初中数学竞赛培训(15)(含答案)-

合集下载

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

初中数学竞赛模拟题50题含答案

初中数学竞赛模拟题50题含答案

初中数学竞赛模拟题50题含答案一、单选题1.下列说法正确的是( ) A .正有理数和负有理数统称有理数 B .正整数和负整数统称整数 C .整数和分数统称有理数D .一个有理数不是正数就是负数2.在一年的某月里,周五、周六出现的天数比周日多,周一、周二、周三、周四出现的天数不超过周日,则该月份一定不是( ) A .三月B .四月C .六月D .十一月3.当m 为自然数时,2(45)9m +-一定能被下列哪个数整除( ) A .5B .6C .7D .84.定义运算()()()()()()12211221a a a a b a b a b b b b --⨯⋅⋅⋅⨯-+-+*=--⨯⋅⋅⋅⨯⨯,则107*=( )A .720B .120C .240D .805.已知()123123,,x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++=( )A .5B .6C .7D .86.一个盒子中有红球m 个、白球10个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么,m n 的关系是( ). A .10m n +=B .5m n +=C .10m n ==D .2,3m n ==7.已知x ,y 为整数,且满足224411112113x y x y x y ⎛⎫⎛⎫⎛⎫++=-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则x y +的可能的值有( ) A .1个B .2个C .3个D .4个8.若223894613M x xy y x y =-+-++(,x y 是实数),则M 的值一定是( ). A .正数 B .负数C .零D .整数9.若34567201520162017201820195N++++++++=,则N =( )A .2015B .2016C .2017D .201810.如图,在ABC 中,过点C 作CD AB ⊥,垂足为点D ,过点D 分别作DE AC ⊥,DF BC ⊥,垂足分别为E ,F .连接EF 交线段CD 于点O ,若CO =CD =EO FO ⋅的值为( ).A .B .4C .D .611.锐角ABC 中,BC 边的中垂线和ABC ∠的角平分线相交于点P .若72A ∠=︒,24ACP ,则ABP ∠=( )A .24︒B .28︒C .30︒D .36︒12.如果21x x --是31ax bx ++的一个因式,则b 的值是( ). A .2-B .1-C .0D .213.满足等式22(2)1m m m ---=的所有实数m 的和为( ) A .3B .4C .5D .614.点D 、E 、F 分别在ABC 的三边BC 、AB 、AC 上,且AD 、BF 、CE 相交于一点M ,若5AB AC BE CF+=,则AMMD =( ) A .72B .3C .52D .215.矩形ABCD 中,5AD =,10AB =,E 、F 分别为矩形外的两点,4BE DF ==,3AF CE ==,则EF =( )A .B .15CD .16.已知实数a ,b 满足()()330a b --≥2 ) A .0B .1C .2D .317.某种产品由甲、乙、丙三种元件构成,如图为生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( ).A .120,180,60︒︒︒B .108,144,108︒︒︒C .90,180,90︒︒︒D .72,216,720︒︒︒18.从正整数里取出k 个不同的数,使得这k 个数中任意两个数之差的绝对值是质数,则k 的最大值是( ). A .3B .4C .5D .619.若直角三角形的一条直角边长为12,另两条边长均为整数,则符合这样条件的直角三角形共有( )个. A .1B .6C .4D .无数多二、填空题20.把7串葡萄放在6个盘子里,总有一个盘子里至少要放( )串葡萄. 21.如图,已知直角三角形ABC ,90A ∠=,4AB =cm ,5BC =cm .