第三章--道路纵断面设计
3.第三章 纵断面设计

第三章纵断面设计一、填空题1、在公路路线纵断面图上,有两条主要的线:一条是();另一条是()。
2、纵断面的设计线是由()和()组成的。
3、纵坡度表征匀坡路段纵坡度的大小,它是以路线()和()之比的百分数来度量的。
4、新建公路路基设计标高即纵断面图上设计标高是指:高速、一级公路为()标高;二、三、四级公路为()标高。
5、汽车在公路上行驶的主要阻力有()阻力、()阻力、()阻力和()阻力等四种。
6、缓和坡段的纵坡不应大于(),且坡长不得()最小坡长的规定值。
7、二、三、四级公路越岭路线的平均坡度,一般使以接近()和()为宜,并注意任何相连3KM路段的平均纵坡不宜大于()。
8、转坡点是相邻纵坡设计线的(),两坡转点之间的距离称为()。
9、在凸形竖曲线的顶部或凹形竖曲线的底部应避免插入()平曲线,或将这些顶点作为反向平曲线的()。
10、纵断面设计的最后成果,主要反映在路线()图和()表上。
11、设置爬坡车道的目的主要是为了提高高速公路和一级公路的________,以免影响_________的车辆行驶。
二、选择题1、二、三、四级公路的路基设计标高一般是指()。
A 路基中线标高B 路面边缘标高C 路基边缘标高 D路基坡角标高2、设有中间带的高速公路和一级公路,其路基设计标高为()。
A 路面中线标高B 路面边缘标高C 路缘带外侧边缘标高D 中央分隔带外侧边缘标高3、凸形竖曲线最小长度和最小半径地确定,主要根据()来选取其中较大值。
A 行程时间,离心力和视距B 行车时间和离心力C 行车时间和视距D 视距和理性加速度4、竖曲线起终点对应的里程桩号之差为竖曲线的()。
A切线长 B 切曲差 C 曲线长5、平原微丘区一级公路合成坡度的限制值为10%,设计中某一路段,按平曲线半径设置超高横坡度达到10%则此路段纵坡度只能用到( ).A 0%B 0.3%C 2% D3%6、汽车在公路上行驶,当牵引力的大小等于各种行驶阻力的代数和时,汽车就()行驶。
第三章 公路纵断面设计 4.21

加以控制。
2)经行时间不宜过短
当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径 较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏 忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线 形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能
太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3
秒钟。
1)计算竖曲线要素 ω=i1-i2=5%-(-4%)=0.09所以该竖曲线为凸形竖曲线 曲线长:L=Rω=2000×0.09=180m 切线长:T=L/2=180/2=90m
T2 902 2.03 外距: 2 R 2 2000
2)竖曲线起、终点桩号
竖曲线起点桩号=(K3+030.00)-90=K2+940.00 竖曲线终点桩号=(K3+030.00)+90=K3+120.00
思考题与习题:
1.某公路变坡点的桩号为 K2+260,高程为387.62m ,前 一坡段 i1=5% ,后一坡i2=1%;竖曲线的半径R=5000m ; 试确定: 1)判别竖曲线的凹凸性,计算竖曲线的要素; 2)计算竖曲线起终点的桩号; 3)计算 K2+200.00 、K2+240.00 、K2+380.00 、 K2+500.00各点的设计标高。 2.山岭重丘区某三级公路,时速30KM/h,某坡段为 6% 坡 长采用 300m;紧接设坡度为5%的坡,坡长采用 200m, 问 在其后面是否还能接7%的陡坡?坡长最长为多少?
