定积分练习题(含答案)

合集下载

定积分习题与答案

定积分习题与答案

第五章 定积分(A)1.利用定积分定义计算由抛物线12+=x y ,两直线)(,a b b x a x >==与横轴所围成的图形的面积。

2.利用定积分的几何意义,证明下列等式: 3.估计下列各积分的值4.根据定积分的性质比较下列各对积分值的大小 ⎰21ln )1xdx 与dx x ⎰212)(ln dx e x⎰10)2与⎰+10)1(dx x5.计算下列各导数 6.计算下列极限7.当x 为何值时,函数⎰-=xt dt te x I 02)(有极值?8.计算下列各积分⎰2)()8dx x f ,其中⎪⎩⎪⎨⎧+=2211)(x x x f11>≤x x9.设k ,l 为正整数,且l k ≠,试证下列各题: 10.计算下列定积分11.利用函数的奇偶性计算下列积分12.设f (x )在[]b a ,上连续,证明:⎰⎰-+=ba ba dx xb a f dx x f )()(13.证明:)0(1111212>+=+⎰⎰x x dx x dx x x14.计算下列定积分15.判定下列反常积分的收敛性,如果收敛,计算反常积分的值。

1)⎰∞+14xdx2)⎰+∞-0dx e ax ()0>a3)dx ee x x ⎰∞+-+014)⎰+∞->>0)0,0(sin ωωp tdt e pt5)⎰-121x xdx 6)⎰-211x xdx7)⎰∞+∞-++222x x dx8)()⎰-e x x dx 12ln 1 (B)1.填空: 1)________)12111(lim =++++++∞→nn n n n 。

2)估计定积分的值:_____sin 1____342≤+≤⎰ππx dx。

3)运用积分中值定理可得:⎰-→xa a x x f dt t f a x )(()(1lim 是连续函数)=________,______)0(sin lim =>⎰+∞→a dx xxa n n n 。

定积分试题及答案大学

定积分试题及答案大学

定积分试题及答案大学一、选择题1. 定积分的几何意义是表示曲线与x轴之间的有向面积。

()A. 正确B. 错误答案:A2. 设函数f(x)在区间[a,b]上连续,则定积分∫[a,b]f(x)dx的值是唯一的。

()A. 正确B. 错误答案:A3. 定积分∫[a,b]kf(x)dx=k∫[a,b]f(x)dx,其中k为常数。

()A. 正确B. 错误答案:A二、填空题1. 设f(x)=x^2,计算定积分∫[0,1]x^2dx的值为____。

答案:1/32. 若∫[0,1]f(x)dx=2,则∫[0,2]f(x)dx=____。

答案:43. 设f(x)=2x,求定积分∫[1,2]2xdx的值为____。

答案:4三、解答题1. 计算定积分∫[0,π]sin(x)dx。

解:根据定积分的计算公式,我们有∫[0,π]sin(x)dx = [-cos(x)] | [0,π] = -cos(π) - (-cos(0)) = 2。

2. 设f(x)=x^3+3x^2+2x-1,求定积分∫[-1,1]f(x)dx。

解:首先计算不定积分F(x)=∫f(x)dx,得到F(x)=x^4/4+x^3+x^2-x+C。

然后计算定积分∫[-1,1]f(x)dx = F(1)-F(-1) = [(1)^4/4+(1)^3+(1)^2-1] - [(-1)^4/4+(-1)^3+(-1)^2-(-1)]= (1/4+1+1-1) - (1/4-1+1+1) = 0。