将ABC 沿AC 方向平移1.5cm 得到A B C ''',求四边形BCC B ''的面积为________2cm .22.若正整数n 有6个正约数(包括1和本身),称其为“好数”,则不超过50的好数有______个.23.已知ABC 的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,AD =AM =__________.24.若a ,b ,c ,d 均为素数,且满足2a b d +=,32b c d -=,则d 的最小值是________.25.在一张冬景照片上,人们分别戴着帽子、系着围巾和戴着手套.只戴帽子的人数等于只系围巾和只戴手套的人数之和;只有4人没有戴帽子;戴着帽子和系着围巾,但没有戴手套的有5人;只戴帽子的人数两倍于只系围巾者;未戴手套有8人,未系围巾有7人;三样东西都用的人数比只戴帽子的人数多一个.那么: (1)有______人同时用上了帽子、围巾和手套; (2)有______人只戴了手套; (3)有______人只系了围巾;(4)有______人既戴了帽子,又戴了手套,但没有系围巾; (5)有______人戴着手套.26.若n n =______. 27.设x =a 是x 的小数部分,b 是x -的小数部分,则333a b ab ++=__________ .28.军训基地购买苹果慰问学员.已知苹果总数用八进位制表示为abc ,七进位制表示为cba .那么,苹果的总数用十进位制表示为________. 29.方程1433x y+=有_________组正整数解. 30.已知函数(1)1kx k y ++=(k 为正整数)的图象与两坐标轴围成的图形面积为(1,2,,2000)k S k =⋅⋅⋅,则122000S S S ++⋅⋅⋅+=_______.31.如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为______32.从1到2001连续的2001个自然数按某种顺序排列,然后每连续三项计算和数,得到1999个和,则这些和数中为奇数的个数最多是_________. 33.计算:239912232421002+⨯+⨯+⨯++⨯=________.(结果可用2的幂表示)34.如图所示,点A C 、都在函数0)y x =>的图象上,点B D 、都在x 轴上,且使得OAB ,BCD △都是等边三角形,则点D 的坐标是_______.35.已知正整数n 大于30,且使得41n -整除2002n ,则n 等于_______. 36.射线AB 绕点A 逆时针旋转a ︒,射线BA 绕点B 顺时针旋转b ︒,090a ︒︒<<,090b ︒︒<<,旋转后的两条射线交点为C ,如果将逆时针方向旋转记为“+”,顺时针方向旋转记为“-”,则称()a b -,为点C 关于线段AB 的“双角坐标”,如图1,已知ABC ∆,点C 关于线段AB 的“双角坐标”为(5060)-,,点C 关于线段BA 的“双角坐标”为(6050)-,.如图2,直线:AB y =x 轴、y 轴于点A 、B ,若点D 关于线段AB 的“双角坐标”为()m n -,,y 轴上一点E 关于线段AB 的“双角坐标”为()n m -,,AE 与BD 交点为F ,若ADE ∆与ADF ∆相似,则点F 在该平面直角坐标系内的坐标是________.37.如图,在四边形ABCD 中,90BCD ∠=︒,BC =,60BAC ∠=︒,若=5AB ,=2AD ,则线段AC 的长为______.38.某演艺公司将观赏厅分为上、中、下三大区位,同一区位包含若干个座位数相同的桌位(不同区位的单个桌位所含座位数不一定相同).演艺公司对近三天的的上座情况进行统计发现,三天中每个区位坐有观众的桌位均刚好坐满.第一天上、中、下区的坐有观众的桌位数之比为3:2:1,中区的观众数占入场观众数的14,上座率为35;第二天上、中、下区的坐有观众的桌位数之比为1:1:2,上区的观众数占入场观众数的25,上座率为34;第三天上区的观众数与第二天上区的观众数相同,中区的观众数是第一天的中区的观众数的13,下区的观众数是当天上区和中区观众数的总和.则第三天的上座率为______.(上座率=入场观众数全场总座位数)三、解答题39.如图,在菱形ABCD 中,3AB =,60DBA ∠=︒,E 为线段BD 延长线的动点,连接AE 、CE ,AE 交CD 延长线于点F .(1)求证:AE CE =; (2)若1DF =.