8.2.2 函数的实际应用(练习)(解析版)(新教材苏教版必修第一册)

合集下载

新教材苏教版高中数学必修第一册第八章函数应用 精品教学课件

新教材苏教版高中数学必修第一册第八章函数应用 精品教学课件

即函数的零点为-1,4.
2.选AC.当x<2时,由ex-1-1=0,解得x=1;
当x≥2时,由log3
x2 =10,得
3
即x2-1=3,解得x=2.
=x 21,1
3
所以f(x)的零点为1,2.
3.依题意得f (1=)0,即 a1+1-2a=0,解得a= .2
2
2
3
答案: 2
3
【解题策略】 函数零点的求法
() ()
提示:(1)×.函数需满足在区间[a,b]上连续不断且f(a)f(b)<0,才能用二分法 求零点. (2)×.用二分法求出的函数零点可能是精确值,也可能是近似值.
2.下列图象与x轴均有交点,其中不能用二分法求函数零点的是 ( )
【解析】选A.只有A中图象与x轴交点两侧的函数值不变号,都是正值,因此不能 用二分法.
3.(教材二次开发:例题改编)若函数f(x)=x3+x2-2x-2的一个零点(正数)附近的 函数值用二分法逐次计算,参考数据如表:
x
1 1.5
1.25
1.375
1.4375
f(x) -2 0.625 -0.984 -0.260
0.162
则方程x3+x2-2x-2=0的一个近似解(精确到0.1)为________.
【思考】 函数的零点是点吗? 提示:不是,是使f(x)=0的实数x,是方程f(x)=0的根.
2.函数零点范围的判定 (1)条件:函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线, 且有__f_(_a_)_f_(_b_)_<_0__; (2)结论:函数y=f(x)在区间(a,b)上有零点. (3)本质:利用函数的性质判断零点的存在性. (4)应用:判断零点的存在性、求参数的范围等.

江苏高一数学 函数的实际应用 练习(解析版)

江苏高一数学 函数的实际应用 练习(解析版)
8.2.2 函数的实际应用
一、选择题
1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个
近似地表示这些数据的规律,其中最接近的一个是( )
x 1.992
3
4 5.15 6.126
y 1.517 4.041 8 7.5 12 18.01
A.y=2x-2
B.y=1(x2-1) 2
+2),观测发现 2012 年冬(作为第 1 年)有越冬白鹤 3 000 只,估计到 2018 年冬有越冬白鹤( )
A.4 000 只 B.5 000 只 C.6 000 只 D.7 000 只
【答案】 C
【解析】 当 x=1 时,由 3 000=alog3(1+2),得 a=3 000,所以到 2018 年冬,即第 7 年,y=3 000×log3(7
血液中的酒精含量不得超过 0.09 mg/mL,那么,一个喝了少量酒后的驾驶员,至少经过________小
时才能开车.(精确到 1 小时,参考数据:lg 3≈0.477,lg 4≈0.602)
【答案】 5
【解析】 设至少经过 x 小时才能开车,由题意得 0.3(1-25%)x≤0.09,∴0.75x≤0.3,x≥log0.750.3≈4.2. 11.现测得(x,y)的两组对应值分别为(1,2),(2,5),现有两个待选模型,甲:y=x2+1,乙:y=3x
C.y=log2x
D.y= log1 x
2
【答案】 B
【解析】 由题中表格可知函数在(0,+∞)上是增函数,且 y 的变化随 x 的增大而增大的越来越快,
分析选项可知 B 符合,故选 B.
2.某大型民企为激励创新,计划逐年加大研发资金投入.若该民企 2016 年全年投入研发资金 130

高中数学课时素养评价第8章函数应用8..函数的实际应用含解析苏教版第一册

高中数学课时素养评价第8章函数应用8..函数的实际应用含解析苏教版第一册

课时素养评价四十八函数的实际应用(15分钟30分)1。

随着社会发展对环保的要求,越来越多的燃油汽车被电动汽车取代,为了了解某品牌的电动汽车的节能情况,对某一辆电动汽车“行车数据"的两次记录如表:记录时间累计里程(单位:公里)平均耗电量(单位:kW·h/公里)剩余续航里程(单位:公里)2020年1月1日5 0000。

1253802020年1月2日5 1000.126246(注:累计里程指汽车从出厂开始累计行驶的路程,累计耗电量指汽车从出厂开始累计消耗的电量,平均耗电量=,剩余续航里程=)下面对该车在两次记录时间段内行驶100公里的耗电量估计正确的是()A。

等于12。

5 kW·hB。

12。

5 kW·h到12。

6 kW·h之间C.等于12.6 kW·hD。

大于12.6 kW·h【解析】选D。

由题意可得:5 100×0。

126—5 000×0。

125=642。

6—625=17。

6,所以对该车在两次记录时间段内行驶100公里的耗电量估计为17.6 kW·h.2.某网站开展了以核心价值观为主题的系列宣传活动,并将“社会主义核心价值观”作为关键词便于网民搜索.此后,该网站的点击量每月都比上月增长50%,那么4个月后,该网站的点击量和原来相比,增长为原来的()A.2倍以上,但不超过3倍B.3倍以上,但不超过4倍C.4倍以上,但不超过5倍D.5倍以上,但不超过6倍【解析】选D。

4个月后网站点击量变为原来的=,所以是5倍以上,但不超过6倍。

3.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(单位:只)与引入时间x(单位:年)的关系为y=alog2(x+1),若该动物在引入一年后的数量为100只,则第7年它们发展到()A。

300只 B.400只C.600只D。

700只【解析】选A.将x=1,y=100代入y=alog2(x+1)得,100=alog2(1+1),解得a=100,所以当x=7时,y=100log2(7+1)=300。

新教材苏教版高中数学必修第一册第8章函数应用 学案讲义(知识点考点汇总及配套习题)

新教材苏教版高中数学必修第一册第8章函数应用 学案讲义(知识点考点汇总及配套习题)

