按规律数图形

合集下载

(完整版)初中数学规律题解题基本方法------图形找规律

(完整版)初中数学规律题解题基本方法------图形找规律

初中数学规律题解题基本方法------图形找规律1.探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n 个这样的三角形需要多少根火柴棒? 2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。

⑵按照上图方式继续排列桌子,完成下表:3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n 张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 人。

⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐 人。

4.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为81的矩形,如此进行下去,试利用图形提示的规律计算:=+++++++256112816413211618141215.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是 例8.观察下列图形并填表。

个数 1 2 3 4 5 6 7…n32121 41 811611126.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案: (1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块。

……7.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子 来表示。

……8.观察与分析下面各列数的排列规律,然后填空。

①5,9,13,17, , 。

②4,5,7,11,19, , 。

③10,20,21,42,43, , ,174,175。

④4,9,19,34,54, , ,144。

⑤45,1,43,3,41,5, , ,37,9。

⑥6,1,8,3,10,5,12,7, , 。

初中数学规律题解题基本方法------图形找规律

初中数学规律题解题基本方法------图形找规律

初中数学规律题解题基本方法------图形找规律1.探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n 个这样的三角形需要多少根火柴棒? 2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐 人。

⑵按照上图方式继续排列桌子,完成下表:3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n 张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 人。

⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐 人。

4.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为81的矩形,如此进行下去,试利用图形提示的规律计算:=+++++++256112816413211618141215.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是 例8.观察下列图形并填表。

116.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案: (1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块。