凹形竖曲线 i1
O1
ω =|i1-i2|
i2
i3 O2
ω =|i2-i3|
第三章纵断面设计介绍

(四)汽车的动力因数
T Rw D ( f i) a G g
表征某型汽车在海平面高程上,满载情况下, 每单位车重克服道路阻力和惯性阻力的性能
g
D f i
a
g
a
(五)汽车的行驶状态
g a (D )
f i
汽车的行驶状态有以下三种情况: • 加速行驶 • 等速行驶 • 减速行驶 • 在动力特性图上,等速行驶的速度称为平衡速度。 • 每一排档都存在各自的最大动力因数,与之对应的速度称 作临界速度。
路堤
路堑
第二节 汽车的动力特性与纵坡
保证汽车在道路上行驶的稳定性 尽可能提高车速 保证道路上的行车畅通 尽量满足行车舒适
§ 3.2 汽车的动力特性与纵坡
• 加速最快的汽车:
Dauer 962 Le Mans 产地: 德国 出厂日期:1994年 0-100km/h耗时2.6秒
跑的最快的汽车: 最高荣誉在1987年被奥斯莫 比尔部夺得,他们研制的“航天 技术1号”未来车在德克萨斯汽 车测试场上创下了当今 447km/h的世界最高纪录,享 有“世界第一快车”的美称。
最小纵坡:
各级公路在特殊情况下容许使用的最小坡度值。 最小纵坡值:0.3%,一般情况下0.5%为宜。 适用条件:排水不畅路段:长路堑、桥梁、隧道、 设超高的平曲线等。
当必须设计平坡(0%)或小于0.3%的纵坡时,边 沟应作纵向排水设计。
干旱少雨地区最小纵坡可不受上述限制。
平均纵坡(average gradient) 1)平均纵坡----指一定路线长度范围内,路线两 端点的高差与路线长度的比值。 二、三、四级公路越岭线的平均纵坡: 2)相关规定 ① 相对高差200~500m 不应大于 5.5% ② 相对高差>500m 不应大于 5%
城市道路纵断面设计3

★视觉是连接道路与汽车的媒介。从安全的角度,道路线形要使行车具有足 够的心理舒适感和安全感,能够对道路情况判断准确。
★视觉分析的意义在于将道路的线形、周边环境质量与驾驶人员在行车 中的动态视距及其心理反应联系起来,体现几何设计以人为本的思想。
设置在两个坡段的转折处,为了便于行车,插入一段曲线来缓和,这条曲线 称为竖曲线,一般可采用圆曲线或抛物线。
1.竖曲线计算要素(抛物线)
1)基本方程式
ω为变坡点前后纵坡线的坡度差 ω = i2 - i1
2)竖曲线诸要素公式
2.竖曲线的最小半径
在竖曲线设计中,决定竖曲线最小半径或最小长度的三个限制因素: 1)缓和超重(或失重)冲击 2)行程时间不至于过短 3)满足视距的要求
(a)平竖曲线对应 (b)平竖曲线错位
平面 纵断面 平面 纵断面
(2)平曲线和竖曲线大小要保持均衡
平曲线和竖曲线,其中一方大而平缓,就应该注意另一方不要形成多而小的线形。
平曲线与竖曲线半径的均衡
平曲线半径(m) 竖曲线半径(m)平曲线半径(m) 竖曲线半径(m)
600
10000
1100
30000
ห้องสมุดไป่ตู้
700
(R<150m,取5的倍数;R〉150m,取10的倍数,R〉250m,取50的倍数, R〉1000m,取100的倍数;横向力系数 0.1,横坡2% )
4、某城市Ⅰ级主干道,红线宽40m,设计车速为40km/h,路现在一大型建筑物与湖泊间 通过,转角60度,转折点IP离湖岸边A为51.3m,建筑物外侧B到A点的距离为41m,试求 路中线最大可能的平曲线半径值。(图三) 5、试绘制武科大大内前和平大道的横断面图,并加以说明。
53道路勘测设计 1第三章纵断面设计第12节1sPPT课件

设计线
资料栏
直坡线(均匀坡度线)
竖曲线
2020/11/7
凹形竖曲线
凸型竖曲线
《道路勘测设计》
2020/11/7
纵断面设计简图
《道路勘测设计》
1、地面线:
它是根据中线上各桩点的高程而点绘的一条不规则的折线, 它反映沿着中线原地面的起伏变化情况。 (1)绘制比例