①求点E 到CD 的距离; ①求EFED的值. 40.设,a b 是实数且422223a b a b =+,求22222010a b a b -+的值. 41.几何计算中,常利用面积法(等积法)构造方程来求线段的长,请利用这种面积法(等积法)解决下列两个问题:(1)如图①,ABC 中,13AB =,5AC =,=12BC ,求AB 边上的高;(2)在一张正方形纸张的四个角剪去四个相同的小正方形,得到如图①所示的图形,再将它分割成三块拼成如图①所示的长方形,已知m n 、满足:22818970m m n n -+-+=,求拼成新长方形的长m 、宽n 的值及被剪去的小正方形的边长.42.求证:若3|(4)x y -,则229472|()x xy y +-. 43.两位数ab 能整除十位数字为零的三位数0a b ,求ab .44.如图,点E 在四边形ABCD 的边AB 上,ABC 和CDE 都是等腰直角三角形,AB AC =,DE DC =.(1)证明://AD BC ;(2)设AC 与DE 交于点P ,如果30ACE ∠=︒,求DPPE. 45.从1,2,3,…,50这50个正整数中任取n 个数,在这n 个数中总能找到3个数,它们两两互质.求n 的最小值.46.已知m ,n 都是正整数,若130m n ≤≤≤,且mn 能被21整除,求满足条件的数对(,)m n 的个数.47.证明数列49,4489,444889,4448889,…的每一项都是一个完全平方数. 48.在元旦晚会上,学校组织了一次关于语文、数学、外语、奥运及日常生活常识的知识竞赛,设定每科满分为40分,以下依次为30分、20分、10分和0分,共5个评分等级,每个小组分别回答这五个方面的问题.现将A 、B 、C 、D 、E 五个小组的部分得分列表1如下: 表1表1中,(1)每一竖行的得分均不相同(包括单科和总分);(2)C组有4个单科得分相同.求B、C、D、E组的总分并填表进行检验.参考答案:1.C【分析】根据有理数的含义和分类方法,逐一判断即可. 【详解】解:A 、正有理数、负有理数和0统称有理数, ∴选项A 不正确,不符合题意;B 、正整数与负整数、0统称为整数, ∴选项B 不正确,不符合题意;C 、整数和分数统称有理数 ∴选项C 正确,符合题意;D 、一个有理数不是正数,可能是负数或0, ∴选项D 不正确,不符合题意.故选:C .【点睛】本题主要考查了有理数的含义和分类方法,解题的关键是要熟练掌握有理数的分类:①有理数可以分为正有理数,0,负有理数;正有理数可以分为正整数和正分数,负有理数分为负整数和负分数;①有理数可以分为整数和分数;整数分为正整数,0负整数;分数分为正分数和负分数;按两种分类一一判断即可. 2.A【详解】每个月的后28天,周一至周日出现的天数相同,因此在这28天之外只能出现周五和周六,故这个月有30天 3.D【分析】多项式利用平方差公式分解因式,变形后即可作出判断. 【详解】解:2(45)9m +-[][](45)3(45)3m m =+-++ (42)(48)m m =++ 8(21)(2)m m =++①无论m 为任何自然数,2(45)9m +-始终能被8整除, 故选:D .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键. 4.B【解析】略 5.A【详解】方程即()2(1)20x x x a --+=,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是21x =,132x x +=,故()()222112331311441x x x x x x x x x -++=+-++()()31131241215x x x x x =-++=++=.6.A【详解】盒中共有10m n ++个球,取得的是白球的概率是10m np m n +=++,取得的不是白球的概率为10m n p m n '+=++.依题意有101010m nm n m n +=++++,所以10m n +=.故应选A .7.C【详解】由已知等式得2244224423x y x y x y xy x y x y++-⋅=-⋅,显然x ,y 均不为0,所以0x y +=或()32xy x y =-.若()32xy x y =-,则()()32324x y +-=-.又x ,y 为整数,可求得12x y =-⎧⎨=⎩或2,1x y =-⎧⎨=⎩.