3. 求曲线y=x^2与x轴及直线x=1,x=2所围成的面积。

解:根据定积分的几何意义,所求面积为S = ∫[1,2]x^2dx = [x^3/3] | [1,2] = (2^3/3) - (1^3/3) = 7/3。

定积分典型例题20例标准答案

定积分典型例题20例标准答案

定积分典型例题20例答案例1 求33322321lim(2)n n n n n®¥+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x nD =,然后把2111n n n =×的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即入和式中各项.于是将所求极限转化为求定积分.即33322321lim (2)n n n n n ®¥+++=333112lim ()n n n n nn ®¥+++=13034xdx =ò.例2 2202x x dx -ò=_________.解法1 由定积分的几何意义知,2202x x dx -ò等于上半圆周22(1)1x y -+= (0y ³) 与x 轴所围成的图形的面积.故2202x x dx -ò=2p. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t pp-££),则,则222x x dx -ò=2221sin cos t tdt pp --ò=22021sin cos t tdt p-ò=2202cos tdt pò=2p例3 (1)若22()x t x f x e dt -=ò,则()f x ¢=___;(2)若0()()xf x xf t dt =ò,求()f x ¢=___.分析 这是求变限函数导数的问题,利用下面的公式即可这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ¢¢=-ò.解 (1)()f x ¢=422x x xee---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =ò,则可得可得()f x ¢=()()xf t dt xf x +ò.例4 设()f x 连续,且31()x f t dt x -=ò,则(26)f =_________.解 对等式310()x f t dt x -=ò两边关于x 求导得求导得32(1)31f x x -×=,故321(1)3f x x-=,令3126x -=得3x =,所以1(26)27f =.例5 函数11()(3)(0)xF x dt x t =->ò的单调递减开区间为_________.解 1()3F x x ¢=-,令()0F x ¢<得13x>,解之得109x <<,即1(0,)9为所求.为所求. 例6 求0()(1)arctan xf x t tdt =-ò的极值点.的极值点. 解 由题意先求驻点.于是()f x ¢=(1)arctan x x -.令()f x ¢=0,得1x =,0x =.列表如下:如下: 故1x =为()f x 的极大值点,0x =为极小值点.为极小值点. 例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中处的切线相同,其中2arcsin 0()xt g x e dt -=ò,[1,1]x Î-,试求该切线的方程并求极限3lim ()n nf n ®¥.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ¢¢=.解 由已知条件得由已知条件得2(0)(0)0tf g e dt -===ò,且由两曲线在(0,0)处切线斜率相同知处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x-=¢¢===-.故所求切线方程为y x =.而.而3()(0)3lim ()lim33(0)330n n f f n nf f n n®¥®¥-¢=×==-.例8 求 22sin lim(sin )x x x tdt t t t dt®-òò;分析 该极限属于型未定式,可用洛必达法则.型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt ®-òò=2202(sin )lim(1)(sin )x x x x x x ®-××-=220()(2)lim sin x x x x ®-×-=304(2)lim 1cos x x x ®-×- =2012(2)lim sin x x x®-×=0.注 此处利用等价无穷小替换和多次应用洛必达法则.此处利用等价无穷小替换和多次应用洛必达法则.x (,0)-¥(0,1)1 (1,)+¥()f x ¢-+-例9 试求正数a 与b ,使等式2021lim1sin xx t dt x b x a t®=-+ò成立.成立.分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t ®-+ò=220lim 1cos x x a x b x ®+-=22001lim lim 1cos x x x b x a x ®®×-+201lim 11cos x x b xa ®==-,由此可知必有0lim(1cos )0x b x ®-=,得1b =.又由.又由 2012lim11cos x x xaa®==-,得4a =.即4a =,1b =为所求.为所求. 例10 设sin 20()sin xf x t dt =ò,34()g x x x =+,则当0x ®时,()f x 是()g x 的(的(). A .等价无穷小..等价无穷小. B .同阶但非等价的无穷小..同阶但非等价的无穷小. C .高阶无穷小..高阶无穷小.D .低阶无穷小. 解法1 由于由于 22300()sin(sin )cos lim lim ()34x x f x x x g x x x ®®×=+ 2200cos sin(sin )lim lim 34x x x x x x ®®=×+ 22011lim 33x x x ®==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到的幂级数,再逐项积分,得到sin223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+ò,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f xg x x x x ®®®-+-+===++.例11 计算21||x dx -ò.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -ò=0210()x dx xdx --+òò=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时在使用牛顿-莱布尼兹公式时,,应保证被积函数在积分区间上满足可积条件.如应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=ò,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界积区间内无界. .例12 设()f x 是连续函数,且1()3()f x x f t dt =+ò,则()________f x =.分析 本题只需要注意到定积分()baf x dx ò是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而1()f t dt ò是常数,记1()f t dt a =ò,则,则()3f x x a =+,且11(3)()x a dx f t dt a +==òò.所以所以2101[3]2x ax a +=,即132a a +=,从而14a =-,所以,所以 3()4f x x =-.例13 计算2112211x xdx x-++-ò. 分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解2112211x x dx x -++-ò=211112221111xxdx dx x x--++-+-òò.由于22211x x +-是偶函数,而211xx +-是奇函数,有112011x dx x-=+-ò, 于是于是 2112211x xdx x-++-ò=212411x dx x+-ò=2212(11)4x x dx x--ò=11200441dx x dx --òò由定积分的几何意义可知12014x dx p-=ò, 故2111022444411x xdx dx x p p -+=-×=-+-òò.例14 计算22()x d tf x t dt dx -ò,其中()f x 连续.连续. 分析 要求积分上限函数的导数,要求积分上限函数的导数,但被积函数中含有但被积函数中含有x ,因此不能直接求导,因此不能直接求导,必须先换必须先换元使被积函数中不含x ,然后再求导.,然后再求导.解 由于由于220()xtf x t dt -ò=22201()2xf x t dt -ò.故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以,所以22()x tf x t dt -ò=201()()2xf u du -ò=21()2x f u du ò,故220()x d tf x t dt dx -ò=201[()]2x d f u du dx ò=21()22f x x ×=2()xf x . 错误解答 22()x d tf x t dt dx -ò22()(0)xf x x xf =-=.错解分析 这里错误地使用了变限函数的求导公式,公式这里错误地使用了变限函数的求导公式,公式()()()xa d x f t dt f x dx¢F ==ò中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.导,而应先换元. 例15 计算3sin x xdx pò.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法. 解 3s i n x x d x pò3(c o s )x d x p=-ò330[(c o s )](co s )x x x d x pp=×---ò 30cos 6xdx pp=-+ò326p=-. 例16 计算1200ln(1)(3)x dx x +-ò. 分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-ò=101ln(1)()3x d x +-ò=1100111[ln(1)]3(3)(1)x dx x x x +-×--+ò =101111ln 2()2413dx x x-++-ò 11ln 2ln324=-.例17 计算20sin x e xdx pò.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于2sin xe xdx pò20sin xxde p=ò220[sin ]cos xxe x e xdx p p=-ò220cos xe e xdx p p=-ò,(1) 而2cos xe xdx pò20cos xxde p=ò2200[cos ](sin )xxe x e x dx p p=-×-ò 2sin 1xe xdx p=-ò, (2)将(将(22)式代入()式代入(11)式可得)式可得2sin xe xdx pò220[sin 1]xe e xdx p p=--ò,故20sin xe xdx pò21(1)2e p=+.例18 计算10arcsin x xdx ò.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解10arcsin x xdx ò210arcsin ()2x xd =ò221100[arcsin ](arcsin )22x x x d x =×-ò 21021421x dx x p=--ò. (1) 令sin x t =,则,则2121x dx x-ò2202sin sin 1sin t d t tp =-ò220sin cos cos t tdt tp=×ò220sin tdt p=ò 201cos 22t dt p-==ò20sin 2[]24t t p-4p =. (2) 将(将(22)式代入()式代入(11)式中得)式中得1arcsin x xdx =ò8p .例19设()f x [0,]p 上具有二阶连续导数,()3f p ¢=且0[()()]cos 2f x f x xdx p¢¢+=ò,求(0)f ¢.分析分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx p ¢¢+ò00()sin cos ()f x d x xdf x p p¢=+òò[]0000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx pppp¢¢¢=-++òò()(0)2f f p ¢¢=--=. 故 (0)f ¢=2()235f p ¢--=--=-.例20 计算2043dx x x +¥++ò. 分析 该积分是无穷限的的反常积分,用定义来计算.解 2043dx x x +¥++ò=20lim 43t t dx x x ®+¥++ò=0111lim ()213t t dx x x ®+¥-++ò =011lim [ln ]23t t x x ®+¥++=111lim (ln ln )233t t t ®+¥+-+ =ln 32.。

