最新2019高考数学《导数及其应用》专题完整考题(含参考答案)

合集下载

精编新版2019高考数学《导数及其应用》专题完整考题(含标准答案)

精编新版2019高考数学《导数及其应用》专题完整考题(含标准答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设函数()()2,,f x ax bx c a b c R =++∈.若1x =-为函数()xf x e 的一个极值点,则下列图象不可能为()y f x =的图象是( )(2011浙江文10)2.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2 B .12 C .12- D .2-(2008全国1理)D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==---- 二、填空题3.设二次函数f (x )=ax 2+bx +c (a ,b ,c 为常数)的导函数为f′(x ).对任意x ∈R ,不等式f (x )≥f′(x )恒成立,则b 2a 2+c 2的最大值为 ▲ .4.已知函数f (x )=e x -ax 在区间(0,1)上有极值,则实数a 的取值范围是 ▲ . 5.已知曲线y=x 2 (x >0)在点P 处切线恰好与圆C :x 2+(y+1)2=1相切,则点P 的坐标为 (,6) .(3分)6. 如图,函数()y f x =的图像在点P 处的切线是l ,则(2)(2)f f '+= 。

xyO(2,0)P()y f x =()y f x '=1 (第10题7.函数y =x 3-3x 2+1的单调递减区间为 ▲ . 8. 函数21ln 2y x x =-的单调递减区间为 __________________. 9.关于x 的不等式(21)ln 0ax x -≥对任意(0,)x ∈+∞恒成立,则实数a 的值为_____. 10.若函数32()4f x x x ax =+--在区间()1,1-恰有一个极值点,则实数a 的取值范围为 。

最新精选2019高考数学《导数及其应用》专题完整考题(含参考答案)

最新精选2019高考数学《导数及其应用》专题完整考题(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、填空题1.定义在R 上的函数()f x ,其导函数()'f x 满足()'1f x >,且()23f =,则关于x 的不等式()1f x x <+的解集为 ▲ .2.设曲线(1)xy ax e =-在点A 01(,)x y 的切线为1l ,曲线1x xy e-=在点B 02(,)x y 的切线为2l ,若存在013[,]22x ∈-,使得12l l ⊥,则实数a 的取值范围是_______3. 曲线xy e =在点(0,1)A 处的切线斜率为 ▲ .4.已知函数()322f x x ax bx a =+++在1x =处有极值10,则a b += .5. 若直线y x b =-+为函数1y x =的一条切线,则实数b = ▲ .6.函数y =2xx 2+1的极大值为______,极小值为______.[答案] 1 -1[解析] y ′=2(1+x )(1-x )(x 2+1)2,令y ′>0得-1<x <1,令y ′<0得x >1或x <-1, ∴当x =-1时,取极小值-1,当x =1时,取极大值1.7.省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f (x )与时刻x (时)的关系为f (x )=|x x 2+1-a |+2a +23,x ∈[0,24],其中a是与气象有关的参数,且a ∈[0,12],若用每天f (x )的最大值为当天的综合放射性污染指数,并记作M (a ).(1)令t =xx 2+1,x ∈[0,24],求t 的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?8.已知定义在R 上的函数()f x 满足()12f =,()1f x '<,则不等式()221f x x <+的解集为_▲__.9.已知函数3(0)()(0)x x f x x x ⎧≤⎪=⎨>⎪⎩,则1()4f f ⎡⎤-⎢⎥⎣⎦= ▲ .10.如果质点A 的位移S 与时间t 满足方程32S t =(位移单位:米,时间单位:秒),则质点在3t =时的瞬时速度为 ▲ 米/秒.11.已知函数3221()3f x x a x ax b =+++,当1x =-时函数()f x 的极值为712-,则(2)f = .12. 若点P 是曲线y=x 2-ln x 上任意一点,则点P 到直线y=x -2的最小距离为 .213.若函数f (x )=ax 3-x 2+ x -5在R 上单调递增,则a 的范围是 .14.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,答案 A 二、解答题15.设函数()()ln ln 0,0f x x a x a a =->>且为常数. ⑴当1k =时,判断函数()f x 的单调性,并加以证明; ⑵当0k =时,求证:()0f x >对一切0x >恒成立;⑶若0k <,且k 为常数,求证:()f x 的极小值是一个与a 无关的常数.16.设函数2()ln f x ax b x =+,其中0ab ≠.证明:当0ab >时,函数()f x 没有极值点;当0ab <时,函数()f x 有且只有一个极值点,并求出极值.证明:因为2()ln 0f x ax b x ab =+≠,,所以()f x 的定义域为(0)+∞,.()f x '222b ax bax x x+=+=. 当0ab >时,如果00()0()a b f x f x '>>>,,,在(0)+∞,上单调递增;如果00()0()a b f x f x '<<<,,,在(0)+∞,上单调递减. 所以当0ab >,函数()f x 没有极值点.当0ab <时,2()a x x f x x⎛+ ⎝⎭⎝⎭'=令()0f x '=,得1(0)x =+∞,(舍去),2)x =+∞,,当00a b ><,时,()()f x f x ',随x 的变化情况如下表:从上表可看出,函数()f x 有且只有一个极小值点,极小值为1ln 22b b f a ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦.当00a b <>,时,()()f x f x ',随x 的变化情况如下表:从上表可看出,函数()f x 有且只有一个极大值点,极大值为1ln 22b b f a ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦. 综上所述,当0ab >时,函数()f x 没有极值点; 当0ab <时,若00a b ><,时,函数()f x 有且只有一个极小值点,极小值为1l n 22b b a ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦.若00a b <>,时,函数()f x 有且只有一个极大值点,极大值为1l n 22b b a ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦.17.已知函数()2(0,)af x x x a R x=+≠∈ (1)判断()f x 的奇偶性(2)若()f x 在[)2,+∞是增函数,求实数a 的范围1. a=0时候是偶函数 a 不为0时候为非奇非偶函数2. a 《 1618.设函数3()3(0)f x x ax b a =-+≠.(Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值; (Ⅱ)求函数()f x 的单调区间与极值点.19.设函数()()ln ln 2(0)f x x x ax a =+-+>。