所以1x y +=或1x y +=- 因此,x y +的可能的值有3个.【点睛】本题考查了等式的性质,分式的化简,解决此题的关键是熟练运用x 、y 是整数这个条件. 8.A 【详解】因为22222222(44)(44)(69)2(2)(2)(3)0M x xy y x x y y x y x y =-++-++++=--++≥+,并且2,2,3x y x y --+不能同时等于零,所以0M >.故选A .9.C 【解析】略 10.B【分析】由题意易得出90DEC DFC ∠=∠=︒,即说明点C ,E ,D ,F 四点共圆,得出DEO FCO ∠=∠,从而易证DOE FOC ∽,得出EO DOCO FO=.由题意可求出DO CD CO =-4EO FO CO DO ⋅=⋅=.【详解】解:①DE AC ⊥,DF BC ⊥, ①90DEC DFC ∠=∠=︒, ①点C ,E ,D ,F 四点共圆,①DEF FCD ∠=∠,即DEO FCO ∠=∠. 又①DOE FOC ∠=∠, ①DOE FOC ∽, ①EO DOCO FO=, ①EO FO CO DO ⋅=⋅.①CO =CD = ①DO CD CO =-=①4EO FO CO DO ⋅=⋅==. 故选B .【点睛】本题考查相似三角形的判定和性质,四点共圆的知识,圆周角定理.确定点C ,E ,D ,F 四点共圆,从而可得出证明DOE FOC ∽的条件是解题关键. 11.B【详解】①直线BP 为ABC ∠的角平分线,①ABP CBP ∠=∠.①直线PM 为BC 的中垂线,①BP CP =,①CBP BCP ∠=∠,①ABP CBP BCP ∠=∠=∠. 在ABC 中,三内角之和为180︒,①3180ABP A ACP ∠+∠+∠=︒, 即37224180ABP ∠++=°°°,解得28ABP ∠=°. 12.D【详解】(解法一)依题意可设32321(1)()()()ax bx x x ax c ax c a x a c x c ++=--+=+--+-,比较系数得(),0,1,b a c c a c =-+⎧⎪-=⎨⎪-=⎩所以1,2c a b ==-=.故选D .(解法二)依题意21x x --是3221(1)()1ax bx ax x x ax b a x ++---=+++的因式, 所以1111a b a +==--, 解得1,2a b =-=.故选D .(解法三)用长除法可得321(1)()(2)(1)ax bx x x ax a a b x a ++=--+++++,所以20,10,a b a +=⎧⎨+=⎩得1,2a b =-=.故选D .13.A【详解】当21m -=即1m =时,满足所给等式;当21m -=-即3m =时,224(2)(1)1m m m ---=-=,满足所给等式;当21m -≠±即1m ≠且3m ≠时,由已知等式可得:220m m --=且20m -≠,解得1m =-. 因此,满足等式22(2)1m m m ---=的所有实数m 的和为()1313++-=.14.B【详解】设AM t MD =,由题设可得AMC DMC BMC BMC S tS AE EB S S ==△△△△,AMB BMD BMC BMC S tS AF FC S S ==△△△△,所以22DMC BMD BMC BMCtS tS AB AC AE AFBE CF EB FC S S ∆∆+=++=++△△ ()222DMC BMD BMC BMC BMCt S S tSt S S +=+=+=+△△△△△,又已知5AB AC BE CF +=,所以25t +=,所以3t =,即3AM MD=. 15.C【详解】易知90AFD BEC ∠=∠=︒,BEC DFA ≅△△,①DAF BCE ∠=∠. 延长FA ,EB 交于点G .①90GAB DAF ADF ∠=︒-∠=∠,90GBA CBE BCE DAF ∠=︒-∠=∠=∠, ①BGA AFD △△,且90AGB ∠=︒,①8AG =,6BG =, ①11GF =,10GE =,①EF ==16.B【详解】因为40b -≥,30b ->,所以3a ≥1,所以令3a =,8b =,得到最小值为1. 17.B【详解】解 设分配生产甲、乙、丙3种元件的人数分别为x 人,y 人,z 人,于是每小时生产甲、乙、丙三种元件的个数分别为50,30,20x y z .为了提高效率应使生产出来的元件全部组成成品而没有剩余.