定积分典型例题及习题答案

定积分典型例题及习题答案

04 定积分习题答案及解析
习题一答案及解析
要点一
答案
$frac{1}{2}$
要点二
解析
根据定积分的几何意义,该积分表示一个半圆的面积,半径 为1,因此结果为半圆的面积,即$frac{1}{2}$。
习题二答案及解析
答案:$0$
解析:由于函数$f(x) = x$在区间$[-1, 1]$上为奇函数,根据定积分的性质,奇函数在对称区间上的积 分为0。
定积分的分部积分法
总结词
分Hale Waihona Puke 积分法是一种通过将两个函数的乘积进行求导来计算定积分的方法。
详细描述
分部积分法是通过将两个函数的乘积进行求导来找到一个函数的定积分。具体来说,对于两 个函数u(x)和v'(x),其乘积的导数为u'v+uv',其中u'表示u对x的导数。分部积分法可以表示 为∫bau(x)v'(x)dx=∫bau'(x)v(x)dx+∫bau(x)v(x)dx,其中u'(x)和u(x)分别是u对x的导数和函
定积分典型例题及习题答案
目录
• 定积分的基本概念 • 定积分的计算方法 • 定积分典型例题解析 • 定积分习题答案及解析
01 定积分的基本概念
定积分的定义
总结词
定积分的定义是通过对函数进行分割、 近似、求和、取极限等步骤来得到的。
详细描述
定积分定义为对于一个给定的函数f(x),选择一 个区间[a,b],并将其分割为n个小区间,在每 个小区间上选择一个代表点,并求出函数在这 些点的近似值,然后将这些近似值进行求和, 最后取这个和的极限。
数值。通过分部积分法,可以将复杂的定积分转换为更简单的形式进行计算。

定积分典型例题20例答案

定积分典型例题20例答案

定积分典型例题20例答案例 1 求 Iim 42(3n τ 32n^ JH 3n 3).n厂n分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限•解 将区间[0, 1] n 等分,则每个小区间长为.* ,然后把1的一个因子-乘n n n nn入和式中各项•于是将所求极限转化为求定积分•即Iim A (V n 4 5+⅛2n 2切|+卅)=1计气卩弋F + 山 +;F )=[坏dx=3 •n -r ,n n n I n∖ n 042 -----------------2例 2 [J 2x —xdx= ______________•2 ry解法1由定积分的几何意义知, 0J 2x —X 2dx 等于上半圆周(x —1)2+y 2=1 ( y ≥0)与X 轴所围成的图形的面积.故$ 2χ 一χ2d χ= •■■02解法2本题也可直接用换元法求解.令x_1 = Sint (丄兰t ≤三),则2 2这是求变限函数导数的问题,禾U 用下面的公式即可d V(X)— f (t)dt = f[v(x)]v(x) - f[u(x)]u (X) • dxU(X )丄2-e;可得.Xf (X) = 0f (t)dt Xf(X) •X 3丄解 对等式;f(t)dt =x 两边关于X 求导得3 2f (x -1) 3x =1,4_..1 —sin 2tcostdt =2 :、1 —sin 2tcostdt2522例3(1)若f (x) e 丄Xdt ,则 f (X) =— ; (2)若 f(x)=Xxf (t)dt ,求 f (X )=— •■:'≡. 2 -= 2 02COs tdt=- 分析(2) 由于在被积函数中 X 不是积分变量,故可提到积分号外即Xf (X)=X Of (t)dt ,则V(X) 例4设f (x)连续,且X 3 -1O f (t)dt =X ,贝U f(26)=------ 2-XdX =例7已知两曲线y =f (X)与y =g(χ)在点(0,0)处的切线相同,其中arcs inx 十2g(x) = 0e dt , X [-1,1],试求该切线的方程并求极限Iim nf (-3). n 性 n分析 两曲线y =f(χ)与y =g(χ)在点(0,0)处的切线相同,隐含条件 f (0^g (0).解由已知条件得12X 2= (2) Iim =0 .x-⅛ Si nx注此处利用等价无穷小替换和多次应用洛必达法则.故 f(x 3-1)=13X 2 3 1,令X 46得x=3 ,所以f(26)冷1例5函数F(x) = j (3 _4)dt (x >0)的单调递减开区间为F(X)= 31 1 1x ,令F(X z O 得X 3 ,解之得。

