六年级比和比例复习提高题(含答案)

合集下载

小升初真题特训:比和比例-小学数学六年级下册人教版(有答案 有解析)

小升初真题特训:比和比例-小学数学六年级下册人教版(有答案  有解析)

小升初真题特训:比和比例-小学数学六年级下册人教版学校:___________姓名:___________班级:___________考号:___________一、选择题A.6∶14.(2020·全国·小升初真题)甲数的等于乙数的,甲数和乙数的比是(A.7:4.:A.路程一定,速度和时间B.时间一定,路程和速度C.单价一定,总价和数量D.数量一定、总价和单价二、判断题小升初真题)=y三、填空题四、计算五、图形计算26.(2020·全国·小升初真题)如图:正方形的边长为米,==,求四边形积.六、作图题27.(2021·河南安阳·统考小升初真题)请按要求画图。

(1)以三角形ABC的AB边为底,再画出一个和三角形ABC面积相等的三角形。

(2)画出把三角形ABC绕点A逆时针旋转90°后的图形。

(3)画出把三角形ABC按2∶1放大后的图形。

七、解答题28.(2020春·北京·六年级小升初模拟)修路队修一条路,已修长度和未修长度的比是2∶3,如果再修300米刚好到达中点。

这条路全长多少米?29.(2021·山西大同·校考小升初真题)在比例尺是1∶30000000的地图上,甲、乙两地航空线的图上距离是6厘米。

一架飞机以每小时800千米的速度从甲地飞往乙地,几小时可以到达?30.(2021·河南驻马店·统考小升初真题)要测量一棵树的高度,量得树的影长是10.2米,同时有一根长4.8米的标杆直立在地面上,量得影长是1.6米,这棵树高多少米?(用比例解决)31.(2020·天津南开·统考小升初真题)一个手机组装车间要完成一批生产任务,若每天组装手机500台,需要24天完成。

现在要求15天完成任务,每天需要组装多少台?(用比例解)32.(2021·全国·小升初真题)甲、乙两艘汽艇同时从A、B两港相向而行,相遇时甲、乙两艇所行路程之比是5:7.相遇后,甲艇继续以原来每小时33.6千米的速度行驶,又用了6小时到达B港,求甲、乙两艇的相遇时间.×=×,=:=4“”解:因为,比值是:60∶1=60÷1=60【分析】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数,小数或分数。

六年级下学期数学小升初比和比例专项练习及答案(基础+提升)

六年级下学期数学小升初比和比例专项练习及答案(基础+提升)

六年级下学期数学小升初比和比例专项练习一.选择题(共20题,共40分)1.在下列各组量中,成正比例的量是()。

A.路程一定,速度和时间B.长方体底面积一定,体积和高C.正方形的边长和面积2.三个数的比是1∶2∶3,平均数是60,则最大的一个数是()。

A.30B.90C.603.下面()中的四个数不能组成比例。

A.16,8,12,6B.8,3,12,42C.14,2,,D.0.6,1.5,20,504.()能与:组成比例。

A.3:4B.4:C.3:D.:5.同时同地,物体的高度和影长()。

A.成正比例B.成反比例C.不成比例6.汽车总辆数一定,每排停放的辆数和停放的排数()。

A.成正比例B.成反比例C.不成比例D.不成反比例7.当X、Y互为倒数时,X与Y()。

A.成正比例B.成反比例C.不成比例8.人的体重和身高()。

A.不成比例B.成正比例C.成反比例9.把一个长8m,宽6m的长方形画在作业本上,选择比例尺比较合适的是()。

A.1:10B.1:100C.1:1000010.下面的两种相关联的量成反比例的是(并说明理由)()。

A.长方形的周长一定,长和宽。

B.圆锥的体积一定,底面积和高。

11.下面第()组的两个比不能组成比例。

A.7∶8和14∶16B.0.6∶0.2和3∶1C.19∶110 和10∶912.下面各比,能和0.4∶组成比例的是()。

A.∶B.5∶8C.8∶5 D .∶13.当()一定时,平行四边形的底和高成反比例。

A.底B.高C.面积14.如果A×2=B÷3,那么A∶B=()。

A.2∶3B.6∶1C.1∶615.下面几句话中,正确的有()。

①路程一定,速度和时间成反比例;②正方形的面积和边长成正比例;③三角形面积一定,底和高成反比例;④x+y=25,x与y成反比例.A.①和②B.①和③C.①和④D.③和④16.下面x和y成正比例关系的是()。

