得第二次 迭代后的基本可行解:
X (2) =(3,3,0,4,0) T
其对应的目标函数值:
z1=2×3+3×3=15
(7)检验X (2) 是否为最优解
将约束方程组改为用非基变量x3 、 x5来表示基变量x1、 x2 、 x4的表达 式。可用高斯消去法得到:
复习 由图解法得到的启示:
1.求解线性规划问题时,解的情况有:唯一解;无穷多最优 解;无界解;无可行解。 2.若线性规划问题的可行域存在,则可行域是一个凸集。 3.若线性规划问题的最优解存在,则最优解或最优解之一 (有无穷多最优解)一定是可行域的凸集的某个顶点。 4.解题思路是,先找出凸集的任一顶点,计算在顶点处的目标 函数值。比较周围相邻顶点的目标函数值是否比这个值大, 如果为否,则该顶点就是最优解的点或最优解的点之一,否 则转到比这个点的目标函数值更大的另一顶点,重复上述过 程,一直到找出使目标函数值达到最大的顶点为止。
1 P3 0 0 0 P4 1 0
0 P5 0 1
B0 P3
P4
1 0 0 P5 0 1 0 0 0 1
B0为一个可行基, x3 、 x4 、 x5为关于可行基B0的基变量, x1 、 x2 为关于可行基B0的非基变量,为求初始基本可行解,令非基变 量x1 = x2 =0。从而有x3 =12, x4 =16, x5 =15,于是得到初始基本 可行解:
是对应于B的基本可行解, j是用非基变量表示目标函数的表达 式 中非基变量xj的检验数,若对于一 切非基变量的角指数j 均有j ≤0 则当前基本可行解为最优解。 对于任意可行解X,Z Z 0 j x j Z 0
j 1 n
对于基本可行解X0, 无穷多最优解的判定?
Z Z0
若对于一 切非基变量的角指数j均有j ≤0, 并且存在一个j =0, 则线性规划问题有无穷多最优解
单纯形法一般步骤
1.初始基本可行解的确定(观察法);
n
a11 x1 a12 x2 L a1n xn xn 1 b1 j 1 a x a x L a x x b n 21 1 22 2 2n n n2 2 x j p j b s . t . M M M s.t. j 1 a x a x L a x x b x 0 j 1, 2, L , n mn n nm m j m1 1 m 2 2 x 1 , x2 , L , xn m 0
2.从约束中解出基变量;
max Z c j x j
j 1 n nm
j n 1
0x
j
a11 x1 a12 x2 L a1n xn xn 1 b1 a x a x L a x x b 21 1 22 2 2n n n2 2 s.t. M M M a x a x L a x x b mn n nm m m1 1 m 2 2 x 1 , x2 , L , xn m 0
求解步骤
(1)化为标准型 max z 2 x1 3 x2
12 2 x1 2 x2 x3 4 x x4 16 1 5 x2 x5 15 x j 0 j 1, 2, L , 5 (2)找一个初始基本可行解X(0)
2 2 1 0 0 A 4 0 0 1 0 0 5 0 0 1
X (0) =(0,0,12,16,15) T
其对应的目标函数值 z0=2×0+3×0=0 (3)检验X(0)是否为最优解。由目标函数的表达式: z =2x1 +3x2 可知,非基变量x1 和 x2 的系数为正,如果把非基变量x1 或x2转换
为基变量,则会使目标函数的值增加。可见 X(0)不是最优解
X (1) =(0,3,6,16,0) T
其对应的目标函数值:
z1=2×0+3×3=9 (5)检验X (1) 是否为最优解 将约束方程组改为用非基变量x1 、 x5来表示基变量x2、 x3 、 x4的表达 式。可用高斯消去法得到: 2x1 4x1 + x3 x2 – 2 /5x5 = 6 + x4 = 16 + 1 /5 x5 = 3
相关文档
最新文档