精选最新2019高考数学《导数及其应用》专题完整考题(含参考答案)

精选最新2019高考数学《导数及其应用》专题完整考题(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是( )答案 D2.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为 A .3B .52C .2D .32(江苏) 二、填空题 3.设曲线y =e ax 有点(0,1)处的切线与直线x +2y +1=0垂直,则a =_________. 24.在实数集R 上定义运算:()().(),x x y x a y a f x e ⊗=-=为实常数若(),x g x e x -=+令()()().F x f x g x =⊗若函数))0(,0()(F P x F 在点处的切线斜率为1,则此切线方程为________________.5.设曲线(1)x y ax e =-在点A 01(,)x y 的切线为1l ,曲线1x x y e-=在点B 02(,)x y 的切线为2l ,若存在013[,]22x ∈-,使得12l l ⊥,则实数a 的取值范围是_______6. 函数21ln 2y x x =-的单调递减区间为 __________________. 7.曲线()ln f x x x =在点1x =处的切线方程为 ▲ .(第11题图)8.设函数()2ln f x x x =+,若曲线()y f x =在点()()1,1f 处的切线方程为y ax b =+,则a b += .9.函数y =2x x 2+1的极大值为______,极小值为______. [答案] 1 -1[解析] y ′=2(1+x )(1-x )(x 2+1)2, 令y ′>0得-1<x <1,令y ′<0得x >1或x <-1,∴当x =-1时,取极小值-1,当x =1时,取极大值1.10.如图,函数)(x f y =的图象在点P 处的切线是l ,则(2)(2)f f '+= ☆ .11.已知函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为_________.12.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a +++的值为 . (2009陕西卷理)13.若函数2()(2)1f x m m x m =--+-在(,)-∞+∞上单调递减,则实数m 的取值范围是 .14.若函数()ln a f x x x =-在[1,]e 上的最小值为32,则实数a 的值为 ▲ .15.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为______________.16.在曲线106323-++=x x x y 的切线中斜率最小的切线方程是____________.17.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -= ▲ . (江苏)三、解答题18.(1)求f (x )=x 3-x 2+1在点(1,1)处的切线方程 (2)求f (x )=x 3-x 2+1过点(1,1)的切线方程(本题满分15分)19.已知函数2332)(ax x x f -=, x x x g 63)(2-=,又函数)(x f 在)1,0(单调递减,而在),1(+∞单调递增.(1)求a 的值;(2)求M 的最小值,使对∀[]2,221-∈x x 、,有M x g x f ≤-)()(21成立;(3)是否存在正实数m ,使得)()()(x mg x f x h +=在)2,2(-上既有最大值又有最小值?若存在,求出m 的取值范围;若不存在,请说明理由. (本小题共16分)20.已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=. ⑵ 函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值;(文)21.已知函数()a x x x x f +++-=9323. (1)求()x f 的单调递减区间;(2)若()x f 在区间[]2,2-上的最大值为20,求它在该区间上的最小值.22.燕子每年秋天都要从北方飞到南方过冬。