A.=yB.3x=4yC.y=x-3D.=5+17.把9、3、21再配上一个数使这四个数组成一个比例式,这个数可能是()。

六年级下册数学小升初比和比例专项练习附完整答案(网校专用)

六年级下册数学小升初比和比例专项练习附完整答案(网校专用)

六年级下册数学小升初比和比例专项练习一.选择题(共20题,共42分)1.在下面各比中,能与:组成比例的比是()。

A.4:3B.3:4C.:3 D.:2.给一个房间铺地砖,所需砖的块数与每块砖的()成反比例。

A.边长B.面积C.体积3.如果圆锥的底面半径一定,那么圆锥的体积与圆锥的高()。

A.成正比例B.成反比例C.不成比例4.下面几句话中,正确的有()。

①路程一定,速度和时间成反比例;②正方形的面积和边长成正比例;③三角形面积一定,底和高成反比例;④x+y=25,x与y成反比例.A.①和②B.①和③C.①和④D.③和④5.下面成正比例的量是()。

A.差一定,被减数和减数B.单价一定,总价和数量C.互为倒数的两个数6.下面x和y成正比例关系的是()。

A.=yB.3x=4yC.y=x-3D.=5+7.根据a×b=c×d.下面不能组成比例的是()。

A.d∶a和b∶cB.a∶c和d∶bC.b∶d和a∶c D.a∶d和c∶b8.分子一定,分母和分数值()。

A.成正比例B.成反比例C.不成比例D.不成反比例9.在一幅比例尺是()的地图上,量得上海到杭州的距离是3.4厘米,上海到杭州的实际距离是170千米。

A.1∶500B.1∶50000C.1∶500000D.1∶500000010.下面四句话中错误的有()句。

①教师节、儿童节、国庆节所在的月份都是小月。

②四个圆心角是90°的扇形可以拼成一个圆。

③如果两个质数的和仍是质数,那么它俩的积一定是偶数。

④如果ab+4=40,那么a与b成反比例。

A.1B.2C.3D.411.圆柱的体积一定,它的高和()成反比例。

A.底面半径B.底面积C.底面周长12.当X、Y互为倒数时,X与Y()。

A.成正比例B.成反比例C.不成比例13.和一定,加数和另一个加数()。

A.成正比例B.成反比例C.不成比例14.混凝土公司要配置一种混凝土,将黄沙、石子和水泥的质量按照4:6:1的比进行搅拌。

六年级下册数学试题-专题10比和比例 全国通用 有答案

六年级下册数学试题-专题10比和比例  全国通用 有答案

10.比和比例知识要点梳理一、比的意义和性质1.比的意义两个数相除又叫做两个数的比。

比的写法和读法:表示数a与数b(b不能为零)的比,写作a:b,也可以写作。

“:”是比号,读作“比”,所以a:b读作a比b。

比的前项和后项:比号前面的数叫做比的前项,比号后面的数叫做比的后项。

前项除以后项所得的商是比的结果,叫做比值。

例如:4 : 5=4÷5=0.8↓↓↓↓前项比号后项比值2.比的基本性质比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

