06空间力系 重心(new)
合集下载
空间力系和重心.ppt

有各力在任意相互垂直的三个坐标轴的每一个轴上的
投影的代数和等于零,以及力系对于这三个坐标轴的
矩的代数和分别等于零。
Fx 0 Fy 0
Fz 0
Mx F 0 My F 0 Mz F 0
§5.4 空间平行力系的中心和物体的重心
一、空间平行力系的中心
若空间力系各合力的作用线相互平行称为空间平行 力系。若力系为一合力,合力的作用点,即是平行力系 的中心。
式中,Rx、Ry、Rz表示合力在各轴上的投影。
已知各力在坐标轴上的投影,则合力的大小和方 向可按下式求得
R Rx2 Ry2 Rz2
2
2
2
Fx Fy Fz
cos Fx / R cos Fy / R
cos Fz / R
式中,α、β、γ分别表示合力与x、y、z轴正向 的夹角。
二、重心的概念
重力的作用点即是空间平行力系的中心,称为物体 的重心。
三、重心和形心的坐标公式
物体重心C的坐标公式为
xC
x i .Wi W
yC
y i .Wi W
zC
z i.Wi W
四、求重心的方法
几种常用的方法:
1.对称法 2.积分法 3.组合法
(按照右手螺旋法则决定之)
空间力对轴的矩等于零的条件
1、力通过轴线
FLeabharlann Fz2、力与轴线平行
Fy Fx
二、合力矩定理
力对轴的矩的解析表示式为
Mx F Fz.yA Fy.zA My F Fx.zA Fz.xA
Mz F Fy.xA Fx.yA
§ 5.3 空间力系的平衡方程及应用
空间任意力系平衡的必要和充分条件是:力系中所
可求出力F 的大小和方
工程力学 第三章 空间力系与重心重点

课时授课计划X=cosαcoscos与坐标轴间的夹角不易确定时,可把力上,得到力在三个坐标轴上的投影分别为sinsincos、、=+在坐标轴上的投影和力沿坐标轴的正交分矢量间的关系可表示为=X,=,,,沿向sin=向sincos沿各轴的分力为=-,称为轴向力,对点。
即力矩的大小为h=2的模等于三角形一致。
因此可得=分别为=X=的大小和方向都与矩心,轴的分力(在垂直于不能使静止的门绕表示力对作用线的距离。
因此,力==±=0)==+=zX-xZ对两个分力,其中=Fsin==-(AB+CD)=-F(l+a)cos==-BC=-Flcos==-?=yZ-zY=(l+a)(-Fcos=zX-xZ=0-(-l)(-Fcos=xY-yX=0-(l+a)(Fsin在三个坐标轴上的投影,即=yZ-zY=zX-xz=xY-yX===表示该力对点。
将力投影到通过对==2在轴上的投影,可用=与+=i+、、(4-8),四个力汇交于点=O, sin45°=0=O, cos45°cos30°cos45°cos30°=0=0, cos45°sin30°+oos30°==3.54kN=8.66kN为正值,说明图中所设。
lllx第六章静力学空间力系重心-精选文档

z
F
B
b C c y
D
力对轴之矩 a A M ( F ) yF zF x z y x b F sin a 0 F sin b M ( F ) zF xF y x z
a ( F cos ) ( c ) F sin Fc sin Fa cos
Northeastern University
第六章 空间力系
重心
1
工程中的空间力系问题
2
力在空间坐标轴上的投影 力对轴之矩
3
4 5
空间力系的平衡方程
重心
PAG 1
Northeastern University
§6-1
工程中的空间力系问题
空间力系:力系各分力的作用线分布在空间,而且不能 简化到某一平面的力系。
y
F3
' ' F , i ) F F 方向 cos( R ix R
PAG 9
Northeastern University
§6-4
空间力系的平衡方程