(完整)最新版精选2019高考数学《导数及其应用》专题完整考试题(含参考答案)

(完整)最新版精选2019高考数学《导数及其应用》专题完整考试题(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、填空题1.曲线32242y x x x =--+在点(13)-,处的切线方程是 . 答案 520x y +-=2.若函数f (x )=ax 4+bx 2+c 满足(1) 2f '=,则(1)f '-= . 3.函数f (x )=12x -sin x 在区间[0,π]上的最小值为 .4.已知A 、B 、C 是直线l 上的三点,向量,,OA OB OC u u u r u u u r u u u r满足()[2'(1)]ln OA f x f x OB x OC =+-⋅u u u r u u u r u u u r,则函数()y f x =的表达式为 ▲ .5.设函数()2ln f x x x =+,若曲线()y f x =在点()()1,1f 处的切线方程为y ax b =+,则a b += .6.给出下列命题:①函数)(x f y =的图象与函数3)2(+-=x f y 的图象一定不会重合; ②函数)32(log 221++-=x x y 的单调区间为),1(∞+;③ππ---=+⎰edx e x x 1)(cos 0;④双曲线的渐近线方程是x y 43±=,则该双曲线的离心率是45.其中正确命题的序号是 (把你认为正确命题的序号都填上). 答案 ③7.已知函数f(x)= ()2f π'sinx+cosx ,则()4f π= .8.函数()sin ln f x x x =+的导函数()f x '= ▲ .二、解答题9.已知函数()f x 的导函数()f x '是二次函数,且()0f x '=的两根为1±.若()f x 的极大值与极小值之和为0,(2)2f -=. (1)求函数()f x 的解析式;(2)若函数在开区间(99)m m --, 上存在最大值与最小值,求实数m 的取值范围. (3)设函数()()f x x g x =⋅,正实数a ,b ,c 满足()()()0ag b bg c cg a ==>,证明:a b c ==.10.已知函数21()2,()log 2a f x x x g x x ==-(a >0,且a ≠1),其中为常数.如果()()()h x f x g x =+ 是增函数,且()h x '存在零点(()h x '为()h x 的导函数).(Ⅰ)求a 的值;(Ⅱ)设A (x 1,y 1)、B (x 2,y 2)(x 1<x 2)是函数y =g (x )的图象上两点,21021()y y g x x x -'=-(()g'x 为()g x 的导函数),证明:102x x x <<.11.过点A (2,1)作曲线()f x =l . (Ⅰ)求切线l 的方程;(Ⅱ)求切线l ,x 轴及曲线所围成的封闭图形的面积S .12.设函数()32221f x x mx m x m =---+-(其中2m >-)的图象在2x =处的切线与直线512y x =-+平行。

精编新版2019高考数学《导数及其应用》专题完整版考核题(含参考答案)

精编新版2019高考数学《导数及其应用》专题完整版考核题(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =( )(A )64 (B )32 (C )16 (D )8 (2010全国2理10)2.设函数()f x 在R 上可导,其导函数为,()f x ,且函数)(')1(x f x y -=的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f - (D )函数()f x 有极大值(2)f -和极小值(2)f3.设函数)()0(1)6sin()(x f x x f '>-+=的导数ωπω的最大值为3,则f (x )的图象的一条对称轴的方程是( )A .9π=xB .6π=xC .3π=x D .2π=x答案 C 二、填空题4.已知函数32()39f x x x x m =-+++在区间[22]-,上的最大值是20,则实数m 的值等于 . 5.曲线12ex y =在点2(4e ),处的切线与坐标轴所围三角形的面积为6.函数()sin xf x e x =的导数()f x '= ▲ .7.过曲线f (x )=-x 3+3x 的点A (2,-2)的切线方程 ▲ . 8. 函数32()15336f x x x x =-++-的单调增区间为 ▲ . 9.设()ln f x x x =,若0'()2f x =,则0x =10. 函数)1lg()3lg()(x x x f -++=的单调增区间为____________。