二、比、分数和除法比与分数相比,比的前项相当于分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线。

比可以写成分数形式,如7:4可读作:七比四。

比与除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于商,比号相当于除号。

比、分数和除法之间的联系与区别如下表所示:三、求比值与化简比1.求比值前项除以后项所得的商是比的结果,叫比值。

同类量的比,其比值没有单位名称;不同类量的比,其比值有单位名称。

例如:100千米:5时=20千米/时2.化简比比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

把两个数的比化成最简整数比的,称为化简比或比的化简。

四、比例的意义和性质1.比例的意义表示两个比相等的式子叫做比例。

组成比便的四个数,叫做比例的项,两端的两项叫做比例配外项,中间的两项叫做比例的内项。

例如:2.比例的基本性质在比例单,两个外项的积等于两个内项的积,这叫做比例的基本性质。

例如:15:60=12:48可得:60×12=15×48如果把比例写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积相等。

五、比和比例的区别六、解比例根据比例的基本性质,如果已经知道比例中的任何三项,就可求出这个比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

解比例时,先根据比例的基本性质把原比例改写成两个外项乘积与两个内项乘积相等形式的方程,再用已知的两项的乘积除以另一个已知项求出未知项。

苏教版数学六年级下册应用题特训~比和比例(专项训练)【含答案】

苏教版数学六年级下册应用题特训~比和比例(专项训练)【含答案】

苏教版数学六年级下册应用题特训:比和比例(专项训练)1.在比例尺是1∶500的一幅地图上,量得一块长方形菜地的周长是28厘米,已知这块菜地的长和(1)第一天和第二天行驶的路程分别与时间的比能组成比例吗?为什么?如能组成比例,请写出来.(2)两天行驶路程的比和两天行驶时间的比能组成比例吗?为什么?如能,把组成的比例写出来.9.按要求完成问题.比例尺1:20000(1)如果要从小区修一条通向学校和医院之间的公路的小路,怎样修才能使小路最短?请在途中用线段画出来.(2)医院大约在学校的()方向,它们之间的实际距离约是()米.10.甲、乙、丙三人进行200米的赛跑,甲跑到终点时,乙还剩20米未跑完,丙还剩25米未跑完.问,当乙跑到终点时,丙还剩多少米未跑完?11.在1:1800000的地图上一段6cm长的公路,在另外一幅地图上同样的这条公路长8cm,求另外这幅地图的比例尺.12.张老师到京东文具店买28支同样的钢笔,要付448元.照这样计算,如果陈老师想再多买同样的钢笔30支,他一共带了900元,够吗?13.在比例尺是1∶25000000的地图上标出甲、乙两地.已知甲、乙两地的实际距离是4500千米,图上两地相距多少厘米?14.把左边的长方形按比放大后得到右边的长方形,请写出比例,并求出x的值。

(单位:cm)15.淘气和笑笑收集的邮票张数的比是3∶5,淘气收集了36张邮票,笑笑收集了多少张邮票?【用比例解】16.学校图书馆科技书本数与故事书本数的比是3∶2,故事书有180本,科技书有多少本?(用比例方法解)17.在标有的地图上,量得甲、乙两地相距9厘米.一参考答案:9.(1);(2)18【详解】圆内正方形图上对角线表示6cm,则实际长度为6m,实际面积为18m2.19.2.5小时【详解】略20.12天【详解】解:设x天可以完成任务.10x=8×15解得x=12答:12天可以修完.。

六年级比和比例复习提高题(含答案)

六年级比和比例复习提高题(含答案)

1. 六年级三个班总共有138人,(1)班人数与(2)班人数之比为6:5,(2)班人数与(3)班人数之比为4:5。

求三个班各有多少人。

2. 操场上有一群学生在玩一种游戏,其中男生与女生的比为3:2。

后来从教室里又出来6名女生参加进来,此时男生与女生之比为5:4。

求原来有多少男生、多少女生?3. 某人买甲、乙两种铅笔共100支,已知甲铅笔每支1角5分,乙铅笔每支1角。

若甲、乙两种铅笔用去的钱一样多,问甲、乙铅笔各买了多少支?4. 两个相同的瓶子装满酒精溶液,一个瓶中酒精与水的体积之比为3:1,而另一个瓶中酒精与水的体积之比是4:1。