MO
一、空间一般力系向一点的简化
空间力偶系的合力偶之矩 — 主矩
z M1
B
M M o O i C M i M j M k Ox Oy Oz x M3 [ M ( F )] i [ M ( F )] j [ M ( F )] k x i y i z i ( y F z F ) i ( z F x F ) j ( x F y F ) k i iz i iy i ix i iz i iy i ix
一、空间的力对轴之矩 — 代数量
F
B
b C c y
D
力对轴之矩 a A M ( F ) yF zF x z y x b F sin a 0 F sin b M ( F ) zF xF y x z
a ( F cos ) ( c ) F sin Fc sin Fa cos
Northeastern University
第六章 空间力系
重心
1
工程中的空间力系问题
2
力在空间坐标轴上的投影 力对轴之矩
3
4 5
空间力系的平衡方程
重心
PAG 1
Northeastern University
§6-1
工程中的空间力系问题
空间力系:力系各分力的作用线分布在空间,而且不能 简化到某一平面的力系。
y
F3
' ' F , i ) F F 方向 cos( R ix R
PAG 9
Northeastern University
§6-4
空间力系的平衡方程
MO
一、空间一般力系向一点的简化
空间力偶系的合力偶之矩 — 主矩
z M1
B
M M o O i C M i M j M k Ox Oy Oz x M3 [ M ( F )] i [ M ( F )] j [ M ( F )] k x i y i z i ( y F z F ) i ( z F x F ) j ( x F y F ) k i iz i iy i ix i iz i iy i ix
一、空间的力对轴之矩 — 代数量
2、空间力系平衡、重心

解:取铰D 脱离体, 为 脱离体, 画受力图如 所示, 图b所示, 各力形成空 间汇交力系。 间汇交力系。
由ΣFx =0, cos60 sin60 60ºsin60º+ cos60 sin60 60ºsin60º= -NADcos60 sin60 + NBDcos60 sin60 =0 NAD=NAD 得 由ΣFy =0, Tcos60 +NCDcos60 -NADcos60 cos60 -NBDcos60 cos60 =0 cos60º+ cos60º- cos60ºcos60 cos60º- cos60ºcos60 cos60º=0 FG+NCD-0.5NAD-0.5NBD=0 得 由ΣFz =0, NADsin60 +NCDsin60 +NBDsin60 ―T sin60 ―FG=0 sin60 60º+ sin60 60º+ sin60 60º― sin60 60º― 866( 866+ 得 0.866(NAD+ NCD+ NBD)-(0.866+1)FG=0 联立求解得 NAD =NBD =31.55kN , NCD=1.55kN。 。
球形铰链
2、向心轴承 、
4、 、 向 心 推 力 轴 承
6、空间固定端 、
例 3 - 3 : 用三角架 ABCD 和绞车提升一重物如图 所示。 为一等边三角形, 所示。设ABC为一等边三角形,各杆及绳索均与水 平面成60 的角。 60º的角 30kN, kN,各杆均为二力 平面成60 的角。已知重物FG=30kN,各杆均为二力 滑轮大小不计。 杆 , 滑轮大小不计 。 试求重物匀速吊起时各杆所 受的力。 受的力。
[例] 已知: RC=100mm, RD=50mm,Px=466N, Py=352N, Pz=1400N。求: 例 平衡时(匀速转动)力Q=?和轴承A , B的约束反力?