第八章函数应用8.1二分法与求方程近似解 (1)8.1.1函数的零点 (1)8.1.2用二分法求方程的近似解 (10)8.2函数与数学模型 (17)8.2.1几个函数模型的比较 (17)8.2.2函数的实际应用 (23)章末复习 (33)8.1二分法与求方程近似解8.1.1函数的零点学习任务核心素养1.理解函数的零点的概念以及函数的零点与方程根的关系.(重点) 2.会求函数的零点.(重点、难点) 3.掌握函数零点的存在定理并会判断函数零点的个数.(难点)1.通过零点的求法,培养数学运算和逻辑推理的素养.2.借助函数的零点与方程根的关系,培养直观想象的数学素养.解方程的历史方程解法时间图·东方方程解法时间图·西方知识点1函数的零点的定义一般地,我们把使函数y=f(x)的值为0的实数x称为函数y=f(x)的零点.1.函数的零点是点吗?[提示]不是,函数的零点是实数.知识点2方程、函数、图象之间的关系(1)函数y=f(x)的零点就是方程f(x)=0的实数解.(2)函数y=f(x)的零点就是它的图象与x轴交点的横坐标.2.函数的零点是函数与x轴的交点吗?[提示]不是,函数的零点是函数图象与x轴交点的横坐标.1.函数f(x)=2x-4的零点是________.2[由2x-4=0得x=2,所以2是函数f(x)的零点.]知识点3零点存在定理若函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)f(b)<0,则函数y=f(x)在区间(a,b)上有零点.2.思考辨析(正确的打“√”,错误的打“×”)(1)任何函数都有零点.()(2)任意两个零点之间函数值保持同号.()(3)若函数y=f(x)在区间(a,b)上有零点,则一定有f(a)·f(b)<0.()[提示](1)可举反例f(x)=x2+1无零点.(2)两个零点间的函数值可能会保持同号,也可以异号,如f(x)=(x-1)(x-2)(x-3)有三个零点,即x=1,2,3,在(1,2)上f(x)为正,在(2,3)上f(x)为负,故在零点1和3之间函数值有正有负或零.(3)举例f(x)=x2-1,选择区间(-2,2),显然f(x)在(-2,2)上有零点1和-1,但是f(2)·f(-2)>0.[答案](1)×(2)×(3)×类型1求函数的零点【例1】求下列函数的零点.(1)f(x)=x3-x;(2)f(x)=2x-8;(3)f(x)=1-log4x;(4)f (x )=(ax -1)(x -2)(a ∈R ).[解] (1)∵f (x )=x 3-x =x (x 2-1)=x (x -1)(x +1),令f (x )=0,得x =0,1,-1,故f (x )的零点为x =-1,0,1.(2)令f (x )=2x -8=0,∴x =3, 故f (x )的零点为x =3.(3)令f (x )=1-log 4 x =0,∴log 4 x =1,∴x =4. 故f (x )的零点为x =4.(4)当a =0时,函数为f (x )=-x +2, 令f (x )=0,得x =2. ∴f (x )的零点为2.当a =12时,f (x )=⎝ ⎛⎭⎪⎫12x -1(x -2)=12(x -2)2,令f (x )=0,得x 1=x 2=2. ∴f (x )有零点2.当a ≠0且a ≠12时,令f (x )=0,得x 1=1a ,x 2=2. ∴f (x )的零点为1a,2.综上,当a =0时,f (x )的零点为2;当a =12时,函数的零点为2;当a ≠0且a ≠12时,f (x )的零点为1a ,2.怎样求函数的零点?[提示] 求函数f (x )的零点时,通常转化为解方程f (x )=0,若方程f (x )=0有实数根,则函数f (x )存在零点,该方程的根就是函数f (x )的零点;否则,函数f (x )不存在零点.[跟进训练]1.(1)求函数f (x )=⎩⎨⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点;(2)已知函数f (x )=ax -b (a ≠0)的零点为3,求函数g (x )=bx 2+ax 的零点.[解] (1)当x ≤0时,令x 2+2x -3=0,解得x =-3; 当x >0时,令-2+ln x =0,解得x =e 2.所以函数f (x )=⎩⎨⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点为-3和e 2.(2)由已知得f (3)=0,即3a -b =0,即b =3a . 故g (x )=3ax 2+ax =ax (3x +1). 令g (x )=0,即ax (3x +1)=0, 解得x =0或x =-13.所以函数g (x )的零点为0和-13. 类型2 函数零点的证明【例2】 证明函数f (x )=ln(x +1)-2x 在(1,2)上存在零点. [证明] 因为f (1)=ln 2-2<0, f (2)=ln 3-1>0,且函数f (x )在区间(1,2)上的图象是不间断的, 所以函数f (x )=ln(x +1)-2x 在(1,2)上存在零点.若函数y =f (x )在区间[a ,b ]上的图象是一条不间断的曲线,且f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )上有零点.[跟进训练]2.证明f (x )=x 3+3x -1在区间(0,1)上有零点. [证明] 因为f (0)=03+3×0-1=-1<0, f (1)=13+3-1=3>0,且函数f (x )在区间(0,1)上的图象是不间断的,所以函数f (x )=x 3+3x -1在(0,1)上有零点.类型3 判断零点所在的区间【例3】 (1)二次函数f (x )=ax 2+bx +c 的部分对应值如下表:x -3-2-10123 4y 6m -4-6-6-4n 62)A.(-3,-1)和(2,4)B.(-3,-1)和(-1,1)C.(-1,1)和(1,2) D.(-∞,-3)和(4,+∞)(2)f(x)=e x+x-2的零点所在的区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)(1)A(2)C[(1)易知f(x)=ax2+bx+c的图象是一条连续不断的曲线,又f(-3)f(-1)=6×(-4)=-24<0,所以f(x)在(-3,-1)内有零点,即方程ax2+bx+c=0在(-3,-1)内有根,同理方程ax2+bx+c=0在(2,4)内有根.故选A.(2)法一:∵f(0)=-1<0,f(1)=e-1>0,∴f(x)在(0,1)内有零点.法二:e x+x-2=0,即e x=2-x,∴原函数的零点所在区间即为函数y=e x 和y=2-x的图象交点的横坐标所在的区间.如图,由图象可得函数y=e x和y =2-x的图象交点所在的区间为(0,1).]确定函数f(x)零点所在区间的常用方法解方程法当对应方程f(x)=0易解时,可先解方程,再看求得的根是否落在给定区间上零点存在定理首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点数形结合法通过画函数图象与x轴在给定区间上是否有交点来判断[跟进训练]3.根据表格中的数据,可以断定方程e x-(x+3)=0(e≈2.72)的一个根所在的区间是________.(填序号)x -1012 3e x0.371 2.727.4020.12x+32345 6①(-1,0);②(0,1);③(1,2);④(2,3).③[设f(x)=e x-(x+3),由上表可知,f(-1)=0.37-2<0,f(0)=1-3<0,f(1)=2.72-4<0,f(2)=7.40-5>0,f(3)=20.12-6>0,∴f(1)·f(2)<0,因此方程e x-(x+3)=0的根在(1,2)内.]类型4函数零点(方程不等实根)个数的判断【例4】(1)函数f(x)=e x-3的零点个数为________.(2)函数f(x)=ln x-1x-1的零点个数是________.(3)已知关于x的一元二次方程(x-1)(3-x)=a-x(a∈R),试讨论方程实数根的个数.(1)1(2)2[(1)令f(x)=0,∴e x-3=0,∴x=ln 3,故f(x)只有1个零点.(2)在同一坐标系中画出y=ln x与y=1x-1的图象,如图所示,函数y=ln x与y=1x-1的图象有两个交点,所以函数f(x)=ln x-1x-1的零点个数为2.](3)[解]法一:原方程化为-x2+5x-3=a.令f(x)=-x2+5x-3,g(x)=a.作函数f(x)=-x2+5x-3的图象,抛物线的开口向下,顶点的纵坐标为12-25 4×(-1)=134,画出如图所示的简图:由图象可以看出:①当a >134时,方程没有实数根;②当a =134时,方程有两个相等的实数根; ③当a <134时,方程有两个不相等的实数根. 法二:原方程化为x 2-5x +3+a =0. Δ=25-4(3+a )=-4a +13.①当Δ<0,即a >134时,方程没有实数根; ②当Δ=0,即a =134时,方程有两个相等的实数根; ③当Δ>0,即a <134时,方程有两个不相等的实数根.把本例(1)函数改为“y =2x |log a x |-1(0<a <1)”再判断其零点个数. [解] 由2x|log a x |-1=0得|log a x |=⎝ ⎛⎭⎪⎫12x,作出y =⎝ ⎛⎭⎪⎫12x及y =|log a x |(0<a <1)的图象如图所示,由图可知,两函数的图象有两个交点,所以函数y =2x |log a x |-1有两个零点.判断函数零点的个数的方法主要有:(1)可以利用零点存在性定理来确定零点的存在性,然后借助于函数的单调性判断零点的个数.(2)利用函数图象交点的个数判定函数零点的个数.[跟进训练]4.函数f (x )=lg x -sin x 的零点有i (i ∈N *)个,记为x i ,x i ∈⎝ ⎛⎭⎪⎫k π2,(k +1)π2,k ∈N *,则k 构成的集合为____________.{1,4,5} [由f (x )=lg x -sin x 得lg x =sin x ,在同一坐标系中作出y =lg x 和y =sin x 的图象,如下图,由图象知,函数f (x )=lg x -sin x 有三个零点x 1∈⎝ ⎛⎭⎪⎫π2,π,x 2∈⎝ ⎛⎭⎪⎫2π,5π2,x 3∈⎝ ⎛⎭⎪⎫5π2,3π, 因为x i ∈⎝ ⎛⎭⎪⎫k π2,(k +1)π2,k ∈N *,所以k =1,4,5,所以k 构成的集合为{1,4,5}.]课堂达标练习1.(多选题)下列图象表示的函数中有零点的是( )BCD [B 、C 、D 的图象均与x 轴有交点,故函数均有零点,A 的图象与x 轴没有交点,故函数没有零点.]2.函数f (x )=2x -3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)B [∵f (1)=2-3=-1<0, f (2)=22-3=1>0,∴f (1)·f (2)<0,即函数f (x )的零点所在的区间为(1,2).]3.设函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=e x +x -3,则f (x )的零点个数为( )A .1B .2C .3D .4C [因为函数f (x )是定义域为R 的奇函数,所以f (0)=0,所以0是函数f (x )的一个零点.当x >0时,令f (x )=e x +x -3=0,则e x =-x +3.分别画出函数y =e x 和y =-x +3的图象,如图所示,有一个交点,所以函数f (x )在(0,+∞)上有一个零点.又根据对称性知,当x <0时函数f (x )也有一个零点. 综上所述,f (x )的零点个数为3.应选C.]4.已知函数f (x )的图象是连续不断的,有如下的x ,f (x )对应值表: x 1 2 3 4 567f (x )136.13615.552-3.9210.88-52.488 -232.064 11.2384 [∵f (2)·f (3)<0,f (3)·f (4)<0,f (4)·f (5)<0,f (6)·f (7)<0,∴共有4个区间.] 5.函数f (x )=x 2-ax +1在区间⎝ ⎛⎭⎪⎫12,3上有零点,实数a 的取值范围为________.⎣⎢⎡⎭⎪⎫2,103 [由题意知方程ax =x 2+1在⎝ ⎛⎭⎪⎫12,3上有解, 即a =x +1x 在⎝ ⎛⎭⎪⎫12,3上有解,设t =x +1x ,x ∈⎝ ⎛⎭⎪⎫12,3,则t 的取值范围是⎣⎢⎡⎭⎪⎫2,103.所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫2,103.]回顾本节知识,自我完成以下问题.1.你认为函数零点存在定理中要注意哪些问题?[提示] (1)函数是连续的.(2)定理不可逆.(3)至少存在一个零点. 2.f (a )·f (b )<0是连续函数在区间(a ,b )上存在零点的什么条件?f (a )·f (b )>0时在区间上一定没有零点吗?[提示]充分不必要条件.不一定,f(a)·f(b)>0时函数在区间(a,b)上可能有零点.8.1.2用二分法求方程的近似解学习任务核心素养1.通过实例理解二分法的概念.(难点) 2.了解二分法是求方程近似解的常用方法.3.能够借助计算器用二分法求方程的近似解.(重点)借助二分法的操作步骤与思想,培养逻辑推理数学建模、数学抽象的数学核心素养.通过上一节的学习,利用函数的零点存在定理可以确定函数的零点所在的区间,请利用计算器尝试探求函数f(x)=ln x+2x-6零点的近似值(精确到0.1).知识点1二分法的定义对于在区间[a,b]上的图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值,即f(x)=0的近似解的方法叫做二分法.1.观察下列函数的图象,判断能用二分法求其零点的是()A B C D[答案]A知识点2用二分法求一元方程f(x)=0近似解的步骤(1)确定区间:一元方程f(x)=0的根所在的区间[a,b],使f(a)·f(b)<0.(2)求区间(a,b)的中点:x1=a+b 2.(3)计算f(x1).①若f(x1)=0,则x1就是一元方程f(x)=0的近似解;②若f(a)·f(x1)<0,则令b=x1,此时零点x0∈(a,x1);③若f(x1)·f(b)<0,则令a=x1,此时零点x0∈(x1,b).(4)判断是否达到题目要求,即若达到,则得到一元方程f(x)=0近似解,否则重复步骤(2)~(4).用“二分法”求方程的近似解时,应通过移项问题转化为求函数的零点近似值.如求f(x)=g(x)的近似解时可构造函数h(x)=f(x)-g(x),将问题转化为求h(x)的零点近似值的问题.2.思考辨析(正确的打“√”,错误的打“×”)(1)二分法所求出的方程的解都是近似解.()(2)函数f(x)=|x|可以用二分法求零点.()(3)用二分法求函数零点的近似值时,每次等分区间后,零点必定在右侧区间内.()(4)用“二分法”求方程的近似解一定可将y=f(x)在[a,b]内的所有零点得到.()[提示]四句话都是错的.(1)中,二分法求出的解也有精确解,如f(x)=x -1在(0,2)上用二分法求解时,中点为x=1,而f(1)=0.(2)中,f(x)=|x|≥0,不能用二分法.(3)中,二分法求零点时,零点可以在等分区间后的右侧,也可以在左侧.(4)中f(x)在[a,b]内的近似解可能有多个,而二分法求解时,只须达到一定的精确度即可,故可能会漏掉一些,另外在等分区间后,中点的函数值与某一端点函数值同号时内部也未必没有零点,故采用“二分法”不一定求出函数的所有零点的近似解.[答案](1)×(2)×(3)×(4)×类型1“二分法”的概念【例1】下列函数图象与x轴均有交点,其中不能用二分法求函数零点近以值的是()A B C DD[根据二分法的基本方法,函数f(x)在区间[a,b]上的图象连续不断,且f(a)·f(b)<0,即函数的零点是变号零点,才能将区间[a,b]一分为二,逐步得到零点的近似值.对各图象分析可知,选项A、B、C都符合条件,而选项D不符合,由于零点左右两侧的函数值不变号,因此不能用二分法求函数零点的近似值.故选D.]判断一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.[跟进训练]1.已知函数f(x)的图象如图,其中零点的个数与可以用二分法求解的个数分别为()A.4,4B.3,4C.5,4 D.4,3D[图象与x轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以用二分法求解的个数为3,故选D.]2.关于“二分法”求方程的近似解,下列说法正确的是()A.“二分法”求方程的近似解一定可将y=f(x)在[a,b]内的所有零点得到B.“二分法”求方程的近似解有可能得不到y=f(x)在[a,b]内的零点C.应用“二分法”求方程的近似解,y=f(x)在[a,b]内有可能无零点D.“二分法”求方程的近似解可能得到f(x)=0在[a,b]内的精确解D[如果函数在某区间满足二分法,且在区间内存在两个及以上的实根,二分法只可能求出其中的一个,∴A 错误;二分法的实施满足零点存在性定理,在区间内一定存在零点,∴B 错误;C 只要限定了近似解的范围就可以得到方程的近似解,∴C 错误;“二分法”求方程的近似解,甚至有可能得到函数的精确零点,∴D 正确.]类型2 用“二分法”求方程的近似解【例2】 用二分法求方程2x 3+3x -3=0的一个正实数近似解(精确度0.1). [解] 令f (x )=2x 3+3x -3,经计算,f (0)=-3<0,f (1)=2>0,f (0)·f (1)<0, 所以函数f (x )在(0,1)内存在零点, 即方程2x 3+3x -3=0在(0,1)内有解. 取(0,1)的中点0.5,经计算f (0.5)<0, 又f (1)>0,所以方程2x 3+3x -3=0在(0.5,1)内有解.