横向:里程,一般1:2000、1:1000、1:500 纵向:高程,一般1:200、1:100、1:50 (2)地面高程的测绘 测量:基平测量
设计标高
高速公路、一级公路、有中央分隔带的城市道路
设计标高
设计标高
新建公路
2020/11/7
旧路改建、城市道路
设计高程位置图
《道路勘测设计》
4、沿河及可能受水浸淹的道路,按设计标高推算的最低侧路基
边缘标高,应高出表3.1规定洪水频率计算水位加壅水高、波
浪侵袭高和0.5m的安全高度。
路基设计洪水频率
《道路勘测设计》
第一节 概 述
• 一、概述 • 二、路线纵断面图的构成 • 三、路线纵断面图上的设计标高——路
基设计标高(design elevation of subgrade)
2020/11/7
《道路勘测设计》
三、路线纵断面图上的设计标高——路基设计标高
(design elevation of subgrade) 1、新建公路的路基设计标高 (1)高速公路和一级公路采用中央分隔带的外侧边缘标
路线纵断面图(vertical pro) -----反映路线在纵断面上 的形状、位置及尺寸的图形
纵断面设计:在路线纵断面图上研究路线线位高度 及坡度变化情况的过程。
第三章 纵断面设计

二、坡长限制
坡长是纵断面上相邻两变坡点间的长度。
坡长限制,主要是对较陡纵坡的最大长度和一般纵坡的最小
长度加以限制。
坡长
1.最小坡长限制
(1)原因:
若坡长过短,则变坡点个数增加,行车时颠簸频繁,影 响行车平顺性;
(2)最小坡长要求
最小坡长通常规定汽车以设计速度行驶9s~15s的行程为宜。
2.最大坡长限制
二、路线纵断面图构成: 地面线:根据中桩点的高程绘的一条折线; 设计线:路线上各点路基设计高程的连线。 变坡导线:变坡点间的连线
三、路基设计标高 1.新建公路:
① 高速、一级公路采用中央分隔带外侧边缘标 高;
② 二、三、四级公路采用路基边缘标高,在 设置超高和加宽路段时则是指设置超高加宽之前 该处标高;
竖曲线终点桩号: ZD=BPD + T
切线高程:
HT H0 i1(T x)
Hs HT y
(凸竖曲线取“-”,凹竖曲线取“+”) 其中: y—竖曲线上任一点竖距; y x2
2R 直坡段上,y=0。
x—竖曲线上任一点离开起(终)
点距离;
H1
H0 BPD
H1
y
i1
HS
i2
x
[例]:某山岭区一般二级公路,变坡点桩号为k5+030.000,高程 H1=427.68m , i1=+5% , i2=-4% , 竖 曲 线 半 径 R=2000m 。 试 计 算竖曲线诸要素以及桩号为k5+000.000和k5+100.000处的设计高 程解。:1.计算竖曲线要素
2R
8 84
三、逐桩设计高程计算 1.纵断面设计成果:
变坡点桩号BPD 变坡点设计高程H 竖曲线半径R
第三章纵断面设计
19
纵断面设计
三 公路竖曲线设计
4、竖曲线的凸、凹
当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。
凸形
当 i1- i2为正值时,则为凸形竖曲线
凹形
当 i1 - i2 为负值时,则为凹形竖曲 线
20
纵断面设计
三 公路竖曲线设计
5、竖曲线基本方程 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: 若取抛物线参数为竖曲线的半径 ,则有:
7
纵断面设计
二 纵坡及坡长设计
1 汽车行驶与公路纵坡的关系
汽车在公路上行驶的阻力 汽车行驶的条件
汽车在坡道上的行驶要求
空气阻力 滚动阻力 坡度阻力 惯性阻力 必要条件:牵引力 充分条件:牵引力
纵坡度力求平缓; 陡坡宜短;
≥ 各项阻力之和
≤ 轮胎与路面之间的附着力
纵坡度的变化不宜太多