11.函数()ln (1),(0)f x x a x a =-->的单调增区间是 .12.省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f (x )与时刻x (时)的关系为f (x )=|x x 2+1-a |+2a +23,x ∈[0,24],其中a 是与气象有关的参数,且a ∈[0,12],若用每天f (x )的最大值为当天的综合放射性污染指数,并记作M (a ).(1)令t =xx 2+1,x ∈[0,24],求t 的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?13.y=x 3+ax +1的一条切线方程为y =2x +1,则a = .14.若函数()()023>-=a ax x x f 在区间⎪⎭⎫⎝⎛+∞,320上是单调递增函数,则使方程()1000=x f 有整数解的实数a 的个数是 。

最新版精选2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

最新版精选2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.曲线311y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是( ) (A )-9 (B )-3 (C )9 (D )15(2011山东文4) 二、填空题2.函数()ln f x x =的图象在点()e ,(e)f 处的切线方程是3. 若对任意的x D ∈,均有()()()12f x f x f x ≤≤成立,则称函数()f x 为函数()1f x 到函数()2f x 在区间D 上的“折中函数”.已知函数()()()11,0,f x k x g x =--= ()()1ln h x x x =+,且()f x 是()g x 到()h x 在区间[]1,2e 上的“折中函数”,则实数k 的取值范围为 .4.若对任意的x D ∈,均有()()()12f x f x f x ≤≤成立,则称函数()f x 为函数()1f x 到函数()2f x 在区间D 上的“折中函数”.已知函数()()()11,0,f x k x g x =--= ()()1ln h x x x =+,且()f x 是()g x 到()h x 在区间[]1,2e 上的“折中函数”,则实数k 的取值为 ▲5.,则曲线过点)4,2(P 的切线方程为6.函数xe x a xf 32sin )(+=,若7)0('=f , 则a 的值是 ▲7.在实数集R 上定义运算:()().(),x x y x a y a f x e ⊗=-=为实常数若(),xg x ex -=+令()()().F x f x g x =⊗若函数))0(,0()(F P x F 在点处的切线斜率为1,则此切线方程为________________.8.已知函数()cos(2)(0)f x x θθπ=+<<,若'()()y f x f x =的图象关于6x π=对称,则θ= .9. 如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎫-3,-12内单调递增; ②函数y =f (x )在区间⎝⎛⎭⎫-12,3内单调递减; ③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )有极小值; ⑤当x =-12时,函数y =f (x )有极大值.则上述判断中正确的是__________. 三、解答题10.设函数f (x )=ax 3+bx 2+cx ,在x =1和x =-1处有极值,且f (1)=-1,求a 、b 、c 的值,并求出相应的极值. [解析] f ′(x )=3ax 2+2bx +c .∵x =±1是函数的极值点,∴-1、1是方程f ′(x )=0的根,即有又f (1)=-1,则有a +b +c =-1,此时函数的表达式为f (x )=12x 3-32x .∴f ′(x )=32x 2-32.令f ′(x )=0,得x =±1.当x 变化时,f ′(x ),f (x )变化情况如下表:由上表可以看出,当x =-1时,函数有极大值1;当x =1时,函数有极小值-111.若函数1)1(2131)(23+-+-=x a ax x x f 在区间(1,4)内为减函数,在区间(6,+∞)上为增函数。