如此继续下去,得到方程的正实数根所在的区间,如表: (a ,b ) 中点c f (a ) f (b ) f ⎝⎛⎭⎪⎫a +b 2 (0,1) 0.5 f (0)<0 f (1)>0 f (0.5)<0 (0.5,1) 0.75 f (0.5)<0 f (1)>0 f (0.75)>0 (0.5,0.75) 0.625 f (0.5)<0 f (0.75)>0 f (0.625)<0 (0.625,0.75) 0.687 5f (0.625)<0f (0.75)>0f (0.687 5)<0(0.687 5,0.75)|0.687 5-0.75|=0.062 5<0.1解.1.(变条件)若本例中的“精确度0.1”换为“精确度0.05”结论又如何? [解] 在本例的基础上,取区间(0.687 5,0.75)的中点x =0.718 75,因为f (0.718 75)<0,f (0.75)>0且|0.718 75-0.75|=0.031 25<0.05,所以x =0.72可作为方程的一个近似解.2.(变条件)若本例中的方程“2x 3+3x -3=0”换为“x 2-2x =1”其结论又如何呢?[解] 设f (x )=x 2-2x -1.∵f(2)=-1<0,f(3)=2>0.∴在区间(2,3)内,方程x2-2x-1=0有一解,记为x0.取2与3的平均数2.5,∵f(2.5)=0.25>0,∴2<x0<2.5;再取2与2.5的平均数2.25,∵f(2.25)=-0.437 5<0,∴2.25<x0<2.5;如此继续下去,有f(2.375)<0,f(2.5)>0⇒x0∈(2.375,2.5);f(2.375)<0,f(2.437 5)>0⇒x0∈(2.375,2.437 5).∵|2.375-2.437 5|=0.062 5<0.1,∴方程x2=2x+1的一个精确度为0.1的近似解可取为2.437 5.用二分法求方程的近似解应明确两点(1)根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的,求方程f(x)=0的近似解,即按照用二分法求函数零点近似值的步骤求解.(2)对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.[跟进训练]3.求32的近似值.(精确到0.1)[解]32是x3=2的根,因此可构造f(x)=x3-2,问题转化为“求f(x)的零点的近似解”.用二分法求其零点.由f(1)=-1<0,f(2)=6>0.故可取区间[1,2]为计算的初始区间.用二分法逐次计算,如下:f(1)<0,f(1.5)>0⇒x1∈(1,1.5),f(1.25)<0,f(1.5)>0⇒x1∈(1.25,1.5),f(1.25)<0,f(1.375)>0⇒x1∈(1.25,1.375),f(1.25)<0,f(1.312 5)>0⇒x1∈(1.25,1.312 5),至此可见,区间[1.25,1.312 5]上所有值精确到0.1均为1.3,所以1.3是32精确到0.1的近似值.课堂达标练习1.用“二分法”可求一元方程的近似解,对于精确到ε的说法正确的是() A.ε越大,近似解的精确度越高B.ε越大,近似解的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关B[依“二分法”的具体步骤可知,ε越大,近似解的精确度越低.]2.在用二分法求函数f(x)零点近似值时,第一次取的区间是[-2,4],则第三次所取的区间可能是()A.[1,4]B.[-2,1]C.[-2,2.5] D.[-0.5,1]D[因第一次所取的区间是[-2,4],所以第二次所取的区间可能是[-2,1],[1,4];第三次所取的区间可能为[-2,-0.5],[-0.5,1],[1,2.5],[2.5,4],只有D在其中,故答案为D.]3.已知函数y=f(x)的图象如图所示,则不能利用二分法求解的零点是________.x3[因为x3左右两侧的函数值同号,故其不能用二分法求解.]4.用二分法求函数y=f(x)在区间(2,4)上的近似解,验证f(2)·f(4)<0,精确到0.1,取区间(2,4)的中点x1=2+42=3,计算得f(2)·f(x1)<0,则此时零点x0∈________.(填区间)(2,3)[由f(2)·f(3)<0可知,x0∈(2,3).]5.如图,一块电路板的线路AB之间有64个串联的焊接点(不含端点A,B),如果线路不通的原因是由于焊口脱落所致,要想检验出哪一处的焊口脱落,则至多需要检测________次.6[第1次取中点把焊点数减半为642=32,第2次取中点把焊点数减半为322=16,第3次取中点把焊点数减半为162=8,第4次取中点把焊点数减半为82=4,第5次取中点把焊点数减半为42=2,第6次取中点把焊点数减半为22=1,所以至多需要检测的次数是6.]回顾本节知识,自我完成以下问题.1.用二分法求函数近似零点时,函数应满足哪些条件?[提示](1)f(x)在区间(a,b)上的图象连续不断.(2)在区间(a,b)端点的函数值f(a)·f(b)<0.2.使用二分法求方程近似解的理论依据是什么?[提示]零点存在定理.8.2函数与数学模型8.2.1几个函数模型的比较学习任务核心素养1.理解指数爆炸、直线上升、对数增长的含义.(重点)2.区分指数函数、一次函数以及对数函数增长速度的差异.(易混点)3.会选择适当的函数模型分析和解决一些实际问题.(难点)借助三个函数模型的增长特征,培养数学运算、数学建模的核心素养.我们看到,一次函数与指数函数的增长方式存在很大差异.事实上,这种差异正是不同类型现实问题具有不同增长规律的反映.因此,如果把握了不同函数增长方式的差异,那么就可以根据现实问题的增长情况,选择合适的函数模型刻画其变化规律.下面就来研究一次函数、指数函数和对数函数增长方式的差异.知识点三种函数模型的性质y=a x(a>1)y=log a x(a>1)y=kx(k>0) 在(0,+∞)上的增减性增函数增函数增函数图象的变化趋势随x增大逐渐近似与y轴平行随x增大逐渐近似与x轴平行保持固定增长速度增长速度①y=a x(a>1):随着x的增大,y增长速度越来越快,会远远大于y=kx(k>0)的增长速度,y=log a x(a>1)的增长速度越来越慢;在描述现实问题的变化规律时,常用“指数爆炸”“直线上升”“对数增长”来表示指数函数、一次函数、对数函数的增长方式.②当x足够大时,总有a x>kx>log a x(1)当x每增加一个单位时,y增加或减少的量为定值,则y是x的一次函数.()(2)对任意的x>0,kx>log a x.()(3)对任意的x>0,a x>log a x.()(4)函数y=log2x增长的速度越来越慢.()[答案](1)√(2)×(3)×(4)√类型1几类函数模型的增长差异【例1】(1)下列函数中,增长速度最快的是() A.y=2 019x B.y=2 019C.y=log2 019x D.y=2 019x(2)下面对函数f(x)=log12x,g(x)=⎝⎛⎭⎪⎫12x与h(x)=-2x在区间(0,+∞)上的递减情况说法正确的是()A.f(x)递减速度越来越慢,g(x)递减速度越来越快,h(x)递减速度越来越慢B.f(x)递减速度越来越快,g(x)递减速度越来越慢,h(x)递减速度越来越快C.f(x)递减速度越来越慢,g(x)递减速度越来越慢,h(x)递减速度不变D.f(x)递减速度越来越快,g(x)递减速度越来越快,h(x)递减速度越来越快(1)A(2)C[(1)指数函数y=a x,在a>1时呈爆炸式增长,并且随a值的增大,增长速度越快,应选A.(2)观察函数f(x)=log12x,g(x)=⎝⎛⎭⎪⎫12x与h(x)=-2x在区间(0,+∞)上的图象(如图)可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢,在区间(1,+∞)上,递减较慢,且越来越慢;函数g(x)的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h(x)的图象递减速度不变.]常见的函数模型及增长特点(1)线性函数模型一次函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型指数函数模型y=a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y=log a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.[跟进训练]1.四个变量y1,y2,y3,y4随变量x变化的数据如表:x 151015202530y1226101226401626901y2232 1 02437 768 1.05×106 3.36×107 1.07×109 y32102030405060y42 4.332 5.322 5.907 6.322 6.644 6.907y2[以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.故填y2.]类型2指数函数、对数函数与一次函数模型的比较【例2】函数f(x)=2x和g(x)=2x的图象如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(1)请指出图中曲线C1,C2分别对应的函数;(2)结合函数图象,判断f ⎝ ⎛⎭⎪⎫32与g ⎝ ⎛⎭⎪⎫32,f (2 020)与g (2 020)的大小.[解] (1)C 1对应的函数为g (x )=2x ,C 2对应的函数为f (x )=2x . (2)∵f (1)=g (1),f (2)=g (2),从图象上可以看出,当1<x <2时,f (x )<g (x ), ∴f ⎝ ⎛⎭⎪⎫32<g ⎝ ⎛⎭⎪⎫32;当x >2时,f (x )>g (x ), ∴f (2 020)>g (2 020).由图象判断指数函数、一次函数的方法根据图象判断增长型的指数函数、一次函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数.[跟进训练]2.函数f (x )=lg x ,g (x )=0.3x -1的图象如图所示.(1)试根据函数的增长差异指出曲线C 1,C 2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f (x ),g (x )的大小进行比较).[解] (1)C 1对应的函数为g (x )=0.3x -1,C 2对应的函数为f (x )=lg x . (2)当x <x 1时,g (x )>f (x );当x 1<x <x 2时,f (x )>g (x );当x >x 2时,g (x )>f (x );当x =x 1或x =x 2时,f (x )=g (x ).类型3 函数模型的选择【例3】 某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且奖金y (单位:万元)随生源利润x (单位:万元)的增加而增加,但奖金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y =0.2x ,y =log 5x ,y =1.02x ,其中哪个模型符合该校的要求?[解] 作出函数y =3,y =0.2x ,y =log 5x ,y =1.02x 的图象(如图所示).观察图象可知,在区间[5,60]上,y=0.2x,y=1.02x的图象都有一部分在直线y=3的上方,只有y=log5x的图象始终在y=3和y=0.2x的下方,这说明只有按模型y =log5x进行奖励才符合学校的要求.几类不同增长函数模型选择的方法(1)增长速度不变,即自变量增加相同量时,函数值的增量相等,此时的函数模型是一次函数模型.(2)增长速度越来越快,即自变量增加相同量时,函数值的增量成倍增加,此时的函数模型是指数函数模型.(3)增长速度越来越慢,即自变量增加相同量时,函数值的增量越来越小,此时的函数模型是对数函数模型.[跟进训练]3.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=log a(t+1)来拟合h与t的关系,你认为哪个符合?并预测第8年的松树高度.t(年)12345 6h(米)0.61 1.3 1.5 1.6 1.7 [解由图象可以看出增长的速度越来越慢,用一次函数模型拟合不合适,则选用对数函数模型比较合理.不妨将(2,1)代入h=log a(t+1)中,得1=log a3,解得a=3.故可用函数h=log3(t+1)来拟合这个实际问题.当t=8时,求得h=log3(8+1)=2,故可预测第8年松树的高度为2米.课堂达标练习1.已知变量y=1+2x,当x减少1个单位时,y的变化情况是()A.y减少1个单位B.y增加1个单位C.y减少2个单位D.y增加2个单位C[结合函数y=1+2x的变化特征可知C正确.]2.下列函数中,随x的增大而增大且速度最快的是()A.y=e x B.y=ln xC.y=2x D.y=e-xA[结合指数函数、对数函数及一次函数的图象变化趋势可知A正确.] 3.“红豆生南国,春来发几枝”.如图给出了红豆生长时间t(月)与枝数y 的关系图,那么最适合拟合红豆的枝数与生长时间的关系的函数是()A.指数函数y=2t B.对数函数y=log2tC.幂函数y=t3D.二次函数y=2t2A[根据已知所给的关系图,观察得到图象在第一象限,且从左到右图象是上升的,并且增长速度越来越快,根据四个选项中函数的增长趋势可得,用指数函数拟合最好,故选A.]4.某人投资x元,获利y元,有以下三种方案.甲:y=0.2x,乙:y=log2x +100,丙:y=1.005x,则投资500元,1 000元,1 500元时,应分别选择________方案.乙、甲、丙[将投资数分别代入甲、乙、丙的函数关系式中比较y值的大小即可求出.]5.某种产品每件80元,每天可售出30件,如果每件定价120元,则每天可售出20件,如果售出件数是定价的一次函数,则这个函数解析式为________.[答案]y=-14x+50(0<x<200)回顾本节知识,自我完成以下问题.1.比较函数增长情况有哪些方法?[提示](1)解析法.直接看解析式是一次函数、指数型函数还是对数函数.(2)表格法.通过分析表格中的数据得出函数增长速度差异.(3)图象法.在同一坐标系中画出函数的图象,观察图象并借助计算器.2.三类不同增长的函数有哪些特点?[提示]当自变量很大时,(1)y=kx+b直线上升;(2)y=a x(a>1)指数爆炸;(3)y=log a x(a>1)对数增长.8.2.2函数的实际应用学习任务核心素养1.了解数学建模的基本步骤,体会数学建模的基本思想.(难点)2.了解指数函数、对数函数、幂函数、分段函数等函数模型的意义,并能进行简单应用.(重点)通过学习本节内容,提升数学建模和数学运算的核心素养.函数是描述客观世界变化规律的基本数学模型,是研究变量之间依赖关系的有效工具,利用函数模型可以处理生产、生活中许多实际问题.某网球中心欲建连成片的网球场数块,用128万元购买土地10 000 m 2,该中心每块球场的建设面积为1 000 m 2,球场的总建筑面积的每平方米的平均建设费用与球场数有关.当该中心建球场x 块时,每平方米的平均建设费用(单位:元)可近似地用函数f (x )=400⎝ ⎛⎭⎪⎫1+x -520来刻画.为了使该球场每平方米的综合费用最省(综合费用是建设费用与购地费用之和),该网球中心应建几个球场?生活中经常会遇到这种成本最低、利润最高等问题,如何处理这些问题呢? 知识点 函数的实际应用 1.常见的函数模型(1)一次函数模型:f (x )=kx +b (k ,b 为常数,k ≠0); (2)反比例函数模型:f (x )=kx +b (k ,b 为常数,k ≠0); (3)二次函数模型:f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0);(4)指数函数模型:f (x )=ab x +c (a ,b ,c 为常数,a ≠0,b >0,b ≠1); (5)对数函数模型:f (x )=m log a x +n (m ,n ,a 为常数,m ≠0,a >0,a ≠1); (6)幂函数模型:f (x )=ax n +b (a ,b ,n 为常数,a ≠0,n ≠1). (7)分段函数模型;(8)对勾函数模型:f (x )=x + ax (a 为正常数). “对勾”函数f (x )=x +ax (a >0)的性质①该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减.②当x >0时,x =a 时取最小值2a ;当x <0时,x =-a 时取最大值-2a . 2.解决实际问题的一般流程实际问题―→建立数学模型―→求解数学模型―→解决实际问题 其中建立数学模型是关键.3.用函数模型解决实际问题的基本步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,用函数刻画实际问题,初步选择模型;(2)建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将利用数学知识和方法得出的结论还原到实际问题中.1.思考辨析(正确的画√,错误的画×)(1)在一次函数模型中,系数k 的取值会影响函数的性质.( ) (2)在幂函数模型的解析式中,a 的正负会影响函数的单调性.( ) (3)用函数模型预测的结果和实际结果必须相等,否则函数模型就无存在意义了.( )[答案] (1)√ (2)√ (3)×2.某商场在销售空调旺季的4天内的利润如下表所示.时间/天 1 2 3 4 利润/千元23.988.0115.99) A .y =log 2x B .y =2x C .y =x 2D .y =2xB [逐个检验可得答案为B.]类型1 利用已知函数模型解实际问题【例1】 通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f (x )表示学生掌握和接受概念的能力(f (x )值越大,表示接受的能力越强),x 表示提出和讲授概念的时间(单位:min),有以下公式:f (x )=⎩⎨⎧-0.1x 2+2.6x +43,0<x ≤10,59,10<x ≤16,-3x +107,16<x ≤30.(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?。