若把两瓶酒精溶液倒入一个盆中混合,问混合液中酒精与水的体积之比为多少?5. 如图,甲、乙两人绕一长80米、宽60米的矩形操场跑步锻炼。

甲从A,乙从B相向而跑,结果第一次在E处相见,E离A处有30米,然后继续跑。

问甲、乙能否再在E处相遇?如果能,那是甲、乙的第几次相遇?6. 某校六年级共有学生191人,选出男生的1/9和11名女生参加市数学竞赛后,剩下的女生与男生人数之比为3:4。

问六年级有多少男生,多少女生?7. 有三堆棋子,每堆数量相等,并且都只有黑、白两色棋子。

第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占全部黑子的25。

把这三堆棋子合在一起,问白子占全部棋子的几分之几?【答案】1. 分析:已知三个班的总人数,如果能知道三个班人数之比(连比),就很容易求出三个班的人数。

现在已知(1)班与(2)班人数之比为6:5,(2)班与(3)班人数之比为4:5,如何求出(1)班、(2)班、(3)班人数之比呢?只要能使前一个比的后项等于后一个比的前项就好了。

可以把(1)班与(2)班人数比写成24:20(同乘以4),将(2)班与(3)班人数比写成20:25(同乘以5),这样(1)班、(2)班、(3)班人数比为24:20:25。

三个班人数和为138,就不难求出三个班的人数了。

解:(1)、(2)班人数比为6:5,也就是24:20,(2)、(3)班人数比为4:5,也就是20:25,所以三个班人数比为24:20:25。

4.2 求比值、化简比与比的应用(小考复习精编专项练习)六年级数学小升初复习系列:第四章 比和比例

4.2 求比值、化简比与比的应用(小考复习精编专项练习)六年级数学小升初复习系列:第四章 比和比例

4.2 求比值、化简比与比的应用(小考复习精编专项练习)六班级数学小升初复习系列:第四章 比和比例(含学问点、练习与答案)一、求比值和化简比1、求比值:求两个数的比值,用比的前项除以比的后项,得数是一个数值,该数值就是比值。

这个数值可以是整数、小数或分数。

【典型例题】求下列各组比的比值。

(1)4.8:0.6=(2)45: 1625=【解答】(1)4.8:0.6=48÷6=8(2)45: 1625 =45× 2516 =1.252、化简比:把两个数的比化成最简的整数比。

(1)化简整数比:整数比的化简需先找出两个数的最大公因数,然后同时用这个公因数分别去除“比的前项和比的后项”即可,与分数的约分类同。

【典型例题】28:49=(28÷7)∶(49÷7)=4:7(2)化简小数比:首先把比的前项和后项的小数点同时向右移动相同的位数(即扩大相同的倍数),变成整数比;然后,再依据化简整数比的方法进行化简。

【典型例题】0.36:1.2=36:120=(36÷12)∶(120÷12)=3:10(3)化简分数比:就是减比的前项和后项同时乘以它们分母的最小公倍数,变成整数比;然后进行化简。

也可以依据分数除法的形式去计算。

可将“∶”号变成“÷”号,将比式变成除式进行计算,从而化简分数比,但结果需要写成比的形式。

【典型例题】7 10:45=方法一:7 10:45=(710×10):(45×10)=7:8 方法二:=65÷910=65×109=43=4∶3二、比的实际应用假如已知一个总量的各部分的比,同时也清楚其中某一部分的数量,要求出其他几个部分的数量或者全部的数量。

那么,可以先把已知的比看作已安排的份数,先求出每一份的数量;然后,再转化成要求的份数乘以每一份的数量来解决此类问题。

【典型例题】杨伯伯要配置一种农药给果园除草,已知水和药粉的比是11∶3,现在有一共要配置的农药7000克,那么需要多少克的药粉?【解题分析】依据题意,把一共要配置农药的质量看作11+3=14份,则药粉占了其中的3份。

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析1.从6、24、20、18与5这五个数中选出四个数组成一个比例是( )。