理论力学-空间力系与重心

右手螺旋法则:
拇指指向与z轴一致为正,反之为负。
1、定义
参见动画:力对轴的矩(2)
动画
力对轴的矩
力对轴的矩等于零的情形 : 力和轴平行; 力的作用线与轴相交。
当力与轴在同一平面时,力对该轴的矩等于零。
参见动画:力对轴的矩等于零
力对轴的矩之解析表达式 如力F在三个坐标轴上的投影分别为Fx,Fy,Fz,力作用点A的坐标为x,y,z,则 参见动画:力对轴的矩解析表达式
(2)若 ,则力系可合成为一个合力,主矢 等于原力系合力矢 ,合力 通过简化中心O点。(此时与简化中心有关,换个简化中心,主矩不为零)
(3)若 此时分三种情况讨论。
②
即:①
既不平行也不垂直时
③
可进一步简化为一合力。
O
R
M
d
F
=
¢
r
合力作用线距简化中心为d
①若
②若
参见动画:空间力在正交轴上的投影
2.二次投影法
先将力投影到对应的坐标面上,然后再投影到相应的坐标轴上,这种方法称为二次投影法(间接投影法)。 Fx=Fsin cos Fy = Fsin sin Fz =Fcos Fxy=Fsin 参见动画:二次投影法
例题
三棱柱底面为直角等腰三角形,在其侧平面ABED上作用有一力F,力F与OAB平面夹角为30º,求力F在三个坐标轴上的投影。
空间力系简化的实际意义
—俯仰力矩
飞机仰头
—偏航力矩
飞机转弯
—滚转力矩
飞机绕x轴滚转
—侧向力
飞机侧移
—有效升力
飞机上升
—有效推进力
飞机向前飞行
参见动画:空间力系简化的实际意义
2、空间任意力系的简化结果分析
拇指指向与z轴一致为正,反之为负。
1、定义
参见动画:力对轴的矩(2)
动画
力对轴的矩
力对轴的矩等于零的情形 : 力和轴平行; 力的作用线与轴相交。
当力与轴在同一平面时,力对该轴的矩等于零。
参见动画:力对轴的矩等于零
力对轴的矩之解析表达式 如力F在三个坐标轴上的投影分别为Fx,Fy,Fz,力作用点A的坐标为x,y,z,则 参见动画:力对轴的矩解析表达式
(2)若 ,则力系可合成为一个合力,主矢 等于原力系合力矢 ,合力 通过简化中心O点。(此时与简化中心有关,换个简化中心,主矩不为零)
(3)若 此时分三种情况讨论。
②
即:①
既不平行也不垂直时
③
可进一步简化为一合力。
O
R
M
d
F
=
¢
r
合力作用线距简化中心为d
①若
②若
参见动画:空间力在正交轴上的投影
2.二次投影法
先将力投影到对应的坐标面上,然后再投影到相应的坐标轴上,这种方法称为二次投影法(间接投影法)。 Fx=Fsin cos Fy = Fsin sin Fz =Fcos Fxy=Fsin 参见动画:二次投影法
例题
三棱柱底面为直角等腰三角形,在其侧平面ABED上作用有一力F,力F与OAB平面夹角为30º,求力F在三个坐标轴上的投影。
空间力系简化的实际意义
—俯仰力矩
飞机仰头
—偏航力矩
飞机转弯
—滚转力矩
飞机绕x轴滚转
—侧向力
飞机侧移
—有效升力
飞机上升
—有效推进力
飞机向前飞行
参见动画:空间力系简化的实际意义
2、空间任意力系的简化结果分析
空间力系 重心

(2)方向:转动方向
(3)作用面:力矩作用面.