定积分题目及答案

定积分题目及答案

定积分题目及答案定积分(DefiniteIntegral)是求解一定范围内函数值的积分,也就是说获得一定范围內函数的总和。

定积分可以用于计算曲线围成的面积,这就是经典地定积分公式,即:∫a b f(x)dx = F(b) - F(a)这里F(x)表示从x = a 到 x = b 的函数f(x)在任意取值时f(x)的积分,从数学上讲就是函数F(x)的反函数,叫做反积分,是微积分领域里最重要的概念之一。

解定积分问题,就要先根据函数的特性和定积分区间确定积分的类型,然后用定积分的几何形式和数学形式来求解。

一、几何形式法几何形式法在求由直线交织而成的函数的积分时特别有用,常见的几何形式有落圆式,锐角式,三角式,折线式,对称折线式等。

求几何形式法的定积分可以根据公式:∫a b f(x)dx = (b-a)hf(i)公式中,i表示定积分区间的分割点,h表示该分割点的步长,即f(i)表示该分割点处的函数值。

二、数学形式法将定积分的问题转化成数学形式,然后求得结果,就是用数学形式法求定积分。

数学形式法主要分三步:1)先要得到积分函数函数原函数 F(x)的易解形式;2)再利用这个易解形式,求出F(x)在指定范围内的积分 F(b)-F(a);3)最后返回结果。

例题1:求函数f ( x )=3x3-2x2-x+(1)在区间[2,6]内的定积分解:F(x)=x^4-x^3-0.5*x^2+CF(6)-F(2)=1093/2-21+C∫2 6f ( x )dx=1093/2-21+C例题2:求函数 f ( x )=2x2-3x2+(1)在区间[0,1]内的定积分解:F(x)=-x^3+x^2+CF(1)-F(0)=-1+C∫0 1f ( x )dx=-1+C。

定积分典型例题20例答案

定积分典型例题20例答案例1求lim 丄(循2丁2『L Vn 3) •n n分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0, 1] n 等分,则每个小区间长为 % -,然后把1丄的一个因子-乘nn n nn入和式中各项•于是将所求极限转化为求定积分•即lim A (习n 2 ^2n 2 LVn 3) = lim -(^—L ^—) = VXdx - • n nnnn,n ,n ° 42 -- ------ r例 2o (2x x dx = ___________• 2 . ________解法1由定积分的几何意义知, °. 2x x 2dx 等于上半圆周(x 1)2 y 2 1 ( y 0)与x 轴所围成的图形的面积.故2,2x x 2dx = _ • 0 2'1 sin 2tcostdt = 2。

2J sin 2t costdt =2 : cos 2 tdt^22x 2 2x例 3 (1)若 f (x) x e 七 dt ,则 f (x) = ________; (2)若 f (x) 0 xf (t)dt ,求 f (x)=分析这是求变限函数导数的问题,利用下面的公式即可(1) f (x) =2xe x e x可得xf (x) = 0 f (t)dt xf (x) •x 1例 4 设 f(x)连续,且。