纵断面设计线的组成:直线(均坡度线)和竖曲线。其中: 直线(即均坡度线)有上坡和下坡,是用水平长度及纵坡 度表示的。 纵坡度表征匀坡路段坡度的大小,用高差与水平长度之比 量度,即:
i
h (%) l
转坡点(变坡点):两相临坡度不同的纵坡线的交点; 高差(h):相临两变坡点间的高程差;
坡长(L):相临两变坡点间的水平距离
充要条件:阻力之和≤牵引力≤轮胎与路面的附着力
8
纵断面设计
二 纵坡及坡长设计
2 最大纵坡、最小纵坡和坡长限制
(1)最大纵坡 最大纵坡是指在纵坡设计时各级道路允许使用的最大坡度值。
确定最大纵坡应考虑的因素
汽车的动力性能;公路等级;自然因素
最大纵坡的确定
最大纵坡是公路纵断面设计的重要控制指标。 最大纵坡是各级公路纵坡限制值,只有在山岭区路线特别困难时采用。 各级公路规定的最大纵坡值如下:
机工社道路勘测设计教学课件第三章3-1概述3-2纵坡设计
30
3.2 纵坡设计
10、 其它有关纵坡的规定
(2)隧道部分路线的纵坡
避险车道应设置在车辆可能失控的连续长陡下坡路段,一般情况, 当平均纵坡≥4%,陡坡长度≥3km,交通组成中大、中型车辆比例偏高 时,应考虑设置避险车道。
29
3.2 纵坡设计
10、 其它有关纵坡的规定
(1)桥上及桥头路线的纵坡:
1)小桥处的纵坡应随路线纵坡设计。 2)桥梁及其引道的平、纵、横技术指标应与路线总体布设相协调。各项技术指
40
25
2)单一纵坡坡长超过不同纵坡的最大坡长或上坡路段的设计通行能力小 于设计小时交通量。
3)经设置爬坡车道与改善主线纵坡不设爬坡车道技术经济比较论证 ,设置爬坡车道的效益费用比、行车安全性较优。
25
3.2 纵坡设计
8、爬坡车道
(4)爬坡车道的设计: 1)横断面组成: 爬坡车道设于上坡方向正线行车道右侧,宽度一般 为3.5m,包括设于其左侧路缘带的宽度0.5m。
26
3.2 纵坡设计
8、爬坡车道
(4)爬坡车道的设计: 2)平面布置与长度
公路等级
分流渐变段长度(m)
合流渐变段长度(m)
高速公路、一级公路
100
150~200
二级公路
50
90
27
3.2 纵坡设计
8、爬坡车道
(4)爬坡车道的设计: 3)爬坡车道的起、终点
爬坡车道起点应位于陡坡路段上载重汽车运行速度降低至“容许最低速度”之 处;爬坡车道的终点,应设于载重汽车爬经陡坡路段后恢复至“容许最低速度” 处,或陡坡路段后延伸的附加长度的端部。该陡坡路段后延伸的附加长度规定如 表。
道路勘测设计 第三章 道路纵断面设计
四级 20 10.0
2、《规范》规定的最小合成坡度: 最小合成坡度不宜小于0.5%
当合成坡度小于0.5 %时,应采取综合排水措施,以保证路面排水畅通
3.2 纵断面坡度和坡长设计的技术标准
五、平均纵坡标准:
平均纵坡是指一定长度的连续上坡或下坡路段,纵向所克服的
高差H与路线长度L之比
I均
H L
H2 H1 L2 L1
折减值(%)
1
2
3
3.2 纵断面坡度和坡长设计的技术标准
四、合成坡度标准:
➢ 合成坡度是指由路线纵坡与弯道超高横坡(或路拱横坡) 组合而成的坡度,其方向即流水方向
➢ 合成坡度的计算公式为:
I i横2 i纵2
式中:I ——合成坡度(%) i横——超高横坡度或路拱横坡度(%) i纵——路线设计纵坡坡度(%)
一、竖曲线的设置原因、形状及设计原理:
1、设置竖曲线的作用: ➢ 缓和纵向变坡处行车动量变化而产生的冲击作用 ➢ 确保公路纵向行车视距 ➢ 与平曲线恰当组合,有利于路面排水、改善行车的视线
诱导作用及行车舒适感 2、竖曲线的形状:圆曲线或抛物线
《规范》规定宜用圆曲线
3.3 纵断面竖曲线设计的技术标准
BPDn-1 Hn-1
HT = Hn - in( BPDn - LP)
5、竖曲线上加桩点设计高程的计算:
设计高程:
HS = HT ± y
(凸竖曲线取“-”,凹竖曲线取“+”)