MO ( F ) r F
第六章 空间力系 重心
§6–3 力对点的矩和力对轴的矩
力对轴的矩
M z ( F ) M O ( Fxy ) Fxy h
力与轴相交或与轴平行(力与轴在同一平面内),力 对该轴的矩为零。
重心C的矢径
Pi ri rC Pi
式中的ΔPi可以是物体中任一部分的重量,而不仅限于微元体。 对由简单形体组成的物体,可用这种方法求重心,称为分割法。
第六章 空间力系 重心
1.计算重心坐标的公式 对y轴用合力矩定理
P xC P x1 P x2 .... P xn P xi 1 2 n i
(1)实际重心偏后,飞机拉起时尾部摩擦跑道导致起火; (2)实际重心偏前,飞机冲到跑道尽头仍然拉起困难;
(3)直升机重心偏离旋翼轴心,使飞行员难以操纵飞机。
第六章 空间力系 重心
•重心:物体所受的重力是一种体积 分布力。不论物体如何放置,其重力 的合力作用线相对于物体总是通过一 个确定的点,这个点称为物体的重 心 。
如一空间力系由F1、F2、…、Fn组成,其合
力为FR,则合力FR对某轴之矩等于各分力对同
一轴之矩的代数和。
M z ( FR ) M z ( Fi )
i
第六章 空间力系 重心
§6–4 空间任意力系向一点的简化· 主矢和主矩
•简化过程:
将力系向已知点 O 简化 —— O 点称为简化中心。
R
z
Rx
第六章 空间力系 重心
活页铰
第六章
空间力系 重心
滑动轴承
第六章
第4章 空间力系与重心

7
机电工程学院
2019/4/24
4.1.1 力在空间轴上的投影
2)二次投影法 力在轴上的投影为代数量,其正负号规定:从力的起点 到终点若投影后的趋向与坐标轴正向相同,力的投影为正; 反之为负。而力沿坐标轴分解所得的分量则为矢量。虽然两 者大小相同, 但性质不同。
8
机电工程学院
2019/4/24
4.1 空间力系的平衡
以z 轴表示转动,力F使物体绕 z轴转动的效应,用力 F对 z 轴之矩MO(F)来度量。当力F作用于Oxy坐标面内时,显然有
MO(F)=MO(F)=±Fd
正负号按右手螺旋法则确定,即 以四指表示力矩转向,如大拇指 所指方向与 z 轴正向一致则取正 号,反之取负号。
11
机电工程学院
2019/4/24
4.1.2 力对轴之矩
2019/4/24
4.1.2 力对轴之矩
1)力对轴之矩的概念 力对轴之矩等于零的情形: ①当力与轴相交时(d=0), ②当力与轴平行时( Fxy=0 )。即当力与轴共面时,力对轴 之矩为零。
15
机电工程学院
2019/4/24
4.1.2 力对轴之矩
2)合力矩定理
合力对平面上任一点之矩等于各分力对同一点之矩的代数和。 空间力系的合力对某一轴之矩等于力系中各分力对同一轴
1)力对轴之矩的概念
力对轴之矩的单位是N· m,它是一个代数量。 正负号可用右手螺旋法则来判定:用右手握住转轴,四指 与力矩转动方向一致,若拇指指向与转轴正向一致时力矩为 正; 反之,为负。
也可从转轴正端看过去,逆时针转向的力矩为正, 顺时针 z z z 转向力矩为负。
- + - +
14
机电工程学院
31
机电工程学院
机电工程学院
2019/4/24
4.1.1 力在空间轴上的投影
2)二次投影法 力在轴上的投影为代数量,其正负号规定:从力的起点 到终点若投影后的趋向与坐标轴正向相同,力的投影为正; 反之为负。而力沿坐标轴分解所得的分量则为矢量。虽然两 者大小相同, 但性质不同。
8
机电工程学院
2019/4/24
4.1 空间力系的平衡
以z 轴表示转动,力F使物体绕 z轴转动的效应,用力 F对 z 轴之矩MO(F)来度量。当力F作用于Oxy坐标面内时,显然有
MO(F)=MO(F)=±Fd
正负号按右手螺旋法则确定,即 以四指表示力矩转向,如大拇指 所指方向与 z 轴正向一致则取正 号,反之取负号。