新教材苏教版高中数学必修第一册第八章函数应用 课时分层练习题 精选最新配套习题,含解析

新教材苏教版高中数学必修第一册第八章函数应用 课时分层练习题 精选最新配套习题,含解析

第八章函数应用1函数的零点 .................................................................................................................. - 1 - 2用二分法求方程的近似解......................................................................................... - 11 - 3几个函数模型的比较................................................................................................. - 16 - 4函数的实际应用......................................................................................................... - 21 -1函数的零点基础练习1.若函数f(x)的图象是一条连续不断的曲线,且f(0)>0,f(1)>0,f(2)<0,则y=f(x)有唯一零点需满足的条件是( )A.f(3)<0B.函数f(x)在定义域内是增函数C.f(3)>0D.函数f(x)在定义域内是减函数【解析】选D.因为f(1)>0,f(2)<0,所以函数f(x)在区间(1,2)上一定有零点.若要保证只有一个零点,则函数f(x)在定义域内必须是减函数.2.已知函数f(x)=mx+1的零点在区间(1,2)内,则m的取值范围是( )A. B.C. D.∪【解析】选B.根据题意,函数f(x)=mx+1,当m=0时,f(x)=1,没有零点,当m≠0时,f(x)为单调函数,若其在区间(1,2)内存在零点,必有f(1)f(2)<0,即(m+1)(2m+1)<0,解可得:-1<m<-,即m的取值范围为.3.(2020·张家界高一检测)函数f(x)=ln(x+1)-的零点所在的区间是( )A.(0,1)B.(1,2)C.(2,e)D.(3,4)【解析】选B.因为f(1)=ln 2-2<0,f(2)=ln 3-1>ln e-1=0,即f(1)·f(2)<0,所以函数f(x)=ln(x+1)-的零点所在区间是(1,2).【补偿训练】方程ln x+x-4=0的实根所在的区间为( )A.(1,2)B.(2,3)C.(3,4)D.(4,5)【解析】选B.令f(x)=ln x+x-4,在定义域上连续且单调递增,f(3)=ln 3+3-4=ln 3-1>0,f(2)=ln 2+2-4=ln 2-2<0,故f(2)f(3)<0,故实根所在区间是(2,3).4.(2020·徐州高一检测)已知函数f(x)=3x+x,g(x)=log3x+x,h(x)=x3+x的零点分别为a,b,c,则a,b,c的大小顺序为( )A.a>b>cB.b>c>aC.c>a>bD.b>a>c【解析】选B.令f(x)=3x+x=0,则x=-3x,令g(x)=log3x+x=0,则x=-log3x,令h(x)=x3+x=0,则x=-x3,设函数f(x),g(x),h(x)的零点分别为a,b,c,作出函数y=-3x,y=-log3x,y=-x3,y=x的图象如图,由图可知:b>c>a.5.若函数f(x)=x2-ax+b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是________.【解析】因为函数f(x)=x2-ax+b的两个零点是2和3,所以即所以g(x)=6x2-5x-1,所以g(x)的零点为1和-.答案:1和-6.已知函数f(x)=(1)在如图所示的坐标系中,作出函数f(x)的图象并写出单调区间.(2)若f(a)=2,求实数a的值.(3)当m为何值时,f(x)+m=0有三个不同的零点.【解析】(1)函数图象如图,由图可知,函数的减区间为;增区间为,(1,+∞).(a-1)=2(a>1).解得a=-1或a=5.(2)由f(a)=2,得a2-a=2(a≤1)或log2(3)由图可知要使f(x)+m=0有三个不同的零点,则-<-m≤0,解得0≤m<.【补偿训练】(2020·普宁高一检测)已知a>0,函数f(x)=,(x∈R).(1)证明:f(x)是奇函数.(2)如果方程f(x)=1只有一个实数解,求a的值.【解析】(1)由函数f(x)=(x∈R),可得定义域为R,且f(-x)=-=-f(x), 所以f(x)为奇函数.(2)方程f(x)=1只有一个实数解,即为x2-ax+1=0,即Δ=a2-4=0,解得a=2(-2舍去),所以a的值为2.提升训练一、单选题(每小题5分,共20分)1.(2020·十堰高一检测)若点(log147,log1456)在函数f(x)=kx+3的图象上,则f(x)的零点为( )A.1B.C.2D.【解析】选D.根据题意,点(log147,log1456)在函数f(x)=kx+3的图象上,则log1456=k×log147+3,解得k=-2,则f(x)=-2x+3,若f(x)=0,则x=,即f(x)的零点为.2.(2020·烟台高一检测)已知f(x)=(x-a)(x-b)-2,并且α,β是函数f(x)的两个零点,则实数a,b,α,β的大小关系可能是( )A.a<α<b<βB.a<α<β<bC.α<a<b<βD.α<a<β<b【解析】选C.因为α,β是函数f(x)的两个零点,所以f(α)=f(β)=0.又f(a)=f(b)=-2<0,结合二次函数的图象(如图所示)可知a,b必在α,β之间.3.(2020·常州高一检测)已知函数f(x)=(a>0且a≠1),若函数图象上关于原点对称的点至少有3对,则实数a的取值范围是( )A. B.C. D.(-x),【解析】选A.当x<0时,f(x)=-logax的图象与函数f(x)的图象关于原点对称;则x>0时,函数g(x)=loga又x≥0时,f(x)=cos-1,x的图象,画出函数f(x)=cos-1(x≥0)和函数g(x)=loga如图所示:要使f(x)=cos-1(x≥0)与g(x)=x(x>0)的图象至少有3个交点,loga需使0<a<1,且f(6)<g(6);即所以解得即0<a<,所以a的取值范围是.4.已知函数f(x)=则函数y=f(f(x))-1的零点个数为( )A.2B.3C.4D.5【解析】选B.由题意,令f(f(x))-1=0,得f(f(x))=1,令f(x)=t,由f(t)=1,得t=-1或t=,作出函数f(x)的图象,如图所示,结合函数f(x)的图象可知,f(x)=-1有1个解,f(x)=有2个解,故y=f(f(x))-1的零点个数为3.二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)5.若函数f(x)=x+(a∈R)在区间(1,2)上有零点,则a的值可能是( )A.-2B.-1C.-4D.-3【解析】选AD.f(x)=x+(a∈R)的图象在(1,2)上是连续不断的,则<0,解得-4<a<-1,所以a的值可能是-2,-3.6.函数f(x)=|x2-4x|-m恰好有两个不同零点,则m的值可以是( )A.m>4B.4C.0<m<4D.0【解析】选AD.由f(x)=0可得m=|x2-4x|,作出y=|x2-4x|的函数图象如图所示:因为f(x)恰好有两个不同的零点,所以直线y=m与y=|x2-4x|的图象有两个不同的交点,所以m=0或m>4.【光速解题】选取特殊值通过求零点判断.三、填空题(每小题5分,共10分)7.(2020·抚州高一检测)函数f(x)=(2x-3)·ln(x-2)的零点个数为________.【解析】函数的定义域为{x|x>2},令(2x-3)·ln(x-2)=0,因为2x-3>0,可得ln (x-2)=0,解得x=3.所以函数的零点只有1个.答案:1【误区警示】本题容易出现忽视定义域的错误,误认为零点个数为2.(x-1)(a>1).8.(2020·徐州高一检测)设函数f(x)=g(x)=loga(1)f(2 019)的值为______;(2)若函数h(x)=f(x)-g(x)恰有3个零点,则实数a的取值范围是______.【解析】(1)f(2 019)=f(2 017)=…=f(-1)=-1=1;(2)当0<x≤2时,-2<x-2≤0,所以f(x)=f(x-2)=-1;当2<x≤4时,0<x-2≤2,所以f(x)=f(x-2)=-1;当4<x≤6时,2<x-2≤4,所以f(x)=f(x-2)=-1;当6<x≤8时,4<x≤6,所以f(x)=f(x-2)=-1;(4-1)=3,得a=,画出f(x)和g(x)两个函数的图象如图所示,由loga由log(6-1)=3,得a=,a由图可知,当两个函数的图象有3个交点时,即函数h(x)=f(x)-g(x)恰有3个零点时,实数a的取值范围是(,].答案:(1)1 (2)(,]四、解答题(每小题10分,共20分)9.(2020·常州高一检测)已知f(x)是定义在R上的奇函数,且f(x+6)=f(x),当x(x2-x+1).∈(0,3)时,f(x)=loga(1)当x∈(-3,0)时,求f(x)的解析式;(2)求函数f(x)在[-3,3]上的零点构成的集合.【解析】(1)当x∈(-3,0)时,-x∈(0,3),[(-x)2-(-x)+1]所以f(-x)=loga(x2+x+1).=loga因为f(x)是定义在R上的奇函数,所以f(x)=-f(-x)=-log(x2+x+1),a(x2+x+1).即当x∈(-3,0)时,f(x)=-loga(2)因为f(x)是定义在R上的奇函数,所以f(0)=0,且f(-3)=-f(3),因为f(x+6)=f(x),所以f(-3)=f(3),所以f(-3)=f(3)=0,当x∈(0,3)时,令f(x)=log(x2-x+1)=0,a得x2-x+1=1,解得x=0(舍去),或x=1,即f(1)=0,又因为f(x)是奇函数,所以f(-1)=-f(1)=0,所以函数f(x)在[-3,3]上的零点构成的集合为{-3,-1,0,1,3}.10.已知函数f(x)=(c为常数),若1为函数f(x)的零点.(1)求c的值.(2)证明函数f(x)在[0,2]上是单调增函数.(3)已知函数g(x)=f(e x)-,求函数g(x)的零点.【解析】(1)因为1为函数f(x)的零点,所以f(1)=0,即c=1.(2)设0≤x1<x2≤2,则f(x2)-f(x1)=-=,因为0≤x1<x2≤2,所以x2-x1>0,x2+1>0,x1+1>0,所以f(x2)>f(x1),即函数f(x)在[0,2]上是单调增函数.(3)令g(x)=f(e x)-=-=0,所以e x=2,即x=ln 2,所以函数g(x)的零点是ln 2.创新练习1.(2020·南通高一检测)已知函数f(x)=函数g(x)=f(1-x)-m,则当<m<1时,函数y=f(x)+g(x)的零点个数为________.【解析】因为f(x)=所以f(1-x)=令y=f(x)+f(1-x)-m=0得m=f(x)+f(1-x),令h(x)=f(x)+f(1-x)=作出h(x)的函数图象如图所示:所以当<m<1时,y=f(x)+f(1-x)-m恰有4个零点,即函数y=f(x)+g(x)的零点个数为4.答案:42.(2019·泰州高一检测)已知函数f(x)为定义在R上的奇函数,且x>0时,f(x)=x2-2x+2.若对任意x1∈[-1,0),都存在唯一的x2∈[0,+∞),使得f(x1)+f(x2)=a成立,则实数a的取值范围是 ( )A.(-2,-1]∪[0,+∞)B.(-2,-1)∪[0,+∞)C.(-2,-1]D.[1,+∞)【解析】选A.由函数为定义在R上的奇函数及x>0时,f(x)=x2-2x+2,得x<0时, f(x)=-x2-2x-2,作出f(0)=0,f(x)的图象如图所示.若对任意x1∈[-1,0),即f(x1)∈(-2,-1],都存在唯一的x2∈[0,+∞),使得f(x1)+f(x2)=a成立,①当x2=0时,f(0)=0,这时f(x1)+f(x2)=f(x1)∈(-2,-1],所以a∈(-2,-1];②当x2>0时,由f(x1)+f(x2)=a,可得a-f(x2)=f(x1)∈(-2,-1],即f(x2)∈[a+1,a+2),由题意可得a+1≥1,即有a≥0,综上可得,a的取值范围是(-2,-1]∪[0,+∞).2用二分法求方程的近似解基础练习1.在用二分法求方程3x+3x-8=0在(1,2)内近似根的过程中,已经得到f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定【解析】选B.因为f(1)<0,f(1.5)>0,所以在区间(1,1.5)内函数f(x)=3x+3x-8存在一个零点,又因为f(1.5)>0,f(1.25)<0,所以在区间(1.25,1.5)内函数f(x)=3x+3x-8存在一个零点,由此可得方程3x+3x-8=0的根落在区间(1.25,1.5)内.2.(2020·盐城高一检测)下列函数中,不能用二分法求函数零点的是( )A.f(x)=2x-1B.f(x)=x2-2x+1xC.f(x)=log2D.f(x)=e x-2【解析】选B.A.函数的值域为R,可以使用二分法.B.函数的值域为[0,+∞),不能使用二分法.C.f(x)=logx∈R,可以使用二分法求函数的零点.2D.f(x)=e x-2的值域为(-2,+∞),可以使用二分法求函数的零点.3.(2020·锦州高一检测)函数f(x)=ax2-2x+1在区间(-1,1)和区间(1,2)上分别存在一个零点,则实数a的取值范围是( )A.-3<a<1B.<a<1C.-3<a<D.a<-3或a>【解析】选B.因为函数f(x)=ax2-2x+1在区间(-1,1)和区间(1,2)上分别存在一个零点,所以即,解得<a<1.4.(2020·重庆高一检测)关于x的方程2 020x=有实数根,则实数a的取值范围为______.【解析】设y=2 020x,则y的值域为(0,+∞),所以2 020x=有实数根⇔>0,即<0,所以(3a+2)(a-5)<0.解得,a∈.答案:5.已知方程2x+2x=5.(1)判断该方程解的个数以及所在区间;(2)用二分法求出方程的近似解(精确到0.1).参考数值:x 1.25 1.281 25 1.312 5 1.375 1.52x 2.378 2.430 2.484 2.594 2.828【解析】(1)令f(x)=2+2x-5.因为函数f(x)=2x+2x-5在R上是增函数,所以函数f(x)=2x+2x-5至多有一个零点.因为f(1)=21+2×1-5=-1<0,f(2)=22+2×2-5=3>0,所以方程2x+2x=5有一解在(1,2)内.(2)用二分法逐次计算,列表如下:区间中点的值中点函数值符号(1,2) 1.5 f(1.5)>0(1,1.5) 1.25 f(1.25)<0(1.25,1.5) 1.375 f(1.375)>0(1.25,1.375) 1.312 5 f(1.312 5)>0(1.25,1.312 5) 1.281 25 f(1.281 25)<0所以方程的近似解在区间(1.25,1.312 5)上,因为1.25和1.312 5精确到0.1的近似值都是1.3.即方程2x+2x=5的近似解可取为x≈1.3.提升训练一、选择题(每小题5分,共20分)1.设关于x的方程4x--b=0(b∈R),若该方程有两个不相等的实数解,则b的取值范围是( )A.[-1,0]B.[-1,0)C.(-1,0)D.(0,1)【解析】选C.令t=2x(t>0),则原方程可化为:t2-2t-b=0(t>0),关于x的方程4x--b=0(b∈R),若有两个不相等的实数解,即方程t2-2t-b=0有两个不相等的正根.因为t1+t2=2>0,所以解得-1<b<0,所以b的取值范围是(-1,0).2.根据下表,能够判断f(x)=g(x)在下列区间中有实数解的是( )x -1 0 1 2 3f(x) -0.677 3.011 5.432 5.980 7.651g(x) -0.530 3.451 4.890 5.241 6.892A.(-1,0)B.(0,1)C.(1,2)D.(2,3)【解析】选B.设函数h(x)=f(x)-g(x),则h(-1)=f(-1)-g(-1)=-0.677-(-0.530)=-0.147<0,h(0)=f(0)-g(0)=3.011-3.451=-0.440<0,h(1)=f(1)-g(1)=5.432-4.890=0.542>0,h(2)=f(2)-g(2)=5.980-5.241=0.739>0,h(3)=f(3)-g(3)=7.651-6.892=0.759>0,所以h(0)·h(1)<0,得函数h(x)=f(x)-g(x)的零点存在区间为(0,1).3.某方程在区间(2,4)内有一个实根,若用二分法求此根的精确度为0.1的近似值,则应将此区间二等分的次数为( )A.2B.3C.4D.5【解析】选D.等分1次,区间长度为1;等分2次,区间长度变为0.5;…;等分4次,区间长度变为0.125;等分5次,区间长度为0.062 5<0.1,符合题意.4.(多选题)定义域和值域均为[-a,a](常数a>0)的函数y=f(x)和y=g(x)的图象如图所示,下列四个命题中正确的结论是( )A.方程f[g(x)]=0有且仅有三个解B.方程g[f(x)]=0有且仅有三个解C.方程f[f(x)]=0有且仅有九个解D.方程g[g(x)]=0有且仅有一个解【解析】选AD.根据函数的图象,函数f(x)的图象与x轴有3个交点,所以方程f[g(x)]=0有且仅有三个解;函数g(x)在区间上单调递减,所以方程g[g(x)]=0有且仅有一个解.二、填空题(每小题5分,共10分)5.(2020·苏州高一检测)已知函数f(x)=若方程f(x)=ax恰有三个不等的实数根,则实数a的取值范围是________.【解析】若x<0,可得x-2=ax,即x=<0,解得a>1;由x>0,可得-x3+4x2=ax,可得x2-4x+a=0,有两个不等的正根,可得Δ=16-4a>0,a>0,解得0<a<4,方程f(x)=ax恰有三个不等的实数根,可得1<a<4.答案:1<a<46.已知函数f(x)=-2x,则f________f(1)(填“>”或“<”);f(x)在区间上存在零点,则正整数n=________.【解析】易知函数f(x)=-2x为减函数,则f>f(1),因为f(1)=1-2=-1,f=2->0,所以f(1)f<0,所以函数f(x)的零点所在的区间为,因为f(x)在区间上存在零点,所以=,解得n=2.答案:> 2【补偿训练】若方程lg x=2-x的根x∈(k-1,k),其中k∈Z,则实数k=________.【解析】因为lg x=2-x,所以lg x+x-2=0,令g(x)=lg x+x-2,则g(x)在(0,+∞)上单调递增,因为g(1)=-1<0,g(2)=lg 2>0.由零点存在定理可知,x∈(1,2),因为x∈(k-1,k),其中k∈Z,则k=2.答案:2三、解答题7.(10分)用二分法求函数y=2x3-3x2-5x+3在区间(-2,-1)内的零点.(精确到0.1) 【解析】y=2x3-3x2-5x+3,因为f(-2)<0,f(-1)>0,所以函数在(-2,-1)内存在零点,取(-2,-1)的中点-1.5,经计算f(-1.5)<0,又f(-1)>0,所以函数在(-1.5,-1)内存在零点,如此继续下去,得到方程的一个实数根所在的区间,如表:(a,b) (a,b)的中点f(a) f(b) f(-2,-1) -1.5 f(-2)<0 f(-1)>0 f(-1.5)<0 (-1.5,-1) -1.25 f(-1.5)<0 f(-1)>0 f(-1.25)>0(-1.5, -1.25) -1.375f(-1.5)<0f(-1.25)>0f(-1.375)<0(-1.375, -1.25) -1.312 5f(-1.375)<0f(-1.25)>0f(-1.312 5)<0所以函数的零点在区间(-1.312 5,-1.25),因为-1.25与-1.312 5精确到0.1的近似值都是-1.3,所以函数的零点的近似解是x≈-1.3.3几个函数模型的比较基础练习1.