设共可组成k 件成品,则503020504020x y zk ===,即4,,3x k y k z k ===,从而4::1::13:4:33x y z ==.设在扇形图中生产甲、乙、丙三种元件的圆心角分别为,,αβγ,则3336036036010834310x x y z α=⨯︒=⨯︒=⨯︒=︒++++,4436036036014434310y x y z β=⨯︒=⨯︒=⨯︒=︒++++,3336036036010834310z x y z γ=⨯︒=⨯︒=⨯︒=︒++++.故应选B . 18.B【详解】解法一 首先4个数1,3,6,8满足题目要求,故所求k 的最大值4≥. 若5k ≥,记第n 个数为(1,2,,)n a n k =,且12 k a a a <<<,则分下列几种情形:(1)1a 为奇,2a 为奇,于是21a a -为偶数. 又21a a -为质数,故212a a -=,即212a a =+.若3a 为奇数,又32a a ≠,故31a a -为不等于2的偶数,即31a a -为不小于4的偶数,即31a a -为合数,矛盾.故3 a 为偶数,4a 也只能为偶数.那么,若5a 为奇,则51312a a a a ->-≥为偶数,即51a a -为不小于4的偶数,从而51a a -为合数,矛盾.若5a 为偶数,则53432a a a a ->-≥为偶数,从而53a a -为合数,矛盾. (2)1a 为奇,2a 为偶,于是21a a -为奇数,即213a a -≥. 若3a 为奇数,则31213a a a a ->-≥为偶数,故31a a -为合数,矛盾. 所以3a 为偶数,且322a a -=.若4a 为奇数,则41313a a a a ->-≥为不小于4的偶数,即41a a -为合数,矛盾. 若4a 为偶数,则42322a a a a -->=为不小于4的偶数,即42a a -为合数,矛盾. (3)1a 为偶,2a 为奇或偶,都类似于(1),(2)可导致矛盾. 综上得所求k 的最大值是4,故选B .解法二 同解法一得4k ≥.若5k ≥,则将全体正整数分为4个不相交的子集1M ,2M ,3M ,4M ,其中i M 由全体被4除余i 的正整数组成(0,1,2,3)i =于是任取5k ≥个数,其中必有2个数a ,b (a b >)属于同一个子集i M ,于是a b -被4整除,a b -不是质数,矛盾.故所求k 的最大值等于4. 19.C【详解】选C .理由:设12a =,c 为斜边,则有222144c b a -==. 因为4214423=⨯,所以, ()()722c b c b +-=⨯; ()()364c b c b +-=⨯; ()()188c b c b +-=⨯; ()()169c b c b +-=⨯; ()()483c b c b +-=⨯; ()()246c b c b +-=⨯.又因为c b +与c b -同奇偶,故符合题意条件的直角三角形有以下四个: 12.5.13;a b c =⎧⎪=⎨⎪=⎩12.9.15;a b c =⎧⎪=⎨⎪=⎩12,16,20;a b c =⎧⎪=⎨⎪=⎩12.35.37.a b c =⎧⎪=⎨⎪=⎩20.2【分析】把6个盘子看作6个抽屉,7串葡萄看作7个元素,从最不利的情况考虑,每个抽屉先放一个,共需要6个,余下这一个无论放在哪个抽屉里,总有一个至少有1+1=2(个),据此解答. 【详解】解:761÷=(串)1(串), 1+1=2(串),①总有一个盘子里至少要放2串葡萄. 故答案为:2.【点睛】本题考查了抽屉原理,解决本题的关键是掌握抽屉原理:如果有n 个抽屉,而每一个苹果代表一个元素,假如有n +1个元素放到n 个抽屉中去,其中必定有一个抽屉里至少有两个元素. 21.6【分析】根据题意,再结合平移的性质,可得AB A B ='', 1.5AA BB CC ===′′′cm ,BB CC ∥′′,ABC A B C S S '''=△△,然后再根据等量代换,得出=AA OB OCC B S S 四边形四边形′′′,然后再根据等量代换,得出BCC B AA B B S S =四边形四边形′′′′,然后再根据长方形的特征,得出四边形AA B B ''是长方形,然后再根据长方形的面积公式,算出长方形AA B B ''的面积,即可得出四边形BCC B ''的面积.