精编新版2019高考数学《导数及其应用》专题完整考试题(含标准答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( )A .3B .2C .1D .0(2005湖北文)二、填空题2.曲线32242y x x x =--+在点(13)-,处的切线方程是 . 答案 520x y +-=3.设)(x f '和)(x g '分别是()f x 和()g x 的导函数,若()()0f x g x ''≤在区间I 上恒成立,则称)(x f 和)(x g 在区间I 上单调性相反.若函数31()23f x x ax =-与2()2g x x bx =+在开区间(,)a b 上单调性相反(0a >),则b a -的最大值为 .4.已知函数2()()(0)xf x ax bx c e a =++>的导函数'()y f x =的两个零点为-3和0. 若()f x 的极小值为-1,则()f x 的极大值为35exyO(2,0)P ()y f x =()y f x '=1 (第7题图)5.已知定义在R 上的函数()f x ,其导函数为()'1f x x =+,则函数()f x 的单调增区间为 ()1,-+∞6. 已知函数()f x 的导函数()29f x x '=-,且(0)f 的值为整数,当(,1]x n n ∈+*()n N ∈时,()f x 的值为整数的个数有且只有1个,则n = .47.奇函数32()f x ax bx cx =++在1x =-处有极值,则3a b c ++的值为 ▲ . 8.曲线y=2lnx 在点(e,2)处的切线与y 轴交点的坐标为9. 函数)42sin(π+-=x y 的单调增区间是 ▲10.(文科做)曲线cos y x =在点(π6)处的切线的斜率为 ▲ .11. 如果函数f (x )=2x 2-ln x 在定义域的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是_______________________.12.已知函数f (x )=3231x ax ax -++在区间(,)-∞+∞内既有极大值,又有极小值,则实数a 的取值范围是___________13.(文科、艺体学生做)一质点的运动方程为32S 2+=t (位移单位:米,时间单位:秒),则该质点在2=t 秒时的瞬时速度为 米/秒.(理科学生做)已知)0,3,2(-=a ,)3,0,(k b = ,且32,π=b a ,则实数k = .14.关于x 的不等式(21)ln 0ax x -≥对任意(0,)x ∈+∞恒成立,则实数a 的值为_____.15.已知函数()y f x =及其导函数()y f x '=的图象如图所示,则曲线()y f x =在点P 处的切线方程是 ▲16.已知曲线xey =上一点P (e ,1)处的切线分别交x 轴、y 轴于A ,B 两点,O 为坐标原点,则△OAB 的面积为 。

精选最新2019高考数学《导数及其应用》专题完整考题(含标准答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.1(2)+⎰xex dx 等于( )(A )1 (B )e-1 (C )e (D )e+1(2011福建理5)2.(2009天津卷理)设函数1()ln (0),3f x x x x =->则()y f x = A 在区间1(,1),(1,)e e 内均有零点。

B 在区间1(,1),(1,)e e 内均无零点。

C 在区间1(,1)e 内有零点,在区间(1,)e 内无零点。

D 在区间1(,1)e内无零点,在区间(1,)e 内有零点。

【考点定位】本小考查导数的应用,基础题。

3. 设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x = 处的切线的斜率为( ) A .15- B .0C .15D .5二、填空题4. 设()f x 是定义在R 上的可导函数,且满足()()0f x xf x '+>,则不等式f f >的解集为 .5. 设()ln ,()()()f x x g x f x f x '==+.则()g x 的单调减区间为 ▲ . 6.若曲线1y x α=+(α∈R)在点(1,2)处的切线经过坐标原点,则α=_________.(2013年高考江西卷(文)) 7. 函数21ln 2y x x =-的单调递减区间为 __________________. 8. 曲线y=2lnx 在点(e,2)处的切线与y 轴交点的坐标为_________.9.已知函数()f x 的导函数()f x '是二次函数,右图是()y f x '=的图象,()x '(第34题图)(第11题图)若()f x 的极大值与极小值之和为23,则(0)f 的值为 .10.若函数f(x)= x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围为__________11.如图,函数)(x f y =的图象在点P 处的切线是l ,则(2)(2)f f '+= ☆ .12.设直线3y x b =-+是曲线323y x x =-的一条切线,则实数b 的值是三、解答题13.已知函数()2ln pf x px x x=--. ⑴若2p =,求曲线()f x 在点(1,(1))f 处的切线方程;⑵若函数()f x 在其定义域内为增函数,求正实数p 的取值范围; ⑶设函数2()eg x x=,若在[]1,e 上至少存在一点0x ,使得00()()f x g x >成立,求实数p 的取值范围.(2010北京石景山模拟)关键字:对数;求一点处的切线方程;求切线方程;已知单调性;求参数的取值范围;不等式的有解问题;存在性问题14.已知函数2222()2()21t f x x t x x x t =-++++,1()()2g x f x =.(I )证明:当t <时,()g x 在R 上是增函数; (II )对于给定的闭区间[]a b ,,试说明存在实数k ,当t k >时,()g x 在闭区间[]a b ,上是减函数;(III )证明:3()2f x ≥.(辽宁理 本小题满分12分) 15.某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形高科技工业园区。