以下四种说法中,正确的是( )A.幂函数增长的速度比一次函数增长的速度快B.对任意的x>0,x n>logaxC.对任意的x>0,a x>logaxD.不一定存在x0,当x>x时,总有a x>x n>logax【解析】选D.对于A,幂函数的增长速度受幂指数的影响,幂指数不确定,而一次函数的增长速度受一次项系数的影响,增长速度不能比较;对于B、C,当0<a<1时,显然不成立;对于D,当a>1,n>0时,一定存在x0,使得当x>x时,总有a x>x n>logax,但若去掉限制条件“a>1,n>0”,则结论不成立.2.向杯中匀速注水时,如果杯中水面的高度h随时间t变化的图象如图所示,则杯子的形状为( )【解析】选B.因为杯中水面的高度先经过两次直线增长,后不变,符合B中容器的形状.【补偿训练】某林区的森林蓄积量平均每年比上一年增长8.6%,若经过x年可以增长到原来的y倍,则函数y=f(x)的大致图象是图中的 ( )【解析】选D.设某林区的森林蓄积量原有1个单位,则经过1年森林的蓄积量为1+8.6%;经过2年森林的蓄积量为(1+8.6%)2;…;经过x年的森林蓄积量为(1+8.6%)x(x≥0),即y=(108.6%)x(x≥0).因为底数108.6%大于1,根据指数函数的图象,可知D选项正确.3.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:万元)对年销售量y(单位:t)的影响,对近6年的年宣传费xi 和年销售量yi(i=1,2, (6)进行整理,得数据如表所示:x 1.00 2.00 3.00 4.00 5.00 6.00y 1.65 2.20 2.60 2.76 2.90 3.10根据表中数据,下列函数中,适合作为年销售量y关于年宣传费x的拟合函数的是( )x+1.5A.y=0.5(x+1)B.y=log3C.y=2x-1D.y=2【解析】选B.将题干表格中的数值描到坐标系内(图略),观察可得这些点的拟合函数类似于对数函数,代入数值验证,也较为符合.4.某学校开展研究性学习活动,一组同学得到表中的实验数据:x 1.99 3 4 5.1 8y 0.99 1.58 2.01 2.35 3.00现有如下4个模拟函数:①y=0.58x-0.16;②y=2x-3.02;③y=x2-5.5x+8;④y=logx.2请从中选择一个模拟函数,使它能近似地反映这些数据的规律,应选________. 【解析】画出散点图,由图分析增长速度的变化,可知符合对数函数模型,故选④.答案:④5.画出函数f(x)=与函数g(x)=x-2的图象,并比较两者在[0,+∞)上的大小关系.【解析】函数f(x)与g(x)的图象如图.根据图象易得:当0≤x<4时,f(x)>g(x);当x=4时,f(x)=g(x);当x>4时,f(x)<g(x).提升训练一、选择题(每小题5分,共20分)1.如表是函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是( )x 4 5 6 7 8 9 10y 15 17 19 21 23 25 27A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型【解析】选A.随着自变量每增加1函数值增加2,函数值的增量是均匀的,故为线性函数即一次函数模型.2.某同学最近5年内的学习费用y(千元)与时间x(年)的关系如图所示,则可选择的模拟函数模型是( )A.y=ax+bB.y=ax2+bx+cC.y=a·e x+bD.y=aln x+b【解析】选 B.由散点图和四个函数的特征可知,可选择的模拟函数模型是y=ax2+bx+c.3.下面对函数f(x)=lo x,g(x)=与h(x)=-2x在区间(0,+∞)上的递减情况说法正确的是( )A.f(x)递减速度越来越慢,g(x)递减速度越来越快,h(x)递减速度越来越慢B.f(x)递减速度越来越快,g(x)递减速度越来越慢,h(x)递减速度越来越快C.f(x)递减速度越来越慢,g(x)递减速度越来越慢,h(x)递减速度不变D.f(x)递减速度越来越快,g(x)递减速度越来越快,h(x)递减速度越来越快【解析】选C.观察函数f(x)=lo x,g(x)=与h(x)=-2x在区间(0,+∞)上的图象(如图)可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢;函数g(x)的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h(x)的图象递减速度不变.4.(多选题)某地一年内的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示.已知该年的平均气温为10 ℃,令C(t)表示时间段[0,t]内的平均气温,不能正确反映C(t)与t之间的函数关系的图象有( )【解析】选BCD.由题图知,当t=6时,C(t)=0,故C不正确;当t=12时,C(t)=10,故D不正确;在大于6的某一段时间平均气温大于10 ℃,故B不正确.二、填空题(每小题5分,共10分)5.如图所示是某受污染的湖泊在自然净化过程中某种有害物质的残留量y与净化时间t(月)的近似函数关系:y=a t(t≥0,a>0且a≠1)的图象.有以下说法:①第4个月时,残留量就会低于;②每月减少的有害物质质量都相等;③当残留量为,,时,所经过的时间分别是t1,t2,t3,则t1+t2=t3.其中所有正确说法的序号是________.【解析】由于函数的图象经过点,故函数的解析式为y=.当t=4时,y=<,故①正确;当t=1时,y=,减少,当t=2时,y=,减少,故每月减少有害物质质量不相等,故②不正确;分别令y=,,,解得t1=,t 2=,t3=,t1+t2=t3,故③正确.答案:①③6.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=loga(t+1)来刻画h与t的关系,你认为符合的函数模型是________,根据你选择的函数模型预测第8年的松树高度为______米.t(年) 1 2 3 4 5 6h(米) 0.6 1 1.3 1.5 1.6 1.7【解析】据表中数据作出散点图如图:由图可以看出用一次函数模型不吻合,选用对数型函数比较合理.将(2,1)代入到h=loga (t+1)中,得1=loga3,解得a=3,即h=log3(t+1).当t=8时,h=log3(8+1)=2,故可预测第8年松树的高度为2米.答案:h=loga(t+1) 2三、解答题7.(10分)若不等式3x2<logax在x∈内恒成立,求实数a的取值范围.【解题指南】原不等式等价于3x2<logax,将不等式两边分别看成两个函数,作出它们的图象,研究a的取值范围.【解析】由题意,知3x2<logax在x∈内恒成立,当x∈时,若a>1,则函数y=logax的图象显然在函数y=3x2图象的下方,所以a>1不成立;当0<a<1时,y=loga x的图象必过点A或在这个点的上方,则loga≥,所以a≥,所以≤a<1.综上,a的取值范围是.4函数的实际应用基础练习1.随着社会发展对环保的要求,越来越多的燃油汽车被电动汽车取代,为了了解某品牌的电动汽车的节能情况,对某一辆电动汽车“行车数据”的两次记录如表:记录时间累计里程(单位:公里)平均耗电量(单位:kW·h/公里)剩余续航里程(单位:公里)2020年1月1日5 000 0.125 3802020年1月2日5 100 0.126 246(注:累计里程指汽车从出厂开始累计行驶的路程,累计耗电量指汽车从出厂开始累计消耗的电量,平均耗电量=,剩余续航里程=)下面对该车在两次记录时间段内行驶100公里的耗电量估计正确的是( )A.等于12.5 kW·hB.12.5 kW·h到12.6 kW·h之间C.等于12.6 kW·hD.大于12.6 kW·h【解析】选D.由题意可得:5 100×0.126-5 000×0.125=642.6-625=17.6,所以对该车在两次记录时间段内行驶100公里的耗电量估计为17.6 kW·h.2.某网站开展了以核心价值观为主题的系列宣传活动,并将“社会主义核心价值观”作为关键词便于网民搜索.此后,该网站的点击量每月都比上月增长50%,那么4个月后,该网站的点击量和原来相比,增长为原来的( )A.2倍以上,但不超过3倍B.3倍以上,但不超过4倍C.4倍以上,但不超过5倍D.5倍以上,但不超过6倍【解析】选D.4个月后网站点击量变为原来的=,所以是5倍以上,但不超过6倍.3.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(单位:只)与引入时间x(单位:年)的关系为y=alog2(x+1),若该动物在引入一年后的数量为100只,则第7年它们发展到( )A.300只B.400只C.600只D.700只【解析】选A.将x=1,y=100代入y=alog2(x+1)得,100=alog2(1+1),解得a=100,所以当x=7时,y=100log2(7+1)=300.4.甲打算从A地出发至B地,现有两种方案:第一种:在前一半路程用速度v1,在后一半路程用速度v2(v1≠v2),平均速度为;第二种:在前一半时间用速度v1,在后一半时间用速度v2(v1≠v2),平均速度为v';则,v'的大小关系为( ) A.>v' B.<v'C.=v'D.无法确定【解析】选B.第一种:设总路程为2s, 则==,第二种:设时间为2t,则v'==,,v'-=-==>0,所以v'>.5.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=x2+2x+20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为________万件.【解析】利润L(x)=20x-C(x)=-(x-18)2+142,当x=18时,L(x)有最大值.答案:186.李庄村某社区电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度,每度0.4元,超过30度时,超过部分按每度0.5元.方案二:不收管理费,每度0.48元.(1)求方案一收费L(x)元与用电量x(度)间的函数关系;(2)小李家九月份按方案一交费34元,问小李家该月用电多少度?(3)小李家月用电量在什么范围时,选择方案一比选择方案二更好?【解析】(1)当0≤x≤30时,L(x)=2+0.4x;当x>30时,L(x)=2+30×0.4+(x-30)×0.5=0.5x-1,所以L(x)=(2)当0≤x≤30时,由L(x)=2+0.4x=34,解得x=80,舍去;当x>30时,由L(x)=0.5x-1=34,解得x=70,所以小李家该月用电70度.(3)设按第二方案收费为F(x)元,则F(x)=0.48x,当0≤x≤30时,由L(x)<F(x),解得2+0.4x<0.48x,解得x>25,所以25<x≤30;当x>30时,由L(x)<F(x),得0.5x-1<0.48x,解得x<50,所以30<x<50,综上25<x<50.故小李家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好.提升训练一、单选题(每小题5分,共20分)1.2019年8月到11月这四个月的某产品价格的市场平均价f(x)(单位:元/千克)与时间x(单位:月份)的数据如表x 8 9 10 11f(x) 28.00 33.99 36.00 34.02现有三种函数模型:①f(x)=bx+a;②f(x)=ax2+bx+c;③f(x)=+a,找出你认为最适合的函数模型,并估计2019年12月份的该产品市场平均价( )A.②,28元/千克B.①,25元/千克C.②,23元/千克D.③,21元/千克【解析】选A.因为f(x)的值随x的值先增后减,所以选f(x)=ax2+bx+c最合适.第二组数据近似为(9,34),第四组近似为(11,34),得f(x)图象的对称轴为x=10, 故f(12)=f(8)=28.2.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D. a(1-10%+15%)万元【解析】选B.由题意,5月份的产值为a(1-10%)(1+15%)万元.3.某人若以每股17.25元的价格购进股票一万股,可以预知一年后以每股18.96元的价格销售.已知该年银行利率为0.8%,按月计复利,为获取最大利润,某人应将钱[注:(1+0.8%)12≈1.100 339] ( )A.全部购买股票B.全部存入银行C.部分购买股票,部分存银行D.购买股票或存银行均一样【解析】选B.买股票利润:x=(18.96-17.25)×10 000,存银行利润:y=17.25×10 000×(1+0.8%)12-17.25×10 000,计算得x<y.4.衣柜里的樟脑丸随着时间挥发而体积缩小,刚放进的新丸的体积为a,经过t天后体积V与天数t的关系式为V=a·e-kt.已知新丸经过50天后,体积变为 a.若一个新丸体积变为a,则需经过的天数为( )A.125B.100C.75D.50【解析】选C.由已知得a=a·e-50k,即e-50k==,所以a=·a=(e-50k·a=e-k·75·a,所以t=75.二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)5.某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少,则使产品达到市场要求的过滤次数可以为(参考数据:lg2≈0.301,lg3≈0.477) ( )A.6B.9C.8D.7【解析】选BC.设经过n次过滤,产品达到市场要求,则×≤,即≤,由 nlg≤-lg20,即n(lg2-lg3)≤-(1+lg2),得 n≥≈7.4.6.如图,摩天轮的半径为40米,摩天轮的轴O点距离地面的高度为45米,摩天轮匀速逆时针旋转,每6分钟转一圈,摩天轮上的点P的起始位置在最高点处,下面的有关结论正确的有( )A.经过3分钟,点P首次到达最低点B.第4分钟和第8分钟点P距离地面一样高C.从第7分钟至第10分钟摩天轮上的点P距离地面的高度一直在降低D.摩天轮在旋转一周的过程中点有2分钟距离地面不低于65米【解析】选ABD.可以以点O在地面上的垂足为原点,OP所在直线为y轴,与OP垂直的向右的方向为x轴正方向建立坐标系,设y=Asin(ωx+φ)+k,x表示时间.由题意可得A=40,k=45,P,T=6,可得ω==,故有点P离地面的高度y=40sin+45=40cos x+45.A.经过3分钟,y=40cos+45=5.点P首次到达最低点,正确;B.第4分钟和第8分钟点P距离地面的高度分别为f(4)=40cos+45=25, f(8)=40cos+45=25.所以第4分钟和第8分钟点P距离地面一样高,正确;C.从第7分钟至第9分钟摩天轮上的点P距离地面的高度一直在降低,而从第9分钟至第10分钟摩天轮上的点P距离地面的高度开始上升.C项不正确.D.由40cos x+45=65,化为:cos x=,取x=,可得x=1.结合图形可得:摩天轮在旋转一周的过程中点P有2分钟距离地面不低于65米.因此正确.三、填空题(每小题5分,共10分)7.要制作一个容积为4 m3,高为1 m的无盖长方体容器,已知该容器的底面造价为20元/m2,侧面造价为10元/m2,则该容器的最低造价是______元.【解析】设容器底的长和宽分别为a m,b m,成本为y元,所以S底=ab=4,y=20S底+10[2(a+b)]=20(a+b)+80≥20×2+80=160,当且仅当a=b=2时,y取最小值160,则该容器的最低造价为160元.答案:1608.(2020·菏泽高一检测)某制造商制造并出售圆柱形瓶装的某种饮料,瓶子的底面半径是r,高h=r(单位:cm),一个瓶子的制造成本是0.8πr2分,已知每出售 1mL(注:1 mL=1 cm3)的饮料,制造商可获利0.2分,且制造商能制造的瓶子底面的最大半径为 6 cm.记每瓶饮料的利润为f(r),则f(3)=________,其实际意义是________.【解析】f(r)=0.2·πr2·r-0.8πr2=-0.8πr2(0<r≤6),故f(3)=7.2 π-7.2 π=0.表示当瓶子底面半径为3 cm时,利润为0.答案:0 当瓶子底面半径为3 cm时,利润为0四、解答题(每小题10分,共20分)9.(2020·上海高一检测)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=-48x+8000,已知此生产线年产量最大为230吨.(1)求年产量为多少吨时,生产每吨产品的平均成本P(年总成本除以年产量)最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,且生产的产品全部售完,那么当年产量为多少吨时,年总利润可以获得最大?最大利润是多少?【解析】(1)y=-48x+8 000,0<x≤230.所以P==+-48≥2-48=32,当且仅当x=200时取等号.所以年产量为200吨时,生产每吨产品的平均成本P最低,最低成本为32万元. (2)设利润为z万元,则z=40x-y=40x-+48x-8 000=-x2+88x-8 000=-(x-220)2+1 680,即年产量为220吨时,利润最大为1 680万元.10.为净化新安江水域的水质,市环保局于2017年年底在新安江水域投入一些蒲草,这些蒲草在水中的蔓延速度越来越快,2018年二月底测得蒲草覆盖面积为24 m2,2018年三月底测得覆盖面积为36 m2,蒲草覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型y=ka x(k>0,a>1)与y=mx2+n(m>0)可供选择.(1)分别求出两个函数模型的解析式;(2)若市环保局在2017年年底投放了11 m2的蒲草,试判断哪个函数模型更合适?并说明理由;(3)利用(2)的结论,求蒲草覆盖面积达到320 m2的最小月份.(参考数据:lg2=0.301 0,lg3=0.477 1)【解析】(1)由已知⇒所以y=.由已知⇒所以 y=x2+.(2)若用模型y=,则当x=0时,y1=,若用模型y=x2+,则当x=0时y2=,易知使用模型y=更为合适.(3)由≥320⇒x≥30,故x≥30===≈8.39,故蒲草覆盖面积达到320 m2的最小月份是9月.创新练习1.某商贸公司售卖某种水果.经市场调研可知:在未来20天内,这种水果每箱的销售利润r(单位:元)与时间t(1≤t≤20,t∈N,单位:天)之间的函数关系式为r=t+10,且日销售量y(单位:箱)与时间t之间的函数关系式为y=120-2t,(1)第4天的销售利润为________元;(2)在未来的这20天中,公司决定每销售1箱该水果就捐赠m(m∈N*)元给“精准扶贫”对象.为保证销售积极性,要求捐赠之后每天的利润随时间t的增大而增大,则m的最小值是________.【解析】(1)因为t=4时,r=×4+10=11,y=120-2×4=112,所以该天的销售利润为11×112=1 232(元);(2)设捐赠后的利润为W元,则W=y(r-m)=(120-2t),化简可得W=-t2+(2m+10)t+1 200-120m.令W=f(t),因为二次函数的开口向下,对称轴为t=2m+10,由题意,得2m+10≥20,m∈N*,解得m≥5,m∈N*.答案:(1)1 232 (2)52.铅酸电池是一种蓄电池,电极主要由铅及其氧化物制成,电解液是硫酸溶液,这种电池具有电压稳定、价格便宜等优点,在交通、通信、电力、军事、航海、航空等领域有着广泛应用.但是由于在实际生活中使用方法不当,电池能量未被完全使用,导致了能源的浪费,因此准确预测铅酸电池剩余放电时间是使用中急需解决的问题.研究发现,当电池以某恒定电流放电时,电压U关于放电时间t的变化率y满足y=a+(其中a,b为常数,无理数e=2.718 28…)实验数据显示,当时间t的值为0和5时,电压U关于放电时间t的变化率y分别为-2和-752,求a,b的值.【解析】电压U关于放电时间t的变化率y满足y=a+(其中a,b为常数,无理数e=2.718 28…)且当时间t的值为0和5时,电压U关于放电时间t的变化率y。