其中: y ——竖曲线上任一点纵距;y x2
直坡段上,y=0
2R
x ——竖曲线上任一点离开起(终)点距离
LP—BPDn-1
Hn
x
HT
第三章 道路纵断面设计分析
x2 2R
后半支计算:
h后半支
(L x)2 2R
x L-x
§3.3 竖曲线设计
3.缓坡段 在纵断面设计中,当陡坡的长度达到限制坡长时,应安排一段缓坡 ,用以恢复在陡坡上降低的速度。同时,从下坡安全考虑,缓坡也是 需要的。一般情况下,缓坡段的纵坡应不大于3%,其长度应不小于最 短坡长。
§3.3 竖曲线设计
竖曲线: 竖曲线的凸、凹性: 竖曲线的作用: 竖曲线的线形: 一、竖曲线的数学模型 二次抛物线竖曲线方程:
第三章 道路纵断面设计
§3.1 概述
主
要
§3.2 纵坡设计
内
容
§3.3 竖曲线设计
§3.4 纵断面设计
§3.1 概述
一、纵断面与纵断面设计图 纵断面: 纵断面线: 纵断面设计线: 纵断面设计图: 道路纵断面: 道路纵断面设计图: 公路路线纵断面设计图样例,见教材P89页图3-1 二、纵断面图上的线形要素 地面线: 设计线: 设计线基本要素:
设 计 速 度(km/h)
3
4
纵
5
坡
6
坡
度
7
(%)
8
9
10
120
100
80
60
40
30
20
900
1000
1100
1200
700
800
900
1000
1100
1100
1200
600
700
800
900
900
1000
500
600
700
700
800
500
500
600
300
300
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.高原纵坡折减
1.高原为什么纵坡要折减? • 在高海拔地区,困空气密度下降而使汽车发动机的功率、
汽车的驱动力以及空气阻力降低,导致汽车的爬坡能力下 降。 • 另外,汽车水箱中的水易于沸腾而破坏冷却系统。 2.《规范》规定: • 位于海拔3000m以上高原地区的公路,最大纵坡应按规定 予以折减。最大纵坡折减后若小于4%,则仍采用4%。
例:三级公路 8%纵坡 长度120米 最大坡长限制300米 120/300=2/5 ✓ 相邻坡段纵坡7%(最大坡长限制500米) 坡长500×(1-2/5)=300米 ✓ 或相邻坡段纵坡6%(最大坡长限制700米) 坡长700× (1-2/5)=420米
三、合成坡度
1.定义 在设有超高的平曲线上,
3.平均纵坡
1.定 义
一定长度的路段纵向所克服的高差与路线长度之比。 它是衡量纵面线形质量的一个重要指标。
2.作 用
ip
H L
(1)在山区高差较大地区,为了防止交替最大纵坡 和最短长度的缓坡形成“台阶式”纵断面线形,应对路线 最高点与最低点之间的平均坡度加以限制,以提高行车质 量。
(2)汽车在长上坡上行驶,会长时间地使用二档,造成 发动机长时间发热,导致车辆水箱沸腾;下坡则频繁刹车, 司机驾驶紧张,也易引起不良后果。
③影响因素
汽车的动力特性:
汽车的爬坡能力
汽车下坡的安全性
道路等级:
等级高,行驶速度大,坡度阻力尽量小
自然条件:
海拔高程给刹车毂加水降温
2.最小纵坡
最小纵坡:各级公路在特殊情况下容许使用的最小 坡度值。
最小纵坡值:0.3%, 一般情况下0.5%为宜。 适用条件:横向排水不畅路段:长路堑、桥梁、隧 道、设超高的平曲线、路肩设截水墙等。 当必须设计平坡(0%)或小于0.3%的纵坡时, 边沟应作纵向排水设计。 干旱少雨地区最小纵坡可不受上述限制。
• 《标准》规定: ➢二、三、四级公路越岭路线连续上坡(或下坡) 路段,相对高差为200~500m时,平均纵坡不 应大于5.5%;
➢相对高差大于500m时,平均纵坡不应大于5%。 ➢任意连续3km路段平均纵坡不应大于5.5%。 • 山城道路的平均纵坡按上述规定减少1.0%。 • 对于海拔3000m以上的高原地区,平均纵坡应较规 定值减少0.5%~1.0%。