(完整版)最新2019高考数学《导数及其应用》专题完整考试题(含答案),推荐文档


x2 )
0
,而
f
(x1 )
0 ,不合题意
若1 x1 x2 , 则对任意的 x [x1, x2 ] 有 x x1 0, x x2 0,

f
(x)
1 3
x(x
x1 )(x
x2 )
0

f
(x1 )
0 ,所以函数
f
(x)

x [x1,
x2 ] 的最小
值为0,于是对任意的 x [x1, x2 ] ,
17.设函数 f (x) x(x 1)2 , x 0 . ⑴求 f (x) 的极值;
⑵设 0 a ≤1,记 f (x) 在 0, a上的最大值为 F (a) ,求函数 G(a) F (a) 的最小值;
a ⑶设函数 g(x) ln x 2x2 4x t ( t 为常数),若使 g(x) ≤ x m ≤ f (x) 在 (0, ) 上 恒成立的实数 m 有且只有一个,求实数 m 和 t 的值.
8.已知函数f(x)=
f ( ) sinx+cosx,则
f( )=
.
2
4
9.设曲线 y xn1(n N *) 在点(1,1)处的切线与x轴的交点的横坐标为 xn ,令
an lg xn ,则 a1 a2 a99 的值为
. (2009陕西卷理)
10.函数 y sin x与y cos x在[0, ] 内的交点为P,它们在点P处的两条切线与x轴所围 2
1
2. 已知a > 0,方程x2-2ax-2alnx=0有唯一解,则a = .
2
3. 曲线 f (x) 1 x2 cos x 在 x 0 处的切线的斜率为 3
4.若函数f(x)=ax4+bx2+c满足 f (1) 2 ,则 f (1)

最新2019高考数学《导数及其应用》专题考试题(含标准答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点 ( )A .1个B .D . 4个答案 A解析 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 函数)(x f 在开区间),(b a 内有极小值的点即函数由减函数变为增函数的点,其导数值 为由负到正的点,只有1个,选A .2.设球的半径为时间t 的函数()R t 。

若球的体积以均匀速度c 增长,则球的表面积的增长速度与球半径A.成正比,比例系数为CB. 成正比,比例系数为2CC.成反比,比例系数为CD. 成反比,比例系数为2C 9.二、填空题3.若直线3y x b =-+是曲线3232y x x =-+的一条切线,则实数b 的值是 ▲ 4. 有这样一段“三段论”推理,对于可导函数f (x ),大前提:如果f’(x 0)=0,那么x =x 0是函数f (x )的极值点;小前提:因为函数f (x )=x 3在x =0处的导数值f’(0)=0,结论:所以x =0是函数f (x )=x 3的极值点。