高中数学第8章函数应用45函数的实际应用含解析苏教版第一册

高中数学第8章函数应用45函数的实际应用含解析苏教版第一册

课时分层作业(四十五)函数的实际应用(建议用时:40分钟)一、选择题1.如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()A B C DB[水位由高变低,排除C,D.半缸前下降速度先快后慢,半缸后下降速度先慢后快,故选B.]2.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费S(元)的函数关系如图所示.当打出电话150分钟时,这两种方式电话费相差()A.8元B.9元C.10元D.12元C[设A种方式对应的函数解析式为S=k1t+20,B种方式对应的函数解析式为S=k2t.当t=100时,100k1+20=100k2,所以k2-k1=15,t=150时,150k2-150k1-20=150×错误!-20=10(元).]3.某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2017年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1。

3≈0.11,lg 2≈0.30)()A。

2020年B。

2021年C.2022年D。

2023年B[若2018年是第一年,则第n(n∈N+)年科研经费为 1 300×1。

12n,由1 300×1。

12n>2 000,可得lg 1.3+n lg 1.12>lg 2,得n×0.05〉0。

19,n>3.8,n≥4,即4年后,到2021年科研经费超过2 000万元.故选B。

]4.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是()A.y=100x B.y=50x2-50x+100C.y=50×2x D.y=100log2x+100C[根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得.故选C.]5.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为:V=a·e-kt.已知新丸经过50天后,体积变为错误!a.若一个新丸体积变为错误!a,则需经过的天数为()A.60 B.75C.90 D.100B[由已知,得错误!a=a·e-50k,∴e-k=错误!错误!.设经过t1天后,一个新丸体积变为错误!a,则错误!a=a·e-kt1,∴827=(e-k)t1=错误!错误!,∴错误!=错误!,t1=75.]二、填空题6.某养殖场需定期购买饲料,已知该场每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元,则该养殖场________天购买一次饲料才能使平均每天支付的总费用最少.10[设该养殖场x(x∈N*)天购买一次饲料可使平均每天支付的总费用最少,平均每天支付的总费用为y元.因为饲料的保管费与其他费用每天比前一天少200×0.03=6(元),所以x天饲料的保管费与其他费用共是6(x-1)+6(x-2)+…+6=3x2-3x(元).从而有y=1x(3x2-3x+300)+200×1.8=错误!+3x+357≥417,当且仅当错误!=3x,即x=10时,y有最小值.故该养殖场10天购买一次饲料才能使平均每天支付的总费用最少.]7.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=12x2+2x+20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为________万件.18[利润L(x)=20x-C(x)=-错误!(x-18)2+142,当x =18时,L(x)有最大值.]8.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少错误!,至少应过滤______次才能达到市场要求。

2023-2024学年苏教版必修第一册 8.2.2 函数的实际应用 课件(30张)

过关自诊
1.某商场以每件30元的价格购进一种商品,试销售中发现,这种商品每天的销量(单位:件)与每件的售价(单位:元)满足一次函数.若要每天获得最大的销售利润,每件商品的售价应定为()
B
A.30元 B.42元 C.54元 D.越高越好
[解析]设每天的销售利润为元,则,,整理得,当时,取得最大值.故每件商品的售价定为42元时,每天才能获得最大的销售利润.
2.某工厂生产某种产品的固定成本为2000万元,并且每生产一单位产品,成本增加10万元.又知总收入是单位产品数的函数,,则总利润的最大值是_______万元.
2 500
[解析],当时,取最大值2500万元.
3.在建模中一次函数模型、二次函数模型、与幂函数相关的函数模型的选取标准是什么?它们的增长速度是如何变化的?
设每日火车来回次,每次挂节车厢,设每日可营运节车厢.则所以当时,取最大值72.此时,故每日最多运营人数为(人).
探究点二 分段函数模型的应用
【例2】某种商品在30天内每件的销售价格(单位:元)与时间(单位:天)的函数关系用如图的两条线段表示,该商品在30天内日销售量(单位:件)与时间(单位:天)之间的关系如下表:
变式训练1 两个城市之间用一列火车作为交通车.已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次.
(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式;
解设每日来回次,每次挂节车厢,由题意设.由已知可得解得,
(2)在(1)的条件下,每节车厢能载乘客110人,问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.
(3)分段函数模型.这个模型实质是一次函数、正比例函数(形如,)、反比例函数(形如,)、二次函数模型中两种及以上的综合.(4)幂函数模型.,,为常数,,.

函数的运用 练习 含答案 高中数学苏教版必修一

一、 填空题1. 已知某种产品今年产量为1 000件,若计划从明年 每年的产量比上一年增长10%,今年算第一年,则第四年的产量为________件.2. 某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是________.3. 若函数f(x)=ax +1在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.4. 设函数f(x)=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x>0.若f(-4)=f(0),f(-2)=-2,则函数g(x)=x -f(x)的零点的个数是________.5. 若函数f(x)=2ax 2-x -1在(0,1)内恰有一个零点,则实数a 的取值范围是__________.6. 已知函数f(x)=|x 2-2x -2 015|,若关于x 的方程f(x)=m(m ∈R )恰有四个互不相等的实根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=__________.7. 已知函数y =f(x)是偶函数,对于x ∈R 都有f(x +6)=f(x)+f(3)成立.当x 1,x 2∈[0,3],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2>0,给出下列命题: ① f(3)=0;② 直线x =-6是函数y =f(x)的图象的一条对称轴;③ 函数y =f(x)在[-9,-6]上为单调递减函数;④ 函数y =f(x)在[-9,9]上有4个零点.其中正确的命题是____________.(填序号)8. 已知函数f(x)=⎩⎪⎨⎪⎧2x -1,x>0,-x 2-2x ,x ≤0.若函数g(x)=f(x)-m 有3个零点,则实数m 的取值范围是________.9. 已知函数f(x)=3-ax a -1(a ≠1).若f(x)在区间(0,1]上是减函数,则实数a 的取值范围是________.10. 已知函数f(x)=|2x -3|.若0<2a <b +1,且f(2a)=f(b +3),则T =3a 2+b 的取值范围是________.二、 解答题11. 若函数f(x)=2x a -1-a 2x -1为奇函数. (1) 求a 的值;(2) 判断f(x)的单调性.12某投资公司拟投资开发某项新产品,市场评估能获得10~1 000万元的投资收益.现公司准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不低于1万元,同时不超过投资收益的20%.(1) 设奖励方案的函数模型为f(x),试用数学语言表述公司对奖励方案的函数模型f(x)的基本要求;(2) 公司能不能用函数f(x)=x 150+2作为预设的奖励方案的模型函数?13(1) 若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围;(2) 已知函数f(x)=x2+2mx+3m+4.①若函数f(x)有且仅有一个零点,求实数m的值;②若函数f(x)有两个零点且两个零点均比-1大,求实数m的取值范围.1. 1 331 解析:1 000×(1+10%)3=1 331.2. 108 解析:设进货价为a 元,由题意知132×(1-10%)-a =10%a ,解得a =108.3. (-∞,-1)∪(1,+∞) 解析:由题意知,f(-1)·f(1)<0,即(1-a)(1+a)<0,解得a<-1或a>1.4. 3 解析:先根据已知条件可得b =4,c =2,作出f(x)=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2,x>0的图象,由图可知,直线y =x 与y =f(x)的图象有3个交点,所以函数g(x)有3个零点.5. (1,+∞) 解析:当a =0时,函数的零点是x =-1不在(0,1)内,不合题意;当a ≠0时,⎩⎪⎨⎪⎧Δ=0,0<14a <1或f(0)f(1)<0,解得a>1. 综上所述a>1.6. 4 解析:不妨设x 1<x 2<x 3<x 4,则x 1+x 4=2,x 2+x 3=2.7. ①②③④ 解析:令x =-3,得f(-3)=0,由y =f(x)是偶函数,所以f(3)=f(-3)=0,①正确;因为f(x +6)=f(x),所以y =f(x)是周期为6的函数,而偶函数图象关于y 轴对称,所以直线x =-6是函数y =f(x)的图象的一条对称轴,②正确;由题意知,y =f(x)在[0,3]上为单调增函数,所以在[-3,0]上为单调减函数,故y =f(x)在[-9,-6]上为单调减函数,③正确;由f(3)=f(-3)=0,知f(-9)=f(9)=0,所以函数y =f(x)在[-9,9]上有4个零点,④正确.8. (0,1) 解析:画出函数f(x)的图象,如图所示要直线y =m 与f(x)的图象的交点有3个,只要0<m<1.9. (-∞,0)∪(1,3] 解析:当a -1>0即a>1时,要使f(x)在(0,1]上是减函数,则需3-a ×1≥0,此时1<a ≤3;当a -1<0即a<1时, 要使f(x)在(0,1]上是减函数,则需-a>0,此时a<0.所以实数a 的取值范围是(-∞,0)∪(1,3].10. ⎝⎛⎭⎫-516,0 解析:由0<2a <b +1,且f(2a)=f(b +3),得0<2a ≤32≤b +3,于是由|4a -3|=|2b +3|,得3-4a =2b +3,所以b =-2a ,所以2a <-2a +1,即a <14,所以0<a <14,所以T =3a 2+b =3a 2-2a =3⎝⎛⎭⎫a -132-13,所以T ∈⎝⎛⎭⎫-516,0. 11. 解:(1) ∵ f(x)=2x a -1-a 2x -1=a -12x -1. 由f(-x)+f(x)=0,得a -12-x -1+a -12x -1=0, ∴ 2a +1-2x 1-2x=0, ∴ a =-12. (2) ∵ f(x)=-12-12x -1,∴ 2x -1≠0,即x ≠0,∴ 函数f(x)=-12-12x -1的定义域为{x|x ≠0}. 设x 2>x 1>0,则2x 2>2x 1>1,2x 2-1>2x 1-1>0,12x 2-1<12x 1-1,-12x 2-1>-12x 1-1,-12-12x 2-1>-12-12x 1-1, ∴ f(x 2)>f(x 1),∴ 函数f(x)在(0,+∞)上是增函数,同理f(x)在(-∞,0)上也是增函数.12. 解:(1) 由题意知,公司对奖励方案的函数模型f(x)的基本要求是:当x ∈[10,1 000]时,① f(x)是增函数;② f(x)≥1恒成立;③ f(x)≤x 5恒成立. (2) 对于函数模型f(x)=x 150+2;当x ∈[10,1 000]时,f(x)是增函数,则f(x)≥1显然恒成立;而若使函数f(x)=x 150+2≤x 5在[10,1 000]上恒成立,整理即29x ≥300恒成立,而(29x)min =290,∴ f(x)≤x 5不恒成立. 故该函数模型不符合公司要求.13. 解: (1) 令f(x)=0,得|4x -x 2|+a =0,即|4x -x 2|=-a.令g(x)=|4x -x 2|,h(x)=-a.作出g(x),h(x)的图象.由图象可知,当0<-a <4,即-4<a <0时,g(x)与h(x)的图象有4个交点,即f(x)有4个零点.故a 的取值范围是(-4,0).(2) ① f(x)=x 2+2mx +3m +4有且仅有一个零点⇔f(x)=0有两个相等实根⇔Δ=0,即4m 2-4(3m +4)=0,即m 2-3m -4=0,∴ m =4或m =-1.② 由题意,知⎩⎪⎨⎪⎧Δ>0,-m >-1,f (-1)>0,即⎩⎪⎨⎪⎧m 2-3m -4>0,m <1,1-2m +3m +4>0,∴ -5<m <-1.∴ m 的取值范围是(-5,-1).。