f(t)dt x ,贝U f (26) = _________________O Ax 1解 对等式0 f(t)dtx 两边关于x 求导得3 2f(x 1) 3x 1,解法2本题也可直接用换元法求解.令x 1= Sint (2 t 2),则d v(x)dx u(x)f(t)dt f[v(x)]v(x) f[u(x)]u (x) • (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即xf (x) x 0 f (t)dt ,则x 2dx =3 1 令x 1 26得x 3,所以f (26)27故f(x 3 1) 丄3x 例5函数F(x)F (x)1 1,令F (x) 0得r 3,解之得xx1 10 x -,即(0,-)为所求.9 9f (x)x0 (1 t)arctan tdt 的极值点.f (x) = (1 x)arctan x .令 f (x) = 0,得 x 1 , x 0.列表如下:x(,0)0 (0,1) 1(1,)f (x)-0 +f (x)的极大值例7已知两曲线y f (x)与y g(x)在点(0,0)处的切线相同,其中arcs inxg(x) 0t 2e dt , x [ 1,1],试求该切线的方程并求极限 lim nf (?).n n分析两曲线y f (x)与y g(x)在点(0,0)处的切线相同,隐含条件f(0) g(0),f (0)g (0) •解由已知条件得f(0)g(0)°e " dt且由两曲线在(0,0)处切线斜率相同知f (0)g(0)(arcsin x)2e1 x 2故所求切线方程为 y x .而lim nf (-) n nIim3nf(-) n3 0 nf(0) 一 3f (0) 3 •x 22sin tdtlim 0;x 0分析 该极限属于型未定式,可用洛必达法则. 0X 22sin tdt lim ------------------ = lim = ( 2) lim= ( 2)x 0:t (t sin t)dt x 0( 1) x (x sinx) 、7 x 0x sinx ' 丿2x(sin x 2)22 2(x ) 34x(x 0)的单调递减开区间为x 1(3点,x 0为极小值点.由题意先求驻点.于是12x=(2) lim =0 . x 0sinx注此处利用等价无穷小替换和多次应用洛必达法则.1 x t 2例9 试求正数a 与b ,使等式lim -------------------- dt 1成立.x 0x bsin x 0 ‘ ―t 2分析 易见该极限属于 0型的未定式,可用洛必达法则.1 x 2lim.a x 01 bcosx21 x lim3x 0x 2故f(x)是g(x)同阶但非等价的无穷小.2例11计算1|x|dx .分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.2 220 2x 0 x 251|x|dx = 1( x)dx 0xdx = [ y] 1 [y]0 =-.在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如[-]32丄,则是错误的.错误的原因则是由于被积函数 」2在x 0处间断且在被x 6 x 2lim__ x 0x bsin x 0 . a 2x_ _t 「dt = lim _— =lim 1f 2 x 01 bcosx x op x 2x 2limx 01 bcosx由此可知必有 lim(1 bcosx) 0,得 b 1 .又由得a 4 .即a 4 , si nx1xlim a x 01 cosxb 1为所求. 例10设f (x)sin t 2dt , g(x) x 3 x 4,则当0 时,f (x)是 g(x)的( ). A .等价无穷小.B .同阶但非等价的无穷小.解法1由于lim 型 lim si 门伽浪)cosxx 0g(x) x 0C .高阶无穷小.D .低阶无穷小.mo Hx3x 2 4x 3cosx3 4xmo Hxsin (sin x)x解法2 将sin t 2展成t 的幕级数, 1 2 3 3!(t)f (x) 0 sin x 2 [t 2 再逐项积分,得到1 si n 42L ]dt 1 . 3 一 sin xlim 少 x 0g(x).31sin x(- lim -1 . 4sin x 4234x x1 lim -x 01 ■ 4 . sin x L 42 1 xUdx x积区间内无界 例12设f(x)是连续函数,且f(x) 1x 3 0 f(t)dt ,则 f (x)所以 分析本题只需要注意到定积分因f (x)连续,f (x)必可积,从而a 1—,所以 4例13 计算12x21 分析 bf (x)dx 是常数(a, b 为常数).从而f (x) x 3a ,且f(x) x1 21[―X 2 3ax]0 23 2 .10 f (t)dt 是常数,记 10 f (t)dt a ,则1 o(x3a)dx3a a ,x dx. 1 1 x 2由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. I 2x 2 x ------ dx = II 1 x 2 I 2x 2----- dxII .1 x 2 ___ dx .由于 11 1 x 2一是偶函数,而 1 1 x 2 旦古函数, 是奇 2 x 111=dx 2 x0,I2x 2 xII1 x 2dx = 4 由定积分的几何意义可知 例14计算肿(x 2 011 x 20 1x 2dx 1 2x 2 1 dx = 4 1x 2 (11x 2) 0x _= dx 1 1 x 2t 2)dt ,其中 分析 要求积分上限函数的导数, 元使被积函数中不含 ,然后再求导. 由于 x 2 otf(xx 2dx = 4 dx 4;FVdx故令x 2xdx 01 4 dx 0 f(x)连续. 但被积函数中含有 x ,因此不能直接求导,必须先换2 1 x2 2 2t )dt = 2 0f(x t )dt .2 20时u x ;当t x 时u 0,而dtx2 2 1tf(x t)dt=;222d 1 x tf(x t)dt= dx [2 0x 2f (U)( du)=idu ,所以x 2f (u)du ,f (u)du] =£ f(x 2) 2x = xf (x 2).错误解答 — tf(x 2 t 2)dtxf(x 2 x 2) xf(O).dx 0错解分析这里错误地使用了变限函数的求导公式,公式d x(x) a f (t)dt f (x)dx a中要求被积函数f(t)中不含有变限函数的自变量 x ,而f (x 2 t 2)含有x ,因此不能直接求导,而应先换元. 15 计算 3 xsinxdx .分析 被积函数中出现幕函数与三角函数乘积的情形,通常采用分部积分法.=1ln21 In3 .417计算2e si nxdx .分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于 02e x sin xdx;sin xde x [e x sinx]〕2e x cosxdxe^2e x cos xdx ,(1)而02 *cosxdx2cos xde x[e x cosx](?o2e x ( sin x)dx2e x sin xdx 01 , (2)将(2)式代入(1)式可得?e x s in xdx e 2[2 e x sin xdx 1],故2 e xsin xdx1 ~2-(e 2 1). 21例 18 计算 xarcsinxdx .解 3 xs in xdx 3 xd(0 0 '3cosx) [x ( COSX )]oo3( cos x) dx616计算0兽dx .3cosxdx¥ 6分析被积函数中出现对数函数的情形,可考虑采用分部积分法.1x)d(-3 xJdx= 1ln(1 0(3 x)2'1Fln(1x)】1(3 x) (1 x)dx1 In2 21 xarcsin xdx分析被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于 0 [ f (x) f (x)]cos xdx 0 f (x)d sinxcosxdf (x){ f (x)sin x 00 f (x)sin xd" {[ f (x)cosx]° 0f (x)sin xd 冷f ( ) f (0) 2 .故 f (0) 2 f ( )2 3分析 该积分是无穷限的的反常积分,用定义来计算.解 dxtdx1 t 11 解2= lim 2= lim ()dxx 4x 3 t 0 x 4x 3 t 2 0 x 1 x 31 x 1 t 1 t 1 1 =lim [In ]0= lim (In In ) t2 x3 t 2 t 3 3分析 被积函数中出现反三角函数与幕函数乘积的情形,通常用分部积分法.1解xarcs in xdx1x20arcsinxd (一2x1[ arcsinx]。