以上推理中错误的原因是 ▲错误(填大前提;小前提;结论)。

5. 已知函数()y f x =的图象在点(1,(1))f 处的切线方程为32y x =-,则函数第10题2()()g x x f x =+的图象在点(1,(1))g 处的切线方程为 ▲ .6.函数x x x f sin )(3+=的导函数是 ☆ ;7.如图,直线l 是曲线y =f (x )在x =4处的切线,则f ′(4)8.已知函数c bx ax x x f +++=223)(23在区间)1,0(值,在区间)2,1(内取极小值,则22)3(b a z ++=的取值范围是________________ 9.若函数,93)(23ax ax x x f --=.()x f 在区间[]2,1-上为减函数,则a 的取值范围__10.设点P 是曲线y =x2上的一个动点,曲线y =x 2在点P 处的切线为l ,过点P 且与直线l 垂直的直线与曲线y =x 2的另一交点为Q ,则PQ 的最小值为 ▲ .11.已知点(1,1)A 和点(1,3)B --在曲线C :32(,,y ax bx d a b d =++为常数)上,若曲线在点A 和点B 处的切线互相平行,则32a b d ++= ▲ .【考点定位】此题考查的是曲线的切线问题和导数的运算,紧扣切点是本题的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如下图,已知()32()0,f x ax bx cx d a =+++≠记()243,b ac ∆=-则当00()a f x ∆≤>且时,的大致图象为( ).答案 C二、填空题2.设二次函数f (x )=ax 2+bx +c (a ,b ,c 为常数)的导函数为f′(x ).对任意x ∈R ,不等式f (x )≥f′(x )恒成立,则b 2a 2+c 2的最大值为 ▲ .3. 已知可导函数)(x f 的导函数为)(x f ',且满足)2(23)(2f x x x f '+=, 则=')5(f .4. 已知a > 0,方程x 2-2ax -2a ln x =0有唯一解,则a = . 125.已知R 上可导函数)(x f 的图象如图所示,则不等式0)()32(2>'--x f x x 的解集为__________________________.6.(文科)已知存在实数a ,满足对任意的实数b ,直线y=﹣x+b 都不是曲线y=x 3﹣3ax 的切线,则实数a 的取值范围是 .7.设()ln f x x x =,若0'()2f x =,则0x =8.函数()(1)sin π1(13)f x x x x =---<<的所有零点之和为 ▲ .9.函数()[]sin ,0,3f x x x ππ⎛⎫=+∈ ⎪⎝⎭的单调减区间为 .10.曲线42x y =上一点到直线1--=x y 的距离的最小值为 .答案 162511.设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是12.已知定义在R 上的函数()y f x =的导函数为()f x ',且满足()()f x f x '>,则不等式24(23)(1)x f x e f --≥解集为 .13.已知函数()2ln bx x a x f -=图象上一点P (2,f (2))处的切线方程为22ln 23++-=x y ,则a b +=______3_____ . 三、解答题14.设函数)0()(223>+-+=a m x a ax x x f .(Ⅰ)若1=a 时函数)(x f 有三个互不相同的零点,求m 的取值范围; (Ⅱ)若函数)(x f 在]1,1[-∈x 内没有极值点,求a 的取值范围;(Ⅲ)若对任意的]6,3[∈a ,不等式1)(≤x f 在]2,2[-∈x 上恒成立,求m 的取值范围. 关键字:多项式;零点个数;极值点个数;有解问题;不等式;两变量;恒成立问题;15. 已知函数()ln(1)(1),xf x a e a x =+-+(其中0a >) ,点1,12233(()),(,()),(,())A x f x B x f x C x f x 从左到右依次是函数()y f x =图象上三点,且2132x x x =+.(Ⅰ) 证明: 函数()f x 在R 上是减函数; (Ⅱ)求证:⊿ABC 是钝角三角形;(Ⅲ) 试问,⊿ABC 能否是等腰三角形?若能,求⊿ABC 面积的最大值;若不能,请说明理由.16.设a x t x x g x tx x x f 且,32)(,ln 321)(22++=+-=、b 为函数)0()(b a x f <<的极值点(1)求t 的取值范围;(5分)(2)判断函数],[)(a b x g --在区间上的单调性,并证明你的结论;(5分) (3)设函数 y=[]a b x g --,)(在区间上的最大值比最小值大32,讨论方程f(x)=m 解的个数(相同的解按一个计).(6分)17.已知函数2()ln (,0)2x f x a x a R x =+∈>.(1)若()0f x >对0x ∀>恒成立,求常数a 的取值范围;(2)设1a e <≤,()()(1)H x f x a x =-+的两个极值点为,()αβαβ<,是证明:对12,[,]x x αβ∀∈,恒有12|()()|1H x H x -<.18.如图,已知二次函数f (x )=ax 2+bx +c ,直线l 1:x =2, 直线l 2:y =3tx (其中-1<t <1,t 为常数);若直线 l 2与函数f (x )的图象以及直线l 1,l 2与函数f (x )的 图象所围成的封闭图形如阴影所示。

(1)求y= f (x )的解析式;(2)求阴影面积s 关于t 的函数y =s (t )的解析式;(3)若过点A (l ,m ),m ≠4可作曲线y =s (t ),t ∈R 的三条切线, 求实数m 的取值范围。

19.已知函数21()2,()log 2a f x x x g x x ==-(a >0,且a ≠1),其中为常数.如果()()()h x f x g x =+ 是增函数,且()h x '存在零点(()h x '为()h x 的导函数).(Ⅰ)求a 的值;(Ⅱ)设A (x 1,y 1)、B (x 2,y 2)(x 1<x 2)是函数y =g (x )的图象上两点,21021()y y g x x x -'=-(()g'x 为()g x 的导函数),证明:102x x x <<.20.已知函数22(),[1,)x x a f x x x ++=∈+∞,(1)当12a =时,求()f x 函数的最小值;(2)若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围。