2020-2021学年数学新教材苏教版必修第一册章末综合测评8 函数应用 Word版含解析

章末综合测评(八) 函数应用(满分:150分 时间:120分钟)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=(x 2-1)·x 2-4的零点个数是( )A .1B .2C .3D .4B [要使函数有意义,则x 2-4≥0,解得x ≥2或x ≤-2.由f (x )=0得x 2-4=0或x 2-1=0(不成立舍去),即x =2或x =-2.所以函数的零点个数为2.故选B .]2.函数f (x )=log 2x +3x -4的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)D [∵函数y 1=log 2x 在区间(0,+∞)上为增函数,函数y 2=3x -4为增函数, 所以,函数f (x )=log 2x +3x -4在区间(0,+∞)上为增函数,则该函数最多有一个零点,又f (1)=-1<0,f (2)=3>0,因此,函数f (x )=log 2x +3x -4的零点所在的一个区间是(1,2).故选D .]3.一种放射性物质不断变化为其他物质,每经过一年,剩留的物质约是原来的45.经过x 年,剩留的物质是原来的64125.则x 为( )A .2B .3C .4D .5B [先求剩留量y 随时间x (年)变化的函数关系式,设物质最初的质量为1,则经过1年,y =1×45=45,经过2年,y =45×45=⎝ ⎛⎭⎪⎫452,…,那么经过x 年,则y =⎝ ⎛⎭⎪⎫45x .依题意得⎝ ⎛⎭⎪⎫45x =64125,解得x =3.] 4.对任意实数a ,b ,定义运算“⊙”:a ⊙b =⎩⎨⎧b ,a -b ≥1,a ,a -b <1,设f (x )=(x 2-1)⊙(4+x )+k ,若函数f (x )的图象与x 轴恰有三个交点,则k 的取值范围是( )A .(-2,1)B .[0,1]C .[-2,0)D .[-2,1) D [令g (x )=(x 2-1)⊙(4+x )=⎩⎨⎧4+x ,x ≤-2或x ≥3,x 2-1,-2<x <3,其图象如图所示.f (x )=g (x )+k 的图象与x 轴恰有三个交点,即y =g (x )与y =-k 的图象恰有三个交点,由图可知-1<-k ≤2,即-2≤k <1.故选D .]5.某商场在销售空调旺季的4天内的利润如下表所示. 时间 1 2 3 4利润(千元) 2 3.98 8.01 15.99( )A .y =log 2xB .y =2xC .y =x 2D .y =2xB [画出散点图(图略),由散点图可知,这种空调的函数模型为y =2x .]6.已知定义在R 上的函数f (x )=(x 2-3x +2)g (x )+3x -4,其中函数y =g (x )的图象是一条连续曲线,则方程f (x )=0在下面哪个范围内必有实数根( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)B [f (x )=(x 2-3x +2)g (x )+3x -4=(x -1)(x -2)g (x )+3x -4,则f (1)=-1<0,f (2)=2>0.所以根据函数零点的判断方法可知,函数f (x )在区间(1,2)内存在零点,即方程f (x )=0在区间(1,2)内存在实数根.]7.加工爆米花时,爆开且不煳的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为( )A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟B [由图形可知,三点(3,0.7),(4,0.8),(5,0.5)都在函数p =at 2+bt +c 的图象上,所以⎩⎨⎧ 9a +3b +c =0.716a +4b +c =0.825a +5b +c =0.5 ,解得a =-0.2,b =1.5,c =-2,所以p =-0.2t 2+1.5t -2=-0.2⎝ ⎛⎭⎪⎫t -1542+1316,因为t >0,所以当t =154=3.75时,p 取最大值,故此时的t =3.75分钟为最佳加工时间,故选B .]8.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”,计费方法如下: 每户每月用水量水价 不超过12 m 3的部分 3元/m 3超过12 m 3但不超过18 m 3的部分 6元/m 3超过18 m 3的部分 9元/m 3( )A .20 m 3B .18 m 3C .15 m 3D .14 m 3C [设此户居民本月用水量为x m 3,缴纳的水费为y 元,则当x ∈[0,12]时,y =3x ≤36元,不符合题意;当x ∈(12,18]时,y =12×3+(x -12)·6=6x -36,令6x -36=54,解得x =15,符合题意;当x ∈(18,+∞)时,y =12×3+6×6+(x -18)·9=9x -90>72,不符合题意.综上所述:此户居民本月用水量为15 m 3.故选C .]二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知函数f (x )=x e x -ax -1,则关于f (x )的零点,叙述错误的是( )A .当a =0时,函数f (x )有两个零点B .函数f (x )必有一个零点是正数C .当a <0时,函数f (x )有两个零点D .当a >0时,函数f (x )只有一个零点ACD [f (x )=0⇔e x=a +1x ,在同一坐标系中作出y =e x 与y =1x 的图象,可观察出A 、C 、D 选项错误,应选ACD .]10.设a 为实数,则直线y =a 和函数y =x 4+1的图象的公共点个数可以是( )A .0B .1C .2D .3ABC [因为函数y =x 4+1为定义在R 上的偶函数,且在(-∞,0]上为减函数,在[0,+∞)上为增函数,且函数的最小值为1,所以当a <1,a =1,a >1时,直线y =a 和函数y =x 4+1的图象的公共点个数分别为0,1,2.故选ABC .]11.函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,点P ,Q ,R 在f (x )的图象上,坐标分别为(-1,-A ),(1,0),(x 0,0),△PQR 是以PR 为底边的等腰三角形,将函数f (x )的图象向右平移5个单位长度后得到函数g (x )的图象,则关于g (x )的说法中正确的是( )A .g (x )是偶函数B .g (x )在区间[0,4]上是减函数C .g (x )的图象关于直线x =2对称D .g (x )在[-1,3]上的最小值为- 6 ABD [由题意知T 4=2,所以2πω=8,ω=π4,作PH ⊥x 轴于点H (图略),则QH=2,又因为PQ =QR =4,所以A =23,因为f (x )的图象过Q (1,0),所以23sin ⎝ ⎛⎭⎪⎫π4+φ=0,因为|φ|<π2,所以φ=-π4,所以f (x )=23sin ⎝ ⎛⎭⎪⎫π4x -π4.易知g (x )=f (x -5)=23cos π4x ,故选ABD .]12.已知f (x )=⎩⎨⎧x 3,x ≤a x 2,x >a ,当a ∈M 时,总存在实数b ,使函数g (x )=f (x )-b 有两个零点,则集合M 可以是( )A .(-∞,0]B .(1,+∞)C .(-∞,0)D .(-∞,0)∪(1,+∞) BCD [要使得g (x )=f (x )-b 有两个零点,即f (x )=b 有两个根,必须有y =f (x )与y =b 的图象有两个交点,由x 3=x 2可得,x =0或x =1.①当a >1时,函数y =f (x )的图象如图所示,此时存在b ,满足题意,故a >1满足题意.②当a =1时,由于函数y =f (x )在定义域R 上单调递增,故不符合题意. ③当0<a <1时,函数y =f (x )单调递增,故不符合题意.④当a =0时,函数y =f (x )单调递增,故不符合题意⑤当a <0时,函数y =f (x )的图象如图所示,此时存在b 使得y =f (x )与y =b 有两个交点.综上可得a ∈(-∞,0)∪(1,+∞).所以应选BCD .]三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.函数f (x )=x +2x -10的零点所在区间为(n ,n +1),n ∈Z ,则n =________. 2 [因为f (2)=2+4-10=-4<0,f (3)=3+8-10=1>0, 所以f (2)f (3)<0, 由函数零点存在定理知函数f (x )=x +2x -10在区间(2,3)上有零点,所以n =2.]14.用二分法研究函数f (x )=x 3+ln ⎝ ⎛⎭⎪⎫x +12的零点时,第一次经计算f (0)<0,f ⎝ ⎛⎭⎪⎫12>0,可得其中一个零点x 0∈________,第二次应计算________.(本题第一空2分,第二空3分)⎝ ⎛⎭⎪⎫0,12 f ⎝ ⎛⎭⎪⎫14 [由于f (0)<0,f ⎝ ⎛⎭⎪⎫12>0, 故f (x )在⎝ ⎛⎭⎪⎫0,12上存在零点,所以x 0∈⎝ ⎛⎭⎪⎫0,12,第二次应计算0和12在数轴上对应的中点x 1=0+122=14.]15.已知[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.2]=-2.x 0是函数f (x )=ln x -2x 的零点,则[x 0]等于________.2 [∵函数f (x )的定义域为(0,+∞),∴函数f (x )在(0,+∞)上单调递增.由f (2)=ln 2-1<0,f (e)=ln e -2e >0,知x 0∈(2,e),∴[x 0]=2.]16.已知函数f (x )=⎩⎪⎨⎪⎧ a x -1,x ≤0,2sin π2x ,0<x <2, 其中a >0,且a ≠1,若函数y =f (x )-1有3个不同的零点x 1,x 2,x 3,且x 1+x 2+x 3>0,则实数a 的取值范围是________.⎝ ⎛⎭⎪⎫0,22 [如图所示:当a >1时,函数y =f ()x -1有2个不同的零点,不满足;当0<a <1时,不妨设x 1<x 2<x 3,根据对称性知x 2+x 3=2,故x 1>-2.a x -1=1,故x =log a 2>-2,故0<a <22.]四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈⎝ ⎛⎭⎪⎫0,12,使f (x 0)=x 0.[证明] 令g (x )=f (x )-x .∵g (0)=14,g ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫12-12=-18, ∴g (0)·g ⎝ ⎛⎭⎪⎫12<0.又函数g (x )在⎣⎢⎡⎦⎥⎤0,12上连续, ∴存在x 0∈⎝ ⎛⎭⎪⎫0,12,使g (x 0)=0.即f (x 0)=x 0.18.(本小题满分12分)定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 020x +log 2 020x ,试确定f (x )在R 上的零点个数.[解] ∵函数f (x )是定义在R 上的奇函数,∴f (0)=0.因为log 2 02012 0202=-2,2 02012 0202≈1,log 2 02012 020=-1,2 02012 020>1,∴f ⎝ ⎛⎭⎪⎫12 0202<0,f ⎝ ⎛⎭⎪⎫12 020>0, ∴f (x )=2 020x +log 2 020x 在区间⎝ ⎛⎭⎪⎫12 0202,12 020内存在零点. 易知f (x )在(0,+∞)上是单调增函数,∴f (x )在(0,+∞)内有且只有一个零点,根据奇函数的对称性可知,函数f (x )在(-∞,0)内有且只有一个零点.综上可知函数在R 上的零点个数为3.19.(本小题满分12分)某个体经营者把开始六个月试销A ,B 两种商品的逐月投资与所获纯利润列成下表:投资A 种商品金额(万元)1 2 3 4 5 6 获纯利润(万元)0.65 1.39 1.85 2 1.84 1.40 投资B 种商品金额(万元)1 2 3 4 5 6 获纯利润(万元) 0.25 0.49 0.76 1 1.26 1.51两种商品各多少万元才合算.请你帮助制定一个资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).[解] 以投资额为横坐标,纯利润为纵坐标,在平面直角坐标系中画出散点图,如下图所示.图(1) 图(2)观察散点图可以看出,A 种商品所获纯利润y 与投资额x 之间的变化规律可以用二次函数模型进行模拟,如图(1)所示,取(4,2)为最高点,则y =a (x -4)2+2,再把点(1,0.65)代入,得0.65=a (1-4)2+2,解得a =-0.15,所以y =-0.15(x -4)2+2.B 种商品所获纯利润y 与投资额x 之间的变化规律是线性的,可以用一次函数模型进行模拟,如图(2)所示.设y =kx +b ,取点(1,0.25)和(4,1)代入,得⎩⎨⎧ 0.25=k +b ,1=4k +b ,解得⎩⎨⎧ k =0.25,b =0,所以y =0.25x .即前六个月所获纯利润y 关于月投资A 种商品的金额x 的函数关系式是y =-0.15(x -4)2+2;前六个月所获纯利润y 关于月投资B 种商品的金额x 的函数关系式是y =0.25x .设下月投入A ,B 两种商品的资金分别为x A ,x B (万元),总利润为W (万元),那么⎩⎨⎧x A +x B =12,W =y A +y B =-0.15(x A -4)2+2+0.25x B .所以W =-0.15⎝ ⎛⎭⎪⎫x A -1962+0.15×⎝ ⎛⎭⎪⎫1962+2.6. 当x A =196≈3.2(万元)时,W 取最大值,约为4.1万元,此时x B =8.8(万元).即该经营者下月把12万元中的3.2万元投资A 种商品,8.8万元投资B 种商品,可获得最大利润约为4.1万元.20.(本小题满分12分)某型号的电视机每台降价x 成(1成为10%),售出的数量就增加mx 成,m ∈R +.(1)若某商场现定价为每台a 元,售出量是b 台,试建立降价后的营业额y 与x的函数关系.问当m =54时,营业额增加1.25%,每台降价多少元?(2)为使营业额增加,当x =x 0(0<x 0<10)时,求m 应满足的条件.[解] (1)每台降价x 成后的价格为a ⎝ ⎛⎭⎪⎫1-x 10元,降价后售出b ⎝ ⎛⎭⎪⎫1+mx 10台, 则y =a ⎝ ⎛⎭⎪⎫1-x 10·b ⎝ ⎛⎭⎪⎫1+mx 10=ab ⎝ ⎛⎭⎪⎫-m 100x 2+m -110x +1. 当m =54时,y =ab ⎝ ⎛⎭⎪⎫-x 280+x 40+1. 因为营业额增加1.25%,所以(1+1.25%)ab =ab ⎝ ⎛⎭⎪⎫-x 280+x 40+1,解得x =1,即每台降价10%. (2)为使营业额ab 增加,当x =x 0时,y =ab ⎝ ⎛⎭⎪⎫-m 100x 20+m -110x 0+1. 依题意得y -ab >0,即m -110x 0-m 100x 20>0,解得m >1010-x 0(0<x 0<10),这就是m 应满足的条件. 21.(本小题满分12分) 已知函数f (x )=1-42a x +a (a >0,a ≠1)且f (0)=0. (1)求a 的值;(2)若函数g (x )=(2x +1)·f (x )+k 有零点,求实数k 的取值范围;(3)当x ∈(0,1)时,若f (x )>m ·2x -2恒成立,求实数m 的取值范围.[解] (1)由f (0)=0得1-42a 0+a=0,即a +2=4,解得a =2. (2)由(1)可知f (x )=1-22x +1=2x -12x +1,函数g (x )=(2x +1)·f (x )+k 有零点⇔方程2x -1+k =0有解,即k =1-2x 有解,∵1-2x ∈(-∞,1),∴k ∈(-∞,1).(3)∵f (x )=2x -12x +1,由f (x )>m ·2x -2得m (2x )2+(m -3)2x -1<0, 令t =2x ,∵x ∈(0,1),∴t ∈(1,2),即f (x )>m ·2x -2⇔mt 2+(m -3)t -1<0对于t ∈(1,2)恒成立, 设g (t )=mt 2+(m -3)t -1,①当m <0时,m -3<0,∴g (t )=mt 2+(m -3)t -1<0在(1,2)上恒成立. ∴m <0符合题意;②当m =0时,g (t )=-3t -1<0在(1,2)上恒成立,∴m =0符合题意;③当m >0时,只需⎩⎨⎧ g (1)≤0,g (2)≤0⇒⎩⎨⎧ m +(m -3)-1≤0,4m +2(m -3)-1≤0⇒m ≤76, ∴0<m ≤76.综上所述,m 的取值范围是⎝ ⎛⎦⎥⎤-∞,76. 22.(本小题满分12分)已知函数f ()x =x 2-|ax -3|-1,其中a >0.(1)若a =2,求函数f (x )的单调区间;(2)若关于x 的不等式f (x )≤2x -3对任意的实数x ∈(-1,0)恒成立,求实数a 的取值范围;(3)若函数f (x )有4个不同的零点,求实数a 的取值范围.[解] (1)当a =2时,f (x )=x 2-|2x -3|-1=⎩⎪⎨⎪⎧ x 2+2x -4,x <32,x 2-2x +2,x ≥32,当x <32时,f (x )=x 2+2x -4=(x +1)2-5,所以f (x )在(-∞,-1)上单调递减,在⎝ ⎛⎭⎪⎫-1,32上单调递增. 当x ≥32时,f ()x =x 2-2x +2=()x -12+1,所以f ()x 在⎣⎢⎡⎭⎪⎫32,+∞上单调递增. 因为函数f (x )的图象在R 上不间断,所以f (x )的单调减区间是(-∞,-1),单调增区间是(-1,+∞).(2)x 2-|ax -3|-1≤2x -3对任意x ∈(-1,0)恒成立.因为x ∈(-1,0),a >0,所以ax -3<0,故不等式可化为x 2+ax -3-1≤2x -3,即a ≥-x +1x +2,所以问题转化为不等式a ≥-x +1x +2对任意x ∈(-1,0)恒成立.又y =-x +1x +2在(-1,0)上单调递减,所以y =-x +1x +2<-(-1)+1-1+2=2, 所以a ≥2. (3)f (x )=x 2-|ax -3|-1=⎩⎪⎨⎪⎧ x 2+ax -4,x <3a ,x 2-ax +2,x ≥3a , 其中a >0.显然,当x <3a 时,f (x )=x 2+ax -4至多有2个不同的零点,且当x ≥3a 时,f (x )=x 2-ax +2至多有2个不同的零点,又f (x )有4个不同的零点,所以f (x )在⎝ ⎛⎭⎪⎫-∞,3a 和⎣⎢⎡⎭⎪⎫3a ,+∞上都各有2个不同的零点, 所以⎩⎪⎨⎪⎧ f ⎝ ⎛⎭⎪⎫-a 2<0,f ⎝ ⎛⎭⎪⎫3a >0, 且⎩⎪⎨⎪⎧ a 2>3a ,f ⎝ ⎛⎭⎪⎫a 2<0,f ⎝ ⎛⎭⎪⎫3a ≥0,即⎩⎪⎪⎨⎪⎪⎧ a 24+a ·⎝ ⎛⎭⎪⎫-a 2-4<0,⎝ ⎛⎭⎪⎫3a 2-1>0,a 2>3a ,a 24-a ·a 2+2<0,又a >0,解得22<a <3,所以实数a 的取值范围是(22,3).。