【详解】解:如图,①ABC 沿AC 方向平移1.5cm 得到A B C ''',①A 的对应点为点A ',点B 的对应点为点B ',点C 的对应点为点C ',①由平移的性质,可得:4AB A B =''=cm , 1.5AA BB CC ===′′′cm ,BB CC ∥′′, 又①ABC 沿AC 方向平移1.5cm 得到A B C ''', ①ABC A B C S S '''=△△,又①ABC A OC AA OB S S S =+△△四边形′′, A B C A OC OCC B S S S =+△四边形′′′′′′,①=AA OB OCC B S S 四边形四边形′′′, ①=BOB BCC B OCC B S S S +△四边形四边形′′′′′, BOB AA B B AA OB S S S =+△四边形四边形′′′′,①BCC B AA B B S S =四边形四边形′′′′,①AB A B ='',AA BB '=',90A ∠=,①根据长方形的特征,可得:四边形AA B B ''是长方形, ①4 1.56AA B B S AB AA =⋅=⨯=长方形′′′2cm , ①6BCC B AA B B S S ==四边形四边形′′′′2cm故答案为:6【点睛】本题考查了平移的性质,等量代换,根据长方形的特征判定长方形,长方形的面积公式,解本题的关键在熟练掌握平移的性质.平移的性质:1、形状大小不变;2、对应点的连线平行(或在同一直线上)且相等;3、对应线段平行(或在同一直线上)且相等,对应角相等. 22.8. 【详解】n 有6个正约数故n 的标准质因数分解式为5n P =或2n pq =(p 、q 为素数,(,)1p q =) 若5n p =,由50n ≤知52 若2n p q =⋅,则223n =⋅,225⋅ 232⋅,252⋅,253⋅,272⋅,2112⋅①“好数”共有8个. 23.2【详解】依题意得BAD DAM MAC ∠=∠=∠,90ADB ADC ∠=∠=︒,故ABC ACB ∠≠∠. (1)若ABC ACB ∠>∠时,如答案图1所示,ADM ADB ≅△△,①12BD DM CM ==,又AM 平分DAC ∠,①12AD DM AC CM ==,在Rt DAC 中,即1cos 2DAC ∠=,①60DAC ∠=︒,从而90BAC ∠=︒,30ACD ∠=︒.在Rt ADC 中,tan tan 603CD AD DAC ⋅∠︒==,1DM =.在Rt ADM △中,2AM =. (2)若ABCACB 时,如答案图2所示.同理可得2AM =.综上所述,2AM =.24.17【分析】根据题意,求得的最小值,可将等式变形得到4a b c =-,则b c -是合数,且为4的倍数,以此为突破,求得a b c d ,,, 【详解】2a b d +=①,32b c d -=①①×2-①得:40a b c -+=, 即4a b c =-,求d 的最小值,则,a b 尽量小 当2a =时,8b c -=,根据20以内的素数可知,11,3b c ==,或者13,5b c == 此时241115d a b =+=+=,此时d 为合数,故不符合题意, 当13,5b c ==时,此时241317d a b =+=+=,经检验,a b c d ,,,皆为素数,满足题意, 故答案为:17.【点睛】本题考查了素数的定义,二元一次方程组的加减消元法,掌握20以内的素数是解题的关键.25. 3 1 1 4 10【详解】如图,按题目中条件顺序依次可列方程:(1)A C F =+;(2)4C E F ++=;(3)5B =;(4)2A C =;(5)8A B C ++=;(6)7A G F ++=;(7)1D A =+.可求出2,5,1,3,2,1,4A B C D E F G =======.于是,题目中各空白区应填入的数依次是①3,①1,①1,①4,①10.26.14-或7-或2-或5p =(p 为非负整数),则2222229304361204(29)394n n p n n p n p ++=⇒++=⇒++= 39(229)(229)p n p n ⇒=++--,2291102293914p n p p n n ++==⎧⎧⇒⎨⎨--==-⎩⎩ 或229391022915p n p p n n ++==⎧⎧⇒⎨⎨--==⎩⎩ 或22934229137p n p p n n ++==⎧⎧⇒⎨⎨--==-⎩⎩ 或22913422932p n p p n n ++==⎧⎧⇒⎨⎨--==-⎩⎩ ①14n =-或7-或2-或5 27.1【详解】解 ①1x ==,而213<<, ①21a x =-=.