21.已知函数432()2f x x ax x b =+++(x R ∈),其中R b a ∈,. (Ⅰ)当103a =-时,讨论函数()f x 的单调性; (Ⅱ)若函数()f x 仅在0x =处有极值,求a 的取值范围;(Ⅲ)若对于任意的[2,2]a ∈-,不等式()1f x ≤在[1,1]-上恒成立,求b 的取值范围.(天津卷21)本小题主要考查利用导数研究函数的单调性、函数的最大值、解不等式等基础知识,考查综合分析和解决问题的能力.满分14分. (Ⅰ)22.已知函数f (x )=3231()2ax x x R -+∈,其中a>0. (Ⅰ)若a=1,求曲线y=f (x )在点(2,f (2))处的切线方程; (Ⅱ)若在区间11,22⎡⎤-⎢⎥⎣⎦上,f (x )>0恒成立,求a 的取值范围.【解析】本小题主要考查曲线的切线方程、利用导数研究函数的单调性与极值、解不等式等基础知识,考查运算能力及分类讨论的思想方法.满分12分. (Ⅰ)23.函数()()1ln f x x a x a R =--∈ (I )求函数()f x 的极值 (II )若0a <,对于任意(]12,0,1x x ∈,且12x x ≠,都有()()1212114f x f x x x -<-,求实数a 的取值范围(16分)24.已知函数()sin f x x x =+.(1)设P ,Q 是函数()f x 图象上相异的两点,证明:直线PQ 的斜率大于0;(2)求实数a 的取值范围,使不等式()cos f x ax x ≥在π02⎡⎤⎣⎦,上恒成立.(本小题满分16分)关键字;恒成立问题;不能参变分离;求导;分类讨论25.定义ch x 2xx e e -+=,sh x 2x x e e --= (x ∈R ,e 是自然对数的底) .(1)分别判断函数y =sh x ,y = ch x 的单调性和奇偶性,并说明理由; (2)试用sh x ,sh y ,ch x ,ch y 表示ch (x +y ),sh (x +y );(3)设函数()(2),f x achx a shx =+-,()(2),(g x ashx a chx a =--是常数)①求证:对于给定的实数0x ,曲线shx a achx x f )2()(-+=在点))(,(00x f x 处的切线恒过与a 无关的定点Q;②如果不等式)()(x g x f ≥对于任意的实数x 恒成立,求实数a 的取值范围。

26.已知实数a ,b ,c R ∈,函数32()f x ax bx cx =++满足(1)0f =,设()f x 的导函数为()f x ',满足(0)(1)0f f ''>.(1)求ca的取值范围; (2)设a 为常数,且0a >,已知函数()f x 的两个极值点为1x ,2x ,11(,())A x f x ,22(,())B x f x ,求证:直线AB 的斜率2,96a a k ⎛⎤∈-- ⎥⎝⎦.(本小题满分14分)27.已知函数f (x )=ax 2+1,g (x )=x 3+bx ,其中a>0,b>0.(Ⅰ)若曲线y=f (x )与曲线y=g (x )在它们的交点P (2,c )处有相同的切线(P 为切点),求a ,b 的值; (Ⅱ)令h (x )=f (x )+g (x ),若函数h (x )的单调递减区间为[,2a -,求: (1)函数h (x )在区间(一∞,-1]上的最大值M (a ); (2)若|h (x )|≤3,在x ∈[-2,0]上恒成立,求a 的取值范围。

28.设[2,0]a ∈-, 已知函数332(5),03,0(,).2x f a x x a x x x x x a -+≤+-+>⎧⎪=⎨⎪⎩(Ⅰ) 证明()f x 在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;(Ⅱ) 设曲线()y f x =在点(,())(1,2,3)i i i x f x i P =处的切线相互平行, 且1230,x x x ≠ 证明12313x x x ++>. (2013年高考天津卷(文)) 29.已知函数2()ln (,)f x ax bx x a b R =+-∈ (Ⅰ)设0a ≥,求)(x f 的单调区间(Ⅱ) 设0a >,且对于任意0x >,()(1)f x f ≥.试比较ln a 与2b -的大小(2013年高考山东卷(文))30.已知函数32()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x=-。

(I)求函数()f x的解析式;(II)设函数1()()3g x f x mx=+,若()g x的极值存在,求实数m的取值范围以及函数()g x取得极值时对应的自变量x的值.(2009四川卷文)(本小题满分12分)。

相关文档
最新文档