高考定积分练习题

高考定积分应用常见题型大全含答案一.选择题共21小题1.2012福建如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率 CA.B.C.D.解答:解:根据题意,正方形OABC的面积为1×1=1,而阴影部分由函数y=x与y=围成,其面积为∫01﹣xdx=﹣|01=, 则正方形OABC中任取一点P,点P 取自阴影部分的概率为=;2.2010山东由曲线y=x2,y=x3围成的封闭图形面积为 AA.B.C.D.解答:解:由题意得,两曲线的交点坐标是1,1,0,0故积分区间是0,1 所求封闭图形的面积为∫01x2﹣x3dx═,3.设fx=,函数图象与x轴围成封闭区域的面积为A.B.C.D.解答:根据定积分,得所围成的封闭区域的面积S=故选C4.定积分的值为A.B.3+ln2 C.3﹣ln2 D.6+ln2 解答:解:=x2+lnx|12=22+ln2﹣12+ln1=3+ln2 故选B.5.如图所示,曲线y=x2和曲线y=围成一个叶形图阴影部分,其面积是A.1B.C.D.解答:解:联立得,解得或,设曲线与直线围成的面积为S, 则S=∫01﹣x2dx=故选:C6.=A.πB.2C.﹣πD.4解答:解:∵ x2++sinx′=x+cosx,∴x+cosxdx= x2+sinx=2.故答案为:B7.若a=,b=,则a与b的关系是A.a<b B.a>b C.a=b D.a+b=0解答:解:∵a==﹣cosx=﹣cos2﹣﹣cos=﹣cos2≈﹣°=°, b==sinx=sin1﹣sin0=sin1≈°,∴b>a.故选A.8.的值是A.B.C.D.解答:解;积分所表示的几何意义是以1,0为圆心,1为半径第一象限内圆弧与抛物线y=x2在第一象限的部分坐标轴围成的面积,故只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线x=1围成的图形的面积之差.即=﹣=﹣=故选A 9.若fx=e为自然对数的底数,则=A.+e2﹣e B.+e C.﹣e2+e D.﹣+e2﹣e解答:解:===故选C.10.已知fx=2﹣|x|,则A.3B.4C.D.解答:解:由题意,=+=2﹣+4﹣2=故选C.11.设fx=3﹣|x﹣1|,则∫﹣22fxdx=A.7B.8C.D.解答:解:∫﹣22fxdx=∫﹣223﹣|x﹣1|dx=∫﹣212+xdx+∫124﹣xdx=2x+x2|﹣21+ 4x﹣x2|12=7 故选A.12.积分=A.B.C.πa2D.2πa2解答:解:根据定积分的几何意义,则表示圆心在原点,半径为3的圆的上半圆的面积,故==.故选B.13.已知函数的图象与x轴所围成图形的面积为A.1/2 B.1C.2D.3/2解答:解:由题意图象与x轴所围成图形的面积为=﹣|01+sinx=+1=故选D.14.由函数y=cosx0≤x≤2π的图象与直线及y=1所围成的一个封闭图形的面积是A.4B.C.D.2π解答:解:由函数y=cosx0≤x≤2π的图象与直线及y=1所围成的一个封闭图形的面积, 就是:∫01﹣cosxdx=x﹣sinx|0=.故选B.15.曲线y=x3在点1,1处的切线与x轴及直线x=1所围成的三角形的面积为A.B.C.D.解答:解:∵y=x3,∴y'=3x2,当x=1时,y'=3得切线的斜率为3,所以k=3;所以曲线在点1,1处的切线方程为:y﹣1=3×x﹣1,即3x﹣y﹣2=0.令y=o得:x=,∴切线与x轴、直线x=1所围成的三角形的面积为:S=×1﹣×1=故选B.16.图中,阴影部分的面积是A.16 B.18 C.20 D.22解答:解:从图象中知抛物线与直线的交点坐标分别为2,﹣2,8,4.过2,﹣2作x轴的垂线把阴影部分分为S1,S2两部分,分别求出它们的面积A1,A2:A1=∫02dx=2 dx=,A2=∫28dx=所以阴影部分的面积A=A1+A2==18 故选B.17.如图中阴影部分的面积是A.B.C.D.解答:解:直线y=2x与抛物线y=3﹣x2解得交点为﹣3,﹣6和1,2抛物线y=3﹣x2与x轴负半轴交点﹣,0设阴影部分面积为s,则==所以阴影部分的面积为, 故选C.18.曲线与坐标轴围成的面积是A.B.C.D.解答:解:先根据题意画出图形,得到积分上限为,积分下限为0曲线与坐标轴围成的面积是:S=∫0﹣dx+∫dx=∴围成的面积是故选D.19.如图,点P3a,a是反比例函y=k>0与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为A.y=B.y=C.y=D.y=解答:解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:r=2.∵点P3a,a是反比例函y=k>0与⊙O的一个交点.∴3a2=k且=r∴a2=×22=4.∴k=3×4=12,则反比例函数的解析式是:y=.故选C.。