11
机电工程学院
2019/4/24
4.1.2 力对轴之矩
2019/4/24
4.1.2 力对轴之矩
1)力对轴之矩的概念 力对轴之矩等于零的情形: ①当力与轴相交时(d=0), ②当力与轴平行时( Fxy=0 )。即当力与轴共面时,力对轴 之矩为零。
15
机电工程学院
2019/4/24
4.1.2 力对轴之矩
2)合力矩定理
合力对平面上任一点之矩等于各分力对同一点之矩的代数和。 空间力系的合力对某一轴之矩等于力系中各分力对同一轴
1)力对轴之矩的概念
力对轴之矩的单位是N· m,它是一个代数量。 正负号可用右手螺旋法则来判定:用右手握住转轴,四指 与力矩转动方向一致,若拇指指向与转轴正向一致时力矩为 正; 反之,为负。
也可从转轴正端看过去,逆时针转向的力矩为正, 顺时针 z z z 转向力矩为负。
- + - +
14
机电工程学院
31
机电工程学院
工程力学第6章 空间力系重心

载荷F。钢丝OA和OB所构成的
平面垂直于铅直平面Oyz,并与
该 平 面 相 交 于 OD , 而 钢 丝 OC
则沿水平轴y。已知OD与轴z间
的 夹 角 为 β , 又 ∠ AOD =
∠BOD = α,试求各钢丝中的
拉力。
空间汇交力系
例题4
A
D
Bz F3
F2 αα β
x
O
yC F1
解: 取O点为研究对象,受
力分析如图所示,这些力构 成了空间共点力系。
F
空间汇交力系
例题4
力F2与x轴之间 的 夹 角 为 90o - α , 故它在该轴上的投 影为:
F2x F2 cos (90o ) F2 sin
空间汇交力系
例题4
DB z
A
F' F3
F2 αα β
x
O
yC F1
列平衡方程
Fx 0, F2 sin F3 sin 0 Fy 0,
例题3
Fx
Fz
6-4 空间力系的平衡方程
空间力系的平衡方程为:
Fx 0, mx (F ) 0 Fy 0, my (F ) 0 Fz 0, mz (F ) 0
空间汇交力系
例题4
如图所示为空气动力天平
上测定模型所受阻力用的一个
悬挂节点O,其上作用有铅直
Fz 0,
FAz FBz (F3 F4 ) cos 30 (F1 F2 ) 0
Mx 0, FAZ 0.25 m FBZ 1.25 m (F3 F4) cos 30 0.75 m 0
M y 0, (F1 F2 ) 0.4 m (F3 F4 ) 0.2 m 0 Mz 0, FAx 0.25 m FBx 1.25 m (F3 F4 )sin 30 0.75 m 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合力偶Mo称为力系的主矩
M ox M x F M oy M oz
空间力系的平衡方程:
y
M F M F
z
Fx 0, Fy 0, Fz 0
M x F 0, M y F 0, M z F 0
空间汇交力系的平衡方程:
Fx 0 Fy 0 Fz 0
§6-3 力对轴之矩
1、力对轴之矩概念
定义:力使物体绕某一轴转动效应的量度,称为力对该轴 之矩,是用来量度力使物体绕轴转动效应的物理量。
F对转轴z的矩:
mz F mo F2 F2 d
Fz
Fy
Fx
通常规定:从z轴 的正向看去,逆 时针方向转动的 力矩为正,顺时 针方向转动的力 矩为负。
y
xC
重心坐标式
xi Ai A y A yC i i A
o
xc
C yc
x
§6-7 物体重心的求法
1、对称性法—当研究的物体具有对称轴、对称面或对称中心的均抽物体,其
重心一定在对称轴、对称面或对称中心上。
2、分割法—将形状较复杂的物体分成具有简单几何形状的几个部分,每一部 分容易确定,然后,再根据重心坐标求出组合形体的重心(简单几何图形的重 心坐标公式可以查表)。