又①1x -=,而312-<<-,①()33223()3++=+-++a b ab a b a ab b ab2223()1a ab b ab a b =-++=+=.28.220【详解】填220.理由:因1a ≤,b ,6c ≤,288a b c ⨯+⨯+=277c b a ⨯+⨯+,即63480a b c +-=,即3(1621)b c a =-,所以,0b =,3,6.经检验,3b =符合题意.故3b =,4c =,3a =.则238384220⨯+⨯+=. 29.5【详解】理由:因为133x ≥, 所以141833333x y =-≤-=,则1432184y ⨯≥=, 即6y ≥.原方程可化为429xy y +=, 则42(9)x y =-. 所以42能被y 整除.所以y 可取6,7,14,21,42.相应地得到五组解:112,6,x y =⎧⎨=⎩223,7,x y =⎧⎨=⎩336,14,x y =⎧⎨=⎩447,21,x y =⎧⎨=⎩558,42.x y =⎧⎨=⎩ 30.10002001【详解】解原函数关系化为111k y x k k -=+++.令0x =得11y k =+,令0y =得1x k,即直线111k y x k k -=+++与y 轴、x 轴的交点分别为10,1k A k ⎛⎫ ⎪+⎝⎭和1,0k B k ⎛⎫ ⎪⎝⎭,所以 11111(1,2,,2000)22(1)21k kk OA B k k S SOA OB k k k k k ⎛⎫==⨯⨯==-= ⎪++⎝⎭,于是122000111111111212223220002001S S S ⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1110001220012001⎛⎫=-=⎪⎝⎭. 故填10002001. 注:本题中用到第一章§3-3中介绍的裂项抵消求和方法. 31【分析】连接DF ,EF ,过点F 作FN AC ⊥,FM AB ⊥,结合直角三角形斜边中线等于斜边的一半求得点A 、D 、F 、E 四点共圆,=90DFE ∠︒,然后根据勾股定理及正方形的判定和性质求得AE 的长度,从而求解.【详解】解:如图,连接DF ,EF ,过点F 作FN AC ⊥,FM AB ⊥. ①在ABC 中,90BAC ∠=︒,点G 是DE 中点, ①AG DG EG ==. ①AG =FG ,①A 、D 、F 、E 四点共圆,G 点为圆心,DE 为直径, ①90DFE ∠=︒.①在Rt ABC 中,5AB AC ==,①BC == 又①点F 是BC 中点,①12CF BF BC ===1522FN FM AB ===. ①四边形AMFN 是正方形, ①52AN AM FN FM =====. ①90NFD DFM ∠+∠=︒,90MFE DFM ∠+∠=︒, ①NFD MFE ∠=∠.①在NFD △和MFE 中90DNF EMF NF MF NFD MFE ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,①()NFD MFE ASA ≅, ①51222ME DN AN AD ==-=-=, ①51322AE AM MD =+=+=, ①在Rt DAE中,DE【点睛】本题考查直角三角形的性质,圆周角定理,四点共圆,正方形的判定和性质,全等三角形的判定和性质以及勾股定理,综合性强,较难.正确的作出辅助线是解答本题的关键. 32.1998【详解】用0表示偶数,1表示奇数,则按如下方法排列时:5011500100100100100111A B C个个,仅有一个数为偶数:A B C ++,故所求和数个数的最大值不小于199911998-=.其次,我们证明对任意排列,都至少有一个和为偶数,分4种情形.情形①:第一项为奇数,第二项为偶数.为了使和不出现偶数,第3项只能是奇数,接下去只能是1001000…这样出现了500个100后,所有1000个偶数全都排出,余下只有501个奇数,这时只能是上述排列,其中有一个和:A B C ++为偶数.情形①:第一项是奇数,第2项也是奇数.为了使和不出现偶数,以后各项只能都是奇数,排完1001个奇数后,剩下1000个偶数,再排下去必出现偶数:奇+奇+偶=偶. 