(完整版)定积分习题及答案

第五章定积分(A 层次)1.203cos sin xdx x ;2.a dx x ax222;3.31221xxdx ;4.1145x xdx ;5.411xdx ;6.14311xdx ;7.21ln 1e xx dx ;8.02222xxdx ;9.dx x 02cos 1;10.dx x x sin 4;11.dx x 224cos 4;12.55242312sin dx xxx x ;13.342sin dx xx ;14.41ln dx xx ;15.1xarctgxdx ;16.202cosxdx e x ;17.dx x x 02sin ;18.dx x e 1ln sin ;19.243cos cos dx x x ;20.40sin 1sin dx x x ;21.dx xxx 02cos 1sin ;22.2111lndx xx x ;23.dx xx 4211;24.20sin ln xdx ;25.211dx xxdx0。

(B 层次)1.求由0cos 0x y ttdtdte 所决定的隐函数y 对x 的导数dxdy 。

2.当x 为何值时,函数x tdt tex I 02有极值?3.x xdt t dxd cos sin 2cos 。

4.设1,211,12xx x x xf ,求20dx x f 。

5.1lim22xdtarctgt xx 。

6.设其它,00,sin 21xx xf ,求x dt t f x。

7.设时当时当0,110,11xex xxf x,求201dx xf 。

8.2221limnn nnn。

9.求nk nknknnen e 12lim 。

10.设x f 是连续函数,且12dt t f x x f ,求x f 。

11.若2ln 261xtedt ,求x 。

12.证明:212121222dxeex。

13.已知axxx dx ex axa x 224lim,求常数a 。

定积分期末考试题及答案

定积分期末考试题及答案一、选择题(每题4分,共20分)1. 若函数f(x)在区间[a, b]上连续,则定积分∫<sub>a</sub><sup>b</sup>f(x)dx的值:A. 总是存在B. 可能不存在C. 总是不存在D. 无法确定答案:A2. 计算定积分∫<sub>0</sub><sup>1</sup>x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 1答案:A3. 函数f(x)=x^3在区间[-1, 1]上的定积分值为:A. 0B. 2C. -2D. 1答案:A4. 若∫<sub>a</sub><sup>b</sup>f(x)dx =∫<sub>a</sub><sup>b</sup>g(x)dx,则f(x)和g(x)在区间[a, b]上的关系是:A. 相等B. 相等或相反C. 相等或相等的常数倍D. 无法确定答案:C5. 定积分∫<sub>0</sub><sup>π/2</s up>cos(x)dx的值是:A. 1B. 0C. π/2D. -1答案:B二、填空题(每题5分,共20分)1. 定积分∫<sub>0</sub><sup>1</sup>(2x+1)dx的值为______。

答案:3/22. 函数f(x)=x^2在区间[0, 2]上的定积分值是______。

答案:8/33. 计算定积分∫<sub>0</sub><sup>π</sup>sin(x)dx的值是______。

答案:24. 定积分∫<sub>-1</sub><sup>1</sup>|x|dx的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
π
π
P =∫
π
2
( x 2 sin 3 x cos 4 x ) dx ,则有 ( 则有 π
2
).
(A) N < P < M (C ) N < M < P
(B ) M < P < N (D) P < M < N
答案: 答案 D.
π
2
因为根据奇偶函数的性质有 因为根据奇偶函数的性质有: 奇偶函数的性质
( D) 4
答案: 答案 C .
1 1 因为平均值 因为平均值 2 = ∫ 1 f ( x )dx 1 ( 1)


1 1
f ( x )dx = 4
2
d x sin t 2dt =( ). 3. dx ∫ a 2 2 ( A ) sin x sin a 2 ( C ) sin x
答案: 答案 C .
( B ) a f (a )
2
(C ) 0
( D ) 不存在
答案: 答案 B.
因为
lim
x→ a →

x a
f ( t )dt
xa
f ( x) = lim = f (a ) x →a 1
2 所以 lim F ( x ) = a f ( a ) .
x →a
8
9.
1 cos x ( A) 1 (B) 2
π
.

1
0
1 + cos πx dx =
2

1 0
2 cos
π x
2
dx
17
=( 2
π
sin
πx
2
1
) =
0
2 2
π
5. 设 f ( x ) =

1 x 2
0
e dt ,则 f ′( x ) = 则
t 2
2
答案: 2 xe
(1 x 2 )
.
( x)
a
根据变上限求导公式 公式: 因为, 根据变上限求导公式 ( ∫
7.设 是连续函数,且 7.设 f ( x ) 是连续函数 且 f ( x ) = sin x +