【答案】24:4=20:5【解析】此题为一个开放题,有多种答案。

首先确定选哪4个数,根据比例的基本性质,发现:24×5=20×6,可以用24和5同时做内项或外项,20和6做另外两项,写出不同的比例。

如24:4=20:52.把1克盐放入100克水中,盐与盐水的比是1:100。

()【答案】×【解析】要求盐和盐水的比,就要先求出盐水的重量,1+100=101,所以盐和盐水的比是1:101,题目错误。

3.请在下图中画出一个钝角三角形,并用阴影表示,使得阴影部分的面积与空白部分的面积比是2:3。

【答案】只要画出的钝角三角形底和高的乘积是12,面积是6,即为正确。

答案不唯一。

【解析】本题需先计算出钝角三角形的面积是多少。

假设每个小正方形的边长为1,那么整个长方形的面积就是15,阴影面积与空白的比是2:3,说明阴影与整个图形面积的比是2:5,整个图形面积为15,钝角三角形的面积就是6。

根据三角形面积公式可知,底和高的乘积是12,所以只要画出的钝角三角形底和高的乘积是12,面积是6,即为正确。

答案不唯一。

4.有一块正方形铁片(如图),沿一边剪去底是6分米的一个三角形,剩下的铁片成了梯形(阴影部分),这个梯形的上底与下底的比是1:4,求梯形的面积。

【答案】9平方分米【解析】本题的关键是理解6分米对应的份数。

因为梯形的上底和下底的比是1:4,也就是说梯形的上底是1份,正方形的边长是4份,从而得到,空白三角形的底是3份。

6÷3=2(分米),说明1份表示2分米。

梯形上底:2×1=2(分米),梯形下底:2×4=8(分米),因为是正方形,所以梯形的高也是8分米。

(2+8)×8÷2=9(平方分米),梯形面积是9平方分米。

5.小王、小李、小刘三家共同在莲花村租了一套房子,共有三房一厅,每月要交物业管理费210元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 六年级三个班总共有138人,(1)班人数与(2)班人数之比为6:5,(2)班人数与(3)班人数之比为4:5。

求三个班各有多少人。

2. 操场上有一群学生在玩一种游戏,其中男生与女生的比为3:2。

后来从教室里又出来6名女生参加进来,此时男生与女生之比为5:4。

求原来有多少男生、多少女生?
3. 某人买甲、乙两种铅笔共100支,已知甲铅笔每支1角5分,乙铅笔每支1角。

若甲、乙两种铅笔用去的钱一样多,问甲、乙铅笔各买了多少支?
4. 两个相同的瓶子装满酒精溶液,一个瓶中酒精与水的体积之比为3:1,而另一个瓶中酒精与水的体积之比是4:1。

若把两瓶酒精溶液倒入一个盆中混合,问混合液中酒精与水的体积之比为多少?
5. 如图,甲、乙两人绕一长80米、宽60米的矩形操场跑步锻炼。

甲从A,乙从B相向而跑,结果第一次在E处相见,E离A处有30米,然后继续跑。

问甲、乙能否再在E处相遇?如果能,那是甲、乙的第几次相遇?
6. 某校六年级共有学生191人,选出男生的1/9和11名女生参加市数学竞赛后,剩下的女生与男生人数之比为3:4。

问六年级有多少男生,多少女生?
7. 有三堆棋子,每堆数量相等,并且都只有黑、白两色棋子。

第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占全部黑子的。

把这三堆棋子合在一起,问白子占全部棋子的几分之几?
【答案】
1. 分析:已知三个班的总人数,如果能知道三个班人数之比(连比),就很容易求出三个班的人数。

现在已知(1)班与(2)班人数之比为6:5,(2)班与(3)班人数之比为4:5,如何求出(1)班、(2)班、(3)班人数之比呢?只要能使前一个比的后项等于后一个比的前项就好了。

可以把(1)班与(2)班人数比写成24:20(同乘以4),将(2)班与(3)班人数比写成20:25(同乘以5),这样(1)班、(2)班、(3)班人数比为24:20:25。