……7.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子 来表示。

……8.观察与分析下面各列数的排列规律,然后填空。

①5,9,13,17, , 。

②4,5,7,11,19, , 。

③10,20,21,42,43, , ,174,175。

④4,9,19,34,54, , ,144。

⑤45,1,43,3,41,5, , ,37,9。

⑥6,1,8,3,10,5,12,7, , 。

⑦0,1,1,2,3,5, , 。

二年级奥数:《发现图形规律》

二年级奥数:《发现图形规律》

二年级奥数:《发现图形规律》(预热)前铺知识一、找规律画图1、形状变化【例1】根据规律,画出下一个图形.答案:解析:本组图的规律就是正方形、三角形、圆形三个不同形状的图形为一组,重复出现.2、数量变化【例2】根据规律,在横线上画出适当的图形.答案:解析:本组图的规律是圆形的数量发生了变化,依次增加1个.3、颜色变化【例3】根据规律,画出下一个图形答案:解析:本组图的规律是圆形的颜色发生了变化,红蓝黄绿四种颜色的三角形为一组重复出现.4、位置变化【例4】根据规律,在横线上画出适当的图形.答案:解析:本题的规律是第一组的第一个图形移动到最后一个位置,其它图形依次往前移一小格就变成了第二组图.第二组的第一个图形移动到最后一个位置,其它图形依次往前移一小格就变成了第三组图.第三组的第一个图形移动到最后一个位置,其它图形依次向前移一小格,就变成了.5、方向变化【例5】根据规律,在横线上画出适当的图形.答案:解析:本组图的规律就是箭头的方向发生了变化,每次向顺时针方向旋转90度.6、组合【例6】根据规律,在问号处应该画什么图形.?答案:解析:本组图既要观察图形的形状,又要观察颜色,是一种组合规律题.观察发现,这些图形都分为上下两部分.其中第一行,上部分的形状分别是三角形和半圆环形,颜色为绿色和蓝色,下部分分别为红色的圆环和长方形.第二行,上部分没有变化,下部分的颜色变成了黄色,因此为答案所示图形.【例7】根据规律,在空白处应该画什么图形.答案:解析:本题中,图形的形状、颜色以及位置都在发生变化.但实际上可以将此组图中的每一个大圆内的图形看成一个整体,则下一个图形就是上一个大圆按顺时针依次旋转90度得来的.【例8】根据规律,在问号处应该画什么图形.?答案:解析:观察后可发现,每一横行中,第一个图形叠到第二个图形中间,就组成了第三个图形.课前思考1、要想发现一组图形的规律,你知道可以从哪些角度去观察吗?2、如果颜色、形状、方向等都无法帮助你找到规律,你会如何思考呢?如何预习?第四讲的知识非常的有趣,小朋友们可以尽情的享受找规律的乐趣.在一年级秋季的课程中,我们已经接触过了找规律画图,知道了数学中图形的规律有好多种,例如形状变化的规律,还有颜色变化、数量变化、位置变化、方向变化以及组合出现的规律.在学习二年级秋季第四讲《发现图形规律》这一讲之前,小朋友们可以回顾一下这些知识,为第四讲的课堂学习做一个铺垫.对于应当如何预习,潘老师在这里提醒一下各位小朋友,预习的时间不要过早,应该尽量安排在距离下次上课较近的时间里.预习的时候,不要过于关注做新的题目,对于全新的知识,可以把它们保留到课堂上再去思考、学习.相较于自己去摸索新的知识,不如先把与本讲次内容相关的以前学过的知识再拿出来回顾一下,这样的效果也许会更好哦~当然了,还有几句老话要啰嗦一下,预习的时间不宜过长,内容也不宜过多过细.在预习的时候要边看边做并且边思考,最好能带着你自己的问题去上课.《发现图形规律》知识点精讲【知识点总结】1、单一变化:颜色、形状、方向、大小、数量、位置……2、多样变化【例】按规律画出空白处的图形.这些图案有外部、有内部,它们的变化既有形状、方向的变化,又有数量的变化,因此要分不同的部分来找规律.外部:正三角形→正方形→正五边形→正六边形内部:1条横线→2条竖线→3条横线→4条竖线3、拼组:(1)简单:拼起来【例】根据下面图形排列的规律,问号的地方应该选择哪个图形?经观察,发现每一行、每一列的图形都有同样一个变化规律:第一个与第三个图形拼组在一起就是中间的图形.(2)复杂:组合消失【例】根据下面图形排列的规律,问号的地方应该选择哪个图形?方法1:横着看,每行的任意两个图形拼组到一起,重合部分消失,就变成了另外一个图形. 方法2:竖着看,每列的任意两个图形拼组到一起,重合部分消失,也变成了另外一个图形. (因为这题要求的是最右下角的图形,所以不论是横看还是竖看,最快的方法是通过第一个和第二个的图形拼组在一起,重合部分消失来得到.)4、缺什么补什么【例】下面各种各样的娃娃头好看吗?认真观察你能找到它们排列的规律吗?根据规律把最后一个娃娃头画出来.经观察,发现在每一行每一列,这些娃娃头都由头发(一毛、两毛和三毛)、脸(圆脸、方脸和三角形脸)、眼睛(黑眼、白眼和黑白眼)、嘴巴(一个白三角嘴、两个黑三角嘴)组成,因此可以用缺什么补什么的方法,并且要分部分来看.不管是横着看还是竖着看,最右下角缺的娃娃头是三毛、方脸、黑白眼、白三角嘴.【例】观察图形的变化规律,按照这种变化规律,在空格中画上应有的图形.观察,每个田字格中有4种图形,从第一个田字格变到第二个田字格,每个小图形的位置改变了,并且有些图形自身的形状也改变了.先看位置的变化:每个图形都按逆时针方向旋转.再看图形自身方向的变化:每个图形自身也都在按逆时针方向旋转.(圆形与正方形在本题中旋转后与原先没有区别.)(实际上本题也可以理解成整个田字格在按着顺时针方向旋转.)《发现图形规律》补充题1、根据规律,问号处应填什么图形?2、根据规律,画出空白处的图形.3、根据规律,画出问号处的图形.4、按规律画出空白处的图形.5、下面一组图形的阴影变化是有规律的,请根据这个规律把第四幅图的阴影部分画出来.6、按规律填图.7、根据A~F这几个人的排列规律,接下来应该排列的是G、H、I中的哪一个?答案1、(1)(2)【解析】:两小题中的图形都是依次按逆时针方向旋转90度.2、【解析】:本题中图形排列的规律是每一行的第一个图形和第三个图形合在一起就是第二个图形.3、【解析】:本题可以竖着来看,每一列的图形都是依次按顺时针方向旋转90度.4、(1)【解析】:通过观察,不难发现,图形从左到右的变化规律是:外面是正方形、圆形边框在交替出现,里面是箭头的数量依次加1,并且箭头的方向是一正一反出现.(2)【解析】:每一组都有三种图形,分别是圆形、箭头和三角形,我们可以依次来观察.圆形始终不变,箭头是按顺时针方向旋转,三角形是按逆时针方向旋转.(3)【解析】:观察第一至第三组字母排列变化的规律是:字母D在中间不动,其余字母从左往右依次移动1个位置,最右边的字母则移动到最左边.移动中如果遇到字母C就跳过去.5、【解析】:经观察可发现,每个图形中都有四个阴影格子,依次向右上方向推移.第二个图形中,向上推移后只有3个阴影格子,则还需要1个,注意要在左下方的对角的地方寻找.第三个图形中,继续向上推移只有2个阴影格子,则还需要2个,那么就在另一个对角上寻找到两个.第四个图形,则应该向右上方推移到只有1个阴影格子,则剩下的三个在左下方如图所示位置.注意,两个阴影格子之间没有共用的边,只有一个角相连.6、【解析】:题目给出的例子中,有三种图形,我们可以从上往下依次来观察.左图上部外面的白色圆形变成了右图上部缩小了的黑色圆形,颜色与大小都改变,位置没变,还是在上部.左图上部里面的黑色正方形变成了右图下部的白色正方形,颜色与位置改变,大小不变.左图下部的三角形变成了右图上部的三角形,颜色大小不变,位置改变.同样的规律运用到题目中,可知题目里上部外面的菱形将改变颜色和大小,放置在上部的中心,而上部里面的圆形将不改变大小,改变颜色,放置在下部.而下部的梯形将不改变颜色和大小,放置在上部.7、【解析】:观察可以发现,从第一个火柴人开始,到B增加2条线,到C拿走1条线,到D增加3条线,到E拿走2条线,到F增加4条线,按规律继续往下画在F的基础上应该拿走3条线,应该选择G.。