π
0
f ( x )dx ,则 f ( x ) = 则
2 答案 : f ( x ) = sin x + 1π π 解: 令 ∫ f ( x )dx = a
则 f ( x ) = sin x + a
两边积分得到: 两边积分得到

s t 0
f ( tx )dx 与(
(B ) s,t
)有关 有关. 有关 (C ) x , t (D) s
( A ) s,t , x
答案 : D
因为 I = t ( 令 t x= u) ∫ f (tx )dx = t ∫ s = ∫ f ( u)du s 所以, 所以,积分 I = t ∫ t f ( tx )dx 只与 s 有 关 0
则 f ( x ) 有极小值 f (1) =

1 0
( t 1)e t dt = 2 e
7
x x2 8.设 是连续函数, 8.设 f ( x ) 是连续函数 a ≠ 0 , F ( x ) = ∫ a f (t )dt , xa ). 则 lim F ( x ) = (
x→ a →
a2 (A)

1 0
e dx ] = ∫ e dx
x 2 x2 0
1
答案 B
由于在 由于在区间 ( 0,1), e > e
x x2
1
2.如果 f (x) 在 [1, 1] 上连续,且平均值为 2,则 2.如果 上连续 且平均值为 则 ( A )1 ( B ) 1 (C )4

1 1
f ( x)dx =(
).
( A ) 低阶无穷小 ( C ) 同阶但非等价无穷小
( B ) 高阶无穷小 ( D ) 等价无穷小
答案: 答案 B .
因为
x →0
∫ lim
x 0
f ( t ) sin tdt
x 0

t ( t )dt
f ( x ) sin x = lim =0 x → 0 x ( x )
6
7.设 7.设 f ( x ) =
5
6.设 的某邻域内连续,且当 6.设 f ( x ) , ( x ) 在点 x = 0 的某邻域内连续 且当 x → 0 时,
f ( x ) 是 ( x ) 的高阶无穷小 则当 x → 0 时, ∫ 的高阶无穷小,则当

x 0
f ( t ) sin tdt

x 0
t ( t )dt 的 (
).
π
3 2 0
π
2 0
f ( sin x )d( sin x )
= 2 ( sin x )
= 2
13
14.

a a
x[ f ( x ) + f ( x )]dx = (
).
(A ) 4 (C ) 0

a 0
xf ( x )dx
(B ) 2

a 0
x[ f ( x ) + f ( x )]dx
x x
x x
∫x
e x
f ( t )dt ,则 F ′( x ) =( 则
x x
).
( B ) e f (e ) + f ( x ) (D)
e x f (e x ) + f ( x )
答案: 答案 A .
因为 F ′(x) = f (e ) (e )′ f ( x)
x x
=e
x
f (e x ) f ( x )
1
2
1 x ( D ) arcsin b arcsin a
答案: 答案 A .
由于定积分是一个常数 而常数的导数等于零 由于定积分是一个常数, 常数的导数等于零 定积分 常数 等于
所以
d b ∫ a arcsin xdx = 0 dx
4
5.设 是连续函数,且 5.设 f ( x ) 是连续函数 且 F ( x ) = ( A ) e f (e ) f ( x ) ( C ) e f (e ) f ( x )
定积分练习题
一、单项选择题
1.

1 0
e dx 与 ∫ e dx 相比 有关系式 相比,有关系式 有关系式(
x x2 0
1
).
(A) (C )
∫ ∫
1 0 1 0
e dx < ∫ e dx
x x2 0
1
(B )

1 0
e dx > ∫ e dx
x x2 0
1
e dx = ∫ e dx
x x2 0
1
(D) [
sin 2 x 2 sin x cos x = 4 = 2 lim x → 0 sin 2 x sin x
9
10.设 10.设 F ( x ) =

x 0
1 1 1 x dt + ∫ dt ,则 ( 则 2 0 1+ t2 1+ t
).
2 ( C ) F ( x ) ≡ arctan x ( D ) F ( x ) ≡ 2 arctan x
sin x 4 M =∫ π cos xdx = 0 , 2 1+ x 2
N =∫ P=∫
π
2
(sin 3 x + cos 4 x )dx = ∫ π
2
π
2
π
2
cos 4 xdx > 0 ,
π
2
π
2
( x 2 sin 3 x cos4 x )dx = ∫ π
2
π
2
cos4 xdx < 0
分段函数的定积分, 分段函数的定积分 一般采用分段积分


2 0
f ( x )dx = ∫ xdx + ∫ 1 dx
0 1
1
2
1 2 = x 2
1
0
1 3 +1= +1= 2 2
21
10.

1 0
(e x + e x )dx =
答案:
因为. 因为.
ee
1
.
x x 1 0

π
1 0
(e + e )dx = e
0

π
0
f ( x )dx = ∫ (sin x + a )dx
0
π
从而有: 从而有 a = 2 + aπ
2 故 a= 1π
2 因此 f ( x ) = sin x + 1π
19
1 0 cos t 2 dt = 8. lim ∫ x → 0 x sin x
答案: 答案1来自.因为根据洛 因为根据洛必塔法则 根据
10
11.若 11.若

k 0
3 e dx = ,则 k = ( 则 2
2x
).
(A) 1
(B ) 2
( C ) ln 2
1 ln 2 (D) 2
答案: 答案 C .
因为

k 0
1 2x e dx = e 2
2x
k 0
1 2k 3 = (e 1) = 2 2
则 k = ln 2
11
12.积分 12.积分 I = t
f ( t )dt )′ = f ( ( x )) ′( x )
(1 x 2 )
2
f ′( x ) = e
相关文档
最新文档