苏教版 高中数学必修第一册 函数的实际应用 课件3


课堂小结 1.函数模型的应用实例主要包括三个方面: (1)利用给定的函数模型解决实际问题; (2)建立确定性的函数模型解决实际问题; (3)建立拟合函数模型解决实际问题.
13
2.在引入自变量建立目标函数解决函数应用题时,一是要注意 自变量的取值范围,二是要检验所得结果,必要时运用估算和近似 计算,以使结果符合实际问题的要求.
y=kx+b(k,b为常数,k≠0) y=ax2+bx+c(a,b,c为常数,a≠0)
y=bax+c(a,b,c为常数,b≠0,a>0且a≠1) y=mlogax+n(m,a,n为常数,m≠0,a>0且a≠1)
y=axn+b(a,b为常数,a≠0)
y=fg((xx))((xx<≥mm)),
2.解决实际问题的一般程序: 实际问题→建立数学模型→求解数学模型→解决实际问题
①当 0<t<25 且 t∈N*时,y=-(t-10)2+900,所以当 t=10 时,ymax=900(元). ②当 25≤t≤30 且 t∈N*时,y=(t-70)2-900,所以当 t=25 时,ymax=1 125(元). 结合①②得 ymax=1 125(元). 因此,这种商品日销售额的最大值为 1 125 元,且在第 25 天时日销售金额达到最大.
3.有些实际问题,可能需要多个函数模型,这时应注意分段函 数模型的使用,在写分段函数时必须注意区间端点值不能重复,也 不能遗漏.
分段函数模型
例 1.如图所示,等腰梯形 ABCD 的两底分别为 AD=2,BC=1,∠BAD=45°,直线 MN⊥AD 交 AD 于 M,交折线 ABCD 于 N,记 AM=x,试将梯形 ABCD 位于直线 MN 左侧的面 积 y 表示为 x 的函数,并写出函数的定义域和值域.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.2.2 函数的实际应用
【基础练习】
1.下列四个图象中,与所给三个事件吻合最好的顺序为( )
①我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; ①我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; ①我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.
其中y 表示离开家的距离,t 表示所用时间.
A .①①①
B .①①①
C .①①①
D .①①① 【答案】A
2.某地区植被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加值y (万公顷)关于年数x (年)的函数关系较为近似的是( ) A .y =0.2x B .y =2x 10 C .y =1
10x 2+2x D .160.2log y x =+
【答案】B
3.据统计,每年到鄱阳湖国家湿地公园越冬的白鹤数量y (只)与时间x (年)近似满足关系()3log 2y a x =+,观测发现2012年冬(作为第1年)有越冬白鹤3000只,估计到2018年冬有越冬白鹤( ) A .4000只 B .5000只 C .6000只 D .7000只 【答案】C
【解析】当1x =时,由()33000log 12a =+,得3000a =. 所以到2018年冬,即第7年,
()33000log 726000y =+=.
4.某机器总成本y (万元)与产量x (台)之间的函数关系式是y =x 2-75x ,若每台机器售价为25万元,则该厂获利润最大时应生产的机器台数为( )
A .30
B .40
C .50
D .60 【答案】C
【解析】该厂获得的利润f (x )=25x -(x 2-75x )=-x 2+100x =-(x -50)2+2 500,①当x =50时该厂获利润最大.
5.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为( )
A .x =15,y =12
B .x =12,y =15
C .x =14,y =10
D .x =10,y =14
【答案】A
【解析】由三角形相似得
24-y 24-8=x 20
,得x =5
4(24-y ),
()()2
5121808244
S xy y y ∴==-
-+<≤. ①当y =12时,S 有最大值,此时x =15.
6.已知函数144lg 1100N t ⎛

=--
⎪⎝⎭
的图象可表示打字任务的“学习曲线”,
其中t (小时)表示达到打字水平N (字/分钟)所需的学习时间,N (字/分钟)表示每分钟打出的字数,则按此曲线要达到90字/分钟的水平,所需的学习时间是________小时.
【答案】144
【解析】当N =90时,90144lg 1144100t ⎛⎫
=--
= ⎪⎝⎭
. 7.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,一个喝了少量酒后的驾驶员,至少经过________小时才能开车.(精确到1小时,参考数据:lg 3≈0.477,lg 4≈0.602) 【答案】5
【解析】设至少经过x 小时才能开车,由题意得()0.3125%0.09x
-≤,0.750.3x ∴≤,
0.75lg31
log 0.3 4.184lg3lg4
x -=
≈-≥.
8.某城市出租车按如下方法收费:起步价8元,可行3 km(含3 km),3 km 到10 km(含10 km)每走1 km 加价1.5元,10 km 后每走1 km 加价0.8元,某人坐该城市的出租车走了20 km ,他应交费________元. 【答案】26.5
【解析】设x 为行车路程,y 为收费钱数,则y =⎩⎪⎨⎪

8,0<x ≤3;8+1.5(x -3),3<x ≤10,
18.5+0.8(x -10),x >10.①当x =20时,y =18.5+0.8×(20
-10)=26.5.
9.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A 万元,则超出部分按()5log 21A +进行奖励.记奖金y (单位:万元),销售利润为x
(单位:万元).
(1)写出奖金y 关于销售利润x 的关系式;
(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?
【解析】(1)奖金y 关于销售利润x 的关系式为()50.15,08,
1.2log 215,8.x x y x x ⎧=⎨
+->⎩
(2)由题意得,当0≤x ≤8时,0.15x =3.2,无解;
当8x >时,由()51.2log 215 3.2x +-=,即()5log 2152x -=,21525x ∴-=,20x =. 答:小江的销售利润是20万元.
10.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y (μg)与时间t (h)之间近似满足如图所示的曲线.
(1)写出服药后每毫升血液中的含药量y 与时间t 之间的函数关系式y =f (t );
(2)据进一步测定:每毫升血液中含药量不少于0.25μg 时,对治疗疾病有效,求服药一次治疗疾病的有效时间.
【解析】(1)当0≤t <1时,y =kt ,由M (1,4)在直线上,得4=k ,故y =4t ;
当t ≥1时,12t a
y -⎛⎫
= ⎪
⎝⎭
,由M (1,4)在曲线上,得1142a
-⎛⎫
= ⎪
⎝⎭
,解得a =3,即3
12t y -⎛⎫
= ⎪
⎝⎭
.
故()34,01,1, 1.2t t t y f t t -<⎧⎪
==⎨⎛⎫ ⎪⎪⎝⎭
⎩≤≥
(2)由题意知f (t )≥0.25,则⎩⎪⎨⎪⎧
4t ≥0.25,0≤t <1或3
10.25,
21,
t t -⎧⎛⎫⎪ ⎪⎨⎝⎭⎪⎩
≥≥ 解得116≤t ≤5. 所以服药一次治疗疾病的有效时间为5-116=415
16(h).
答:服药一次治疗疾病的有效时间为415
16
(h).
【能力提升】
11.某池塘中野生水葫芦的面积与时间的函数关系的图象如图所示,假设其关系为指数函数,并给出了下列说法:
①此指数函数的底数为2;
①在第5个月时,野生水葫芦的面积就会超过30 m 2; ①野生水葫芦从4 m 2蔓延到12 m 2只需1.5个月;
①设野生水葫芦蔓延到2 m 2,3 m 2,6 m 2所需的时间分别为1t ,2t ,3t ,则有123t t t +=. 其中正确的说法有________.(请把正确说法的序号都填在横线上) 【答案】①①①
【解析】该指数函数的解析式为f (x )=2x ,所以①正确;当x =5时,f (5)=32>30,所以①正确;由()1124x f x ==和()22212x f x ==,得12x =,222log 122log 3x ==+,所以212log 3 1.5x x -=>,所以①错误;设122t =,
223t =,326t =,则11t =,22log 3t =,32log 6t =,则12221log 3log 6t t +=+=,所以①正确.
12.某种商品进价为每个80元,零售价为每个100元,为了促销,采用买一个这种商品赠送一个小礼品的办法.实践表明:礼品的价格为1元时,销售量增加10%,且在一定范围内,礼品价格为(n +1)元时,比礼品价格为n (n ①N *)元时的销售量增加10%.
(1)写出礼品价格为n 元时,利润()f n 关于n 的函数关系式; (2)请你设计礼品的价格,以使商店获得最大利润. 【解析】(1)设未赠礼品时的销售量为m 件, 则当礼品价格为n 元时,销售量为m (1+10%)n 件,
利润()()()()()
*10080110%20 1.1020,n
n f n n m n m n n =--+=-⨯<<∈N .
(2)令()()10f n f n +-≥,即()()119 1.120 1.10n n n m n m +-⨯--⨯≥,解得n ≤9, 所以()()()()()123910f f f f f <<<
<=.
令()()120f n f n +-+≥,即()()1219 1.118 1.10n n n m n m ++-⨯--⨯≥,解得n ≥8, 所以()()()()()910111219f f f f f =>>>
>.
答:当礼品价格为9元或10元时,商店获得最大利润.。

相关文档
最新文档