第1讲 找规律画图形

第1讲 找规律画图形

第1讲找规律画图形
我们在认识图形、数图形、按规律填数的基础上来学习按规律填图。

对于一组按一定的变化规律排列起来的图形,我们通过对图形大小、图形的颜色,图形的排列及图形所处的位置等方面的仔细观察,找出其中变化规律,并正确地画出所要填的图。

【例题】找规律在空格处填图形。

【思路点拨】:仔细观察所给的第一、三行,可以发现,每行的第二个图形平移到第一个图形中就变成了第三个图形。

因此可以推断,第二行空格处应填图形“×”。

【解法】:空格处应填图形“×”。

1.请你根据前面几幅的规律接着画。

练习与思考
训练目标
例题与方法
2.摆一摆,画一画,一个横线上画一个图形。

(1)☆○☆○☆○☆
(2)◆◆◆◇◆◆◆◇◆
(3)▲△▲△△▲△△△
3.根据前面几幅图的规律,接着画。

4.后面2个方框里应该怎么画?请你试一试。

○○○○○○○○○○○○○○○
△△△△△△
5. 下面的4组图形中,哪一组的排列规律与其它3组不同?在()里打“√”。

()
()
()
()。

奥数 规律图形问题

奥数 规律图形问题

柴棒拼出的一系列的图形中,第n个图形由n个正方形组成.(1)第2个图形中,火柴棒的根数是______;(2)第3个图形中,火柴棒的根数是______;(3)第4个图形中,火柴棒的根数是______;(4)第n个图形中,火柴棒的根数是______.4.把长2厘米、宽1厘米的长方形硬纸片如下图那样一层、二层、三层…叠起来.先找找规律,再回答下面的问题.(1)如果叠4层、5层,周长分别是多少厘米?再找找周长与层数有什么规律.叠n层是你能用一个式子来表示它的周长吗?请边填表,边思考.如图所示,一张纸片,小明第一次将其撕成四小片,手中共有4张纸片,以后每次都将其中一片撕成更小的四片.如此进行下去,当小明撕到第n次时,手中共有S张纸片.根据上述情况:(1)用含n的代数式表示S;(2)当小明撕到第几次时,他手中共有76张纸片?(3)小明说:“我撕了若干次后,手中的纸片有2012张”.小明说得对不对?若不对,请说出你的理由;若对的,请指出小明撕了多少次?6.某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)当有n 张桌子时,两种摆放方式各能坐多少人?(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌为什么?7.每一个多边形都可分割(分割方法如图)成若干个三角形.根据这种方法八边形可以分割成( )个三角形.用此方法n 边形能割成( )个三角形.8.一列小球按如下图规律排列,第20个白球与第19个白球之间的黑球数目是( )个.9.如图是由火柴棒搭成的几何图案,则第10个图案中有______根火柴棒.10.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是()。