三个班人数和为138,就不难求出三个班的人数了。

解:(1)、(2)班人数比为6:5,也就是24:20,(2)、(3)班人数比为4:5,也就是20:25,所以三个班人数比为24:20:25。

因为三个班人数和为138人,所以(1)班人数为(人)。

(2)班人数为20×2=40(人)。

(3)班人数为25 ×2=50(人)。

答:(1)、(2)、(3)班人数各为48人、40人、50人。

2. 分析:原来男生、女生之比为3:2,加入6名女生后变为5:4.由于男生人数未变,可将两个比的前项写成一样,就是
3:2=15:10(同乘以5)
5:4=15:12(同乘以3)
从上式可看出女生人数增加了2份,因此容易求出男、女生的人数。

解:原来男、女生人数之比为3:2,也就是15:10,增加6名女生后,男、女生人数之比为5:4,也就是15:12,所以原来女生人数为
10×[6÷(12-10)]=10×3=30(人)。

男生人数为15×[6÷(12-10)]=15×3=45(人)。

答:原来男生有45人,女生有30人。

3. 分析:当某种货物单价一定时,所花的钱的总数与货物数量成正比;若花钱总数一定,则购物数量与单价成反比。

现甲、乙两种铅笔花钱一样多(花钱总数一定),因此甲、乙两种铅笔数量应与它们的单价成反比。

解:因甲、乙两种铅笔单价之比为15:10=3:2。

而它们所用的钱数一样多,因此甲、乙两种铅笔数量之比应为2:3。

所以甲铅笔有(支)。

乙铅笔有100-40=60(支)。

答:甲、乙两种铅笔分别买了40支和60支.
4. 解:因为甲瓶中酒精与水体积之比为3:1,那么酒精占瓶子容积的。

同样,乙瓶中酒精占瓶子容积的。

因为。

将1个瓶子的容积看作20份,那么2个瓶子的容积为40份,两个瓶子中的酒精一共占了15+16=31(份),
因此两个瓶子中的水共占了40-31=9(份),
所以混合液中酒精与水体积之比为31:9。

答:混合液中酒精与水体积之比为31:9。

5. 分析:从原图可知,BE=50米,这意味着乙的速度比甲快,甲、乙速度之比为3:5。

如果再次在E处相遇,此时甲、乙都跑了整数圈。

由于时间相同,路程的比等于速度的比,所以甲跑了3圈,乙跑了5圈.因为甲、乙相遇一次,就是合起来跑了一圈,所以甲、乙共跑了3+5=8(圈)。

所以从E出发后甲、乙两人共遇见了8次,第八次又在E处相遇,这也是甲、乙的第九次相遇(包括第一次在E处相遇)。

6. 分析:为了帮助我们思考,我们画出示意图
由图中可知,将男生人数看作整体1,则剩下的男生为。

而剩下男生与女生人数的比为4:3,因此剩下女生是原来男生的。

而原来男生和剩下女生的人数和可以由已知条件求得,所以可得到解法如下:
解:因参加竞赛男生为整个男生人数的,所以剩下男生为。

又剩下男生与女生人数的比为4:3,所以剩下女生为原来男生的。

因六年级共191人,走了11名女生,所以剩下女生加上原来的男生为191-11=180(人)。

所以原来男生人数为
(人)。

原来女生为191-108=83(人)。

答:六年级有男生108人,女生83人。

7. 分析:由第一堆里的黑子和第二堆里的白子一样多,可知第一堆里的白子和第二堆里的黑子一样多.因此把第一堆与第二堆合起来,白子和黑子就一样多。

第三堆中的黑子占全部黑子的,那么前两堆中的黑子占全部黑子的,所以一、二堆中的白子也占全部黑子的。

由于三堆棋子一样多,所以第三堆棋子等于全部黑子的,从而第三堆中的白子等于全部黑子的。

请注意:这里我们是将全部黑棋子看作标准“1”。

解:由已知前两堆中的白棋子和黑棋子相等,都等于全部黑棋子的,第三堆中的白棋子相当于全部黑棋子的,因此全部白棋子占全部棋子的。

答:全部白棋子占全部棋子的。

相关文档
最新文档