mx W
W1
Wn W2 z 2 zn x1 W xc x2
c
m W ,
n x i i 1
z1 z
y1 y2 X
Y xn
y
c
W . yC W1 y1 W2 y 2 Wn y n my W
m W ,
n y i i 1 n z i i 1
xiVi V y V yC i i V z iVi zC V xC
重心坐标式
均质物体的重心也称 为物体的形心
3、均质薄板的重心 设板厚度为h,面积为A,将薄板分成若干微小部分,每 个微小部分的面积为A1,A2,……An
V hA V1 hA1 ,V2 hA2 ,,Vn hAn
空间平行力系的平衡方程: FZ 0
M F 0
M x F 0
y
例6-2 图示为一车床的主轴。齿轮C半径为100mm,卡盘D夹持一半径为 50mm的工件,A为向心推力轴承,B为向心轴承。切削时工件等速转动, 车刀给工件的切削力Px=466N、Py=352N、Pz=1400N,齿轮C在啮合处受 力为Q,作用在齿轮C的最低点。不考虑主轴及其附件的质量,试求力Q 的大小及A、B处的约束反力。
如以Wi mi g ,W Mg代入, 可得质心的坐标公式 :
mi xi xC M mi yi yC M mi z i zC M
2、均质物体的重心坐标公式 均质物体的重量是均布的,如物体单位体积的重量为γ, 物体体积为V,则:
W V 物体每个微小部分的重 量分别为 : W1 V1 ,W2 V2 ,,Wn Vn
例6-1
解:力F在三轴上的投影为:
Fx Ft F cos sin Fz Fr F sin
(圆周力)
(径向力)
F对y轴之矩为:
m y F m y Ft F r cos sin
Fy Fa F cos cos (轴向力)
2、合力矩定理 空间力系的合力对某一轴之矩等于力系中各分力对同一轴 之矩的代数和。
即 : m F m F
x R x
mx FR mx F1 mx F2 mx Fn
§6-4 空间力系的平衡方程
空间汇交力系的合力FR’称为力系的主矢,即
F ' Rx Fx F ' Ry Fy F ' Rz Fz
F 'R F ' F
力系简化
平衡条件及方程
静力学基本原理的两个推论:
(1) 力的可传性原理:作用于刚体上的力,其作用点可以沿着作用线移动 到该刚体上任意一点,而不改变力对刚体的作用效果。 必须强调的是,力的可传性原理只适用于刚体而不适用于变形体。当研究物 体的内力、变形时,将力的作用点沿着作用线移动,必然使该力对物体的内效应 发生改变。 在考虑刚体的平衡问题时,力的三要素可改为“大小、方向、作用线”。 (2) 三力平衡汇交原理:若刚体在三个互不平行的力作用下处于平衡,则此 三个力的作用线必在同一平面内且汇交于一点。 由此可知,刚体受不平行的三力作用而平衡时,如果已知其中两个力的方向,
已知F在三轴x,y,z上的投影,也可求出力F的大小和方向:
F Fx2 Fy2 Fz2 cos cos cos Fx Fx2 Fy2 Fz2 Fy Fx2 Fy2 Fz2 Fz Fx2 Fy2 Fz2
cos2 cos2 cos2 1
§6-2 力在空间坐标轴上的投影
力F在三个坐标轴上的投影:
Fx F cos Fy F cos Fz F cos
二次投影法:先将力F投影到 oxy坐标平面上,以F’表示, 然后再将F’投影到x轴和y轴 上:
Fx F sin cos Fy F sin sin Fz F cos
悬挂法
A C B B A
称重法
A
B
W xC L
R
简单形体的形心
作业
6-4 6-9 6-10(a) 6-13
静力学复习
研究内容
平面汇交力系 平面力系 平面力偶系 平面平行力系 平面一般力系 难点:考虑摩擦时物体的平衡问题 空间力系:力的投影,平衡条件及平衡方程,简化为平面 力系 物体重心的求法