11.观察一组等式:2×4=32-1,3×5=42-1,4×6=52-1,…那么,2008×2010=______2-1.由此我们可以猜想:______.[将你猜想到的规律用含n的字母表示出来].12.下图是由一些火柴棒搭成的图案:按照这种方式摆下去,摆第6个图案用多少根火柴棒:()A.24 B.25 C.26 D.27。

一起学奥数--数线段、数图形(三年级) PPT

一起学奥数--数线段、数图形(三年级) PPT
数线段 数图形
风子编辑
第一课 数线段
教育目标
认识线段,并按一定的顺序数线段 找出数线段的规律
用数线段的方法,解决实际问题
教育重点
找出一定的规律,采用合适的方法,有次序、有条理的数出线段的 条数,不重复不遗漏。
教育难点
数线段方法在实际问题中的应用
线段:用直尺画线,把两点连接起来,就得到一条线段。连接线段的两 个点叫做线段的端点。
A
B
C
D
E
【分析】1)由题目可以知道,线段的基本单元为1,而基本单元为1的线段数 为4条;自左至右数由2、3、4个基本单元组成的线段,分别为3、2、1条。
动动手: p.84’ 随堂1
第二课 数图形
例1、下图中有多少个不同的三角形?
A
B
DE
C
【分析】1)一个顶点和这个顶点所对应的边被确定,则这个三角形就被确定 了。因此,公共点A所对应的线段数量,就是三角形的数量。
数线段是图形计数中最简单、最基本的问题,要准确的数出线段的 条数,必须做到有次序、有条理地进行计数。
数线段的方法
如下图线段,数一数共有几条?
A
B
C
D
E
方法一:用线段的左端点来分数 线段的方法。 以A为左端点的线段:4条 以B为左端点的线段:3条 以C为左端点的线段:2条 以D为左端点的线段:1条 合计:4+3+2+1=10条
循环赛也是数线段问题。 例:学校里组织乒乓球比赛,共有12个班级每班派出2名同学参加比 赛,要求每两位同学比赛一场且不得重复,问总共需要组织多少场比 赛?
【分析】首先确定人数,12个班级,每班2名,所以一共24名同学参加比赛。 要求每两位同学参加一次,且不重复,这与握手问题类似。我们可以对24名 同学编号后,进行复制,并站两排。 请同学们按握手问题分析过程 所以,总共需要组织比赛场次为:1+2+3+……+23=23×12=276场

按规律画图形小学奥数试题大全

按规律画图形小学奥数试题大全

知识要点:把一些图形按照一定的规律排列起来,然后用白纸盖住其中一部分,你想要画出被盖住的部分,就必须仔细观察没盖住的图形,从中寻找规律.观察图形的变化,可从图形的形状、位置、方向、数量、大小、颜色等方面入手,从中找出规律.{例1} 观察下列图形的变化,想一想,按图形变化的规律,在空白处应画什么样的图形?这样思考: 在方向上,图1图2画的是笑脸,只不过是数量上有增减;图2图4所画的虽不相同,但是数量和位置相同.从而我们确定,图3图4画的都是月亮,并且图3位置和数量都与图1相同.答案:{例2}观察下列图形的变化,按照规律补充完整.这样思考: 从左至右黑点的个数依次为4、3、2个,依此推断,第四个圆里只有一个圆点;图1图3斜线的方向相同,那么图2图4斜线的方向相同.答案:{例3} 按顺序观察下列图形的变化,然后按照规律在空白处填上合适的图形。

这样思考:我们把第一幅图的星当作1号, 方形是2号, 三角是3号, 圆是4号.第二幅图星是2号,第三幅图星是3号,依此规律,第4幅图星是4号.其他三个小图形也会发现此规律.答案:{例4}小红在院子里采了许多花,把它们整整齐齐的排列着.下面这个空圈中应摆什么花?这样思考:仔细观察每份花朵的变化规律。