2.最大坡长
(1)原因
①汽车在长距离的陡坡上行驶时,行车速度会显著下降, 甚至要换低速档克服坡度阻力,使车辆间相互干扰增加, 通行能力下降多。易使水箱沸腾,爬坡无力。
②下坡时,则因坡度过陡,坡段过长频繁刹车,影响行 车安全。
(2)最大坡长限制计算与规定
纵坡长度限制主要是依据8t载重车(功率/重量 比是9.3W/kg)的爬坡性能曲线,同时考虑坡底的入口 速度与允许速度差确定的。
1100 900 700 500
30
1100 900 700 500 300
20
1200 1000 800 600 400 200
连续上坡或下坡时,应在不大于规定的限制纵坡长度范围 内,设置缓和坡段。缓和坡段的纵坡应不大于3% ,其长度 应符合最小纵坡长度的规定。
3.组合坡长
当连续陡坡是由几个不同受限坡度值的坡段组合而 成时,应按不同坡度的坡长限制折算确定。
路线纵坡与超高横坡所组成 的坡度,其方向即流水线方向。
二、坡长限制
✓ 坡长是纵断面上相邻两变坡点间的长度。
✓ 坡长限制,主要是对较陡纵坡的最大长度和一般纵坡的最
小长度加以限制。
坡长
1.最小坡长
(1)原因:
①若坡长过短,则变坡点个数增加,行车时颠簸频繁,影响 行车平顺性;
②若坡长过短,则不能满足设置最短竖曲线这一几何条件的 要求。
(2)最小坡长要求
最小坡长通常规定汽车以设计速度行驶9s~15s的行程为宜。
二、路线纵断面图构成:
地面线:根据中线上各桩点的高程点绘的一条不规则的折线; 设计线:路线上各点路基设计高程的连线。
三、路基设计标高(design elevation of subgrade) 1.新建公路:
① 高速、一级公路采用中央分隔带外侧边缘标 高;
② 二、三、四级公路采用路基边缘标高,在 设置超高和加宽路段时则是指设置超高加宽之前 该处标高;
3.城市道路:一般指车行道中心标高。
四、纵坡度(longitudinal gradient)表示方法: 纵坡度的表示方式不用角度,而用百分数(%)
• 道路上3%的纵坡对汽车行驶不造成困难 。
路线前进水平距离520 米,克服高差13米,
则纵坡为?%
2.5%
直坡段 纵断面设计线
坡度=两变坡高差/平距
设计标高
设计标高
三、路基设计标高(design elevation of subgrade) 1.新建公路:
① 高速、一级公路采用中央分隔带外侧边缘标 高;
② 二、三、四级公路采用路基边缘标高,在 设置超高和加宽路段时则是指设置超高加宽之前 该处标高;
2.改建公路:一般按新建公路的规定办理,也可以 采用中央分隔带中线或行车道中线标高。
坡长:水平距离
i
h L
(%)
上坡为正 下坡为负 平坡为0
竖曲线段
凸型竖曲线 凹型竖曲线
半径R 长度L(水平距离) 竖距h
第二节 纵坡设计
一、纵坡度
1.最大纵坡
①定义 指在纵坡设计时各级道路允许采用的最大坡度值。
②作用
是道路纵断面设计的重要控制指标。在地形 起伏较大地区,直接影响路线的长短、使用质量、 运输成本及造价。
标准采用入口的运行速度是通过调查得到的,允许速度 差为20km/h)。标准中所规定的坡长限制是变坡点间的 直线距离。
设计 速度 120 (km/h)
3 900
纵 4 700 坡5 坡6 度7 (%) 8
9
100
1000 800 600
80 60 40
1100 900 700 500
1200 1000 800 600
第三章 道路纵断面设计
第一节 概 述
一、基本概念
1.纵断面(vertical)-----用一曲面沿道路中线竖直剖
切,展开成平面。
2.路线纵断面图(vertical pro) -----反映路线在纵断 面上的形状、位置及尺寸的图形叫路线纵断面图。 3.纵断面设计-----在路线纵断面图上研究路线线
位高度及坡度变化情况的过程。