二、画受力图—约束反力、局部受力
三、力系的平衡条件与平衡方程 1、力系平衡的必要和充分条件
n n n FR Fi 0 , M O M O ( Fi ) (ri Fi ) 0 i 1 i 1 i 1
力系平衡的必要和充分条件是:力系的主矢和力系对任一点的主矩分别等于零。 特例: (1)汇交力系平衡的必要和充分条件:力系的合力等于零。 用几何法求解时,平衡条件可理解为:力多边形自行封闭。 用解析法求解时,平衡条件可理解为:合力在任一坐标轴上的投影为零。 (2)力偶系平衡的必要和充分条件:合力偶矩等于零,即空间力偶系中所有力 偶矩矢的矢量和等于零,平面力偶系中所有力偶的力偶矩代数和等于零。 2、空间一般力系的平衡方程
可得偏心块C的坐标分别为:
xC 0, yC 3.9cm
实验法测算重心
出于以下两种原因,需要运用实验的方法来测算物体的重心。
(1)由于实际物体外形非常复杂,应用前述的方法难以求出物体的重
心,需要通过实验测算。 (2)对复杂物体进行初步设计后,由于加工误差,成型产品与设计值 有一定的差别,为了准确获得物体(产品)重心,需要通过实验测算 物体的重心。 实验方法主要有:悬挂法和称重法。
b
q
C
b
q
B
A C
qm
B
2l / 3
l
二、画受力图
可将画受力图时应注意的问题归纳如下: (1)不要漏画力 必须搞清楚所研究的对象(受力物体)与周围哪些物体(施力物体)相接触。在接触点处 均可能有约束反力。 (2)不要多画力 力是物体间的相互作用。对受力图上的每一个力,都应能明确指出它是由哪一个施力 物体施加的。如 某一个力指不出施力物体,该力则为多画的力。 (3)不要画错约束反力的方向 约束反力的方向必须严格按照约束的性质确定,不能凭主观感觉猜测。 (4) 注意作用与反作用关系 在两物体相互联结处,注意两物体之间作用力与反作用力的等值、反向、共线关系。 (5)注意区分内力和外力 所谓内力,是指系统内部各物体之间的相互作用力。所谓外力,是指系统以外的其他物体对系统的作 用力。内力和外力的区分不是绝对的,而是相对的。当所取的脱离体不同时,原来是内力的力可能转化为外 力。反之亦然。 内力总是成对出现。 (6) 约束反力的一致性 同一个约束反力,在各受力图中的表示、假设指向都必须一致。
F
i 1 n i 1
n
ix
0,ቤተ መጻሕፍቲ ባይዱ
F
i 1
n
iy
0,
n
F
i 1
n
iz
0 M Oz ( Fi ) 0
n i 1
M Ox ( Fi ) 0 ,
解:(1)选取研究对象 (2)画受力图
向心轴承B的约束反力为 两个,向心推力轴承A处 约束反力为三个。
(3)列出空间力系的 平衡方程。
方法一 直接应用空间力系平衡 方程求解
方法二 将空间力系平衡问题转化为平面力系平衡问题来解
例6-3 如图示,转轴AB,已知胶带张力S1=536N,S2=64N, 圆柱齿轮节圆直径D=94.5mm,压力角α=20O,求(1)齿 轮C所受的力P;(2)轴承A,B处的约束反力,尺寸单位 为mm
则第三个力的方向就可以按三力平衡汇交原理确定。
一、求约束反力
约束反力类型: Fy T Fx N 柔体约束 光滑接触面约束 柱铰链和固定铰支座 可动铰支座 Fy Fx Fy m F
Fx
中间铰 固定端支座
FN
滑槽与销钉
轴承约束
向心轴承
荷载按分布形式可分为 集中力,力偶,分布载荷; R R a
A l/2 l
r
b
x
三部分的面积及其坐标为:
4R A1 ; y1 2 3 r b 2 4r b A2 ; y2 2 3 A3 r 2 ; y3 0
y R
R 2
r b
x
3 yi Ai y1 A1 y2 A2 y3 A3 4 R 3 r b yC 3.9cm 2 2 2 A A1 A2 A3 3 R r b r