从种类上看有两种花,它们依次交替出现。

从枝数上看,1枝、2枝、2枝依次重复出现。

答案:{例5}观察下面图形的变化,请你接着再画出一幅图来。

这样思考: 观察上面的图发现,横着看最下面一排的骨头每次多一块,第二排的骨头也每次多一块,依次类推。

从形状上看像楼梯,第一幅图是1块,第二幅图是按照1、2的顺序排列,第三幅图是按照1、2、3的顺序来排列。

那么第四幅图就是按照1、2、3、4的顺序排列。

答案:·题目1:有一堵墙上的砖坏了一部分,现在请你仔细观察排列规律,猜一猜要补上多少块同样的砖,才能把墙补好?图1A.AB.B查看答案 如图看不清或变形,可以点击图片放大窗体底部·题目2:仔细观察,寻找规律,在问号处填上合适的图形。

二年级上 第一单元 找规律数图形

二年级上 第一单元 找规律数图形

例6、数一数,下图中各有多少个正方形? 编号法
12
5
34 ( 5 )个正方形
12 3
45
11 12 1314
6 7 8 9 10
( 14 )个正方形
第三题 123
( 3 )个正方形
7 8 1 2 3
456 ( 8 )个正方形
12
5
34 ( 5 )个正方形
12 3 4
9 10 11
56 7 8 ( 11 )个正方形
认识图形
公式法
有1条基本线段组成的线段:2条 有2条基本线段组成的线段:1条 图中共有线段:2+1=3(条)
方法:先数基本图形,再依次加到1。
例1、图中共有多少条线段?
A
B
C
D
公式法 基本线段有: AB BC CD 共3条 有2条基本线段组成的线段:AC BD 共2条 有3条基本线段组成的线段:AD 共1条
图中共有线段:3+2+1=6(条)
方法:先数基本图形,再依次加到1。
3
认识图形

顶点


例2、你能用数线段的方法数出有多少个角吗?
3+2+1=6(个) ( 6 )个角 方法:先数基本角,再依次加到1。
题组一
3个角
10个角
6个角
例3、你能数出有多少个三角形吗?
( 3 )个三角形
你是怎么数的?
2+1=3(个)
共8个三角形
例4、下图中共有多少个长方形?
1
2
3
( 6 )个长方形 提示:你能用数3线+2段+1的=方6法(数条三)角形,你还能数长方形吗?
方法:公式法 由1个基本长方形组成的长方形: 3个 由2个基本长方形组成的长方形: 2个 由3个基本长方形组成的长方形: 1个
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按规律数图形
例1 下面两根线段中各有多少 条线段?
答 (1)Байду номын сангаас有10条线段。
(2)中有21条线段。

由以上例子可以推知,如果线段上有五 个点,就构成了四条基本线段,总线段 数为四个连续自然数的和:4+3+2+1。 如果有n个点,线段总数为(n-1)+ (n-2)+…+3+2+1=n×(n-1)÷2 (条)。找到了这个规律,我们就可以 运用这个公式来解答这类问题。
看 答案
实战演练1
线段AB上除两端外有12个 点,问这条线段上共有多 少条线段?
实战演练2
把长2厘米、宽1 厘米的长 方形硬纸片按照上图一层 层叠起来。
(1)如果叠5层,周长是 ( )厘米。 (2)如果周长是120厘米, 共有( )层。

将100个小朋友从左往右排成一排并依次编成1~100
号。然后从左往右“一、二”报数,报“一”的退下; 再从左往右“一、二”报数,报“一”的退下;……; 这样循环到剩下最后一个人为止。那么最后留下的这 个小朋友是多少号?
例2 在∠AOB(图6-2)内有8条 从O点引出的射线,可组成各种大 小不同的角一共有多少个?
答 :图中有45个角。
: 数一数,图6-3 一共有几个长方形?
例题3
分析 可以按照顺序去数长方形的个数,也可 以通过分析研究,找出数长方形的规律。长 方形是由长和宽组成的, 图中共有3个长(横向线段)、3个宽(竖向 线段)
思考题:

下图中共有多少个三角形?
书山有路勤为径
下课
祝 你 成 功 !
3×3=9(个) 答 图中共有9个长方形。
例4 如图6-4。(1)如上图这样的形状,如果最底层有11 个三角形,那么这堆小三角形共有多少个? (2)现在共有169个小三角形,按上图排列,那么最底 层三角形有几个?
分析 根据图示可以得到规律,底层与总数 有“2→4,3→9, 4→16”的关系。 (1)下层有11个小三角形,共有 11×11= 121(个) (2)因为13 ×13= 169,所以 169个小 三角形如上图排列,底层有13个小三角形。
相关文档
最新文档