情形①和①:第一项是偶数,第二项是奇数或偶数,同样必会出现和为偶数的情形. 综上可知,所求和数个数的最大值是1998. 33.1009921⨯+【详解】解:设239912232421002S =+⨯+⨯+⨯++⨯,则23991002222329921002S =+⨯+⨯++⨯+⨯,于是,由公式①得 ()299100212221002S S S =-=-+++++⨯10010021100221-=-+⨯+1009921=⨯+.故答案为:1009921=⨯+.34.【详解】解 如图所示,分别过A C 、作x 轴垂线,垂足分别为E F 、.设,OE a BF b ==,则,AE CF ==,所以A C 、的坐标分别是(),(2)A a C a b +,代入xy =得2)a b b =+=解得a b ⎧=⎪⎨=⎪⎩因此,(22,0)D a b +的坐标为.35.36【详解】解 因为对正整数n ,41n -整除2002n , 所以200241nn -是整数. 而20022(250)5004141n n n n +=+--, 又因为41n -是奇数,所以25041n n +-是整数. 则4(250)100114141n n n +=+--,可知1001能被41n -整除.因为30n >,100171113=⨯⨯,所以可得41n -只能是143.所以36n =. 故应填36.36.,-1)##(11)【分析】由y =x 轴、y 轴于点A 、B ,得到点B 的坐标是(0,OB =A 的坐标是(﹣1,0),OA =1,①ABO =30°,①OAB =60°,分别求得直线BF 的解析式为=-+y x AF 的解析式为2)2y x =,联立解方程组即可得到点F 在该平面直角坐标系内的坐标.【详解】解:①直线AB :y =x 轴、y 轴于点A 、B 当x =0时,y①点B 的坐标是(0,OB当y =0时,0x =﹣1, ①点A 的坐标是(﹣1,0),OA =1①tan ①ABO =AO BO =①①ABO =30°,①OAB =90°-①ABO =60°如图所示,由题意得①EAB =①ABD ,①ABE =①BAD , ①①ABE ①①BAD ①①AEB =①ADB①A 、E 、D 、B 四点共圆,如图所示, ①①ADE =①ABE =30°,①EAD =①EBD ①①F AB =①FBA ①①ADE ①①AFD①①F =①ADE =30°,①F AB =①FBA =75°①①F AO =①F AB -①BA 0=15°,①FBE =①F AB -①ABO =45°, ①①OGB =90°-①FBE =45° ①①OGB =①OBG ①OG =OB①点G0),设直线BF 的解析式为y =kx +b ,代入G 0),B (0b b +==⎪⎩ 解得1k b =-⎧⎪⎨=⎪⎩①直线BF 的解析式为=-+y x在线段AO 上取点H ,使得AH =EH ,则①HAE =①HEA =15°, ① ①OHE =①HAE +①HEA =30° 设OE =t , 则OH=tan 30OE=︒,22HE OE t AH ===①21OA AH OH t =+==①2t ==①点E 的坐标为(02)设直线AF 的解析式为y =k 1x +b 1,代入A (﹣1,0),E (02)得11102k b b -+=⎧⎪⎨⎪⎩解得1122k b ⎧=⎪⎨=⎪⎩ ①直线AF的解析式为2)2y x =, 联立直线BF 和AF 的解析式得2)2y x y x ⎧=-⎪⎨=⎪⎩解得11x y ⎧=⎪⎨=-⎪⎩①点F,-1) 故答案为:,-1)【点睛】本题考查了一次函数的图像和性质、解直角三角形、相似三角形的判定与性质、 解二元一次方程组、四点共圆等知识,综合性非常强,难度较大,利用待定系数法求解析式是关键. 37.2.5+【分析】连接BD ,过B 作BH ①AC 于H 点,根据①BCD 是直角三角形,可证明①BAC =①BDC ,则有A 、B 、C 、D 四点共圆,进而有BD 是该圆的直径,可得①BAD =90°,利用勾股定理可得BD =12CD BD ==BC ==,根据BH ①AC ,可得①ABH 、①BCH 是直角三角形,则有①ABH =30°,即1522AH AB ==,利用勾股定理可得BH =,再在①BCH 是直角三角形,可得CH 可得解.【详解】连接BD ,过B 作BH ①AC 于H 点,如图,①①BCD =90°,①①BCD 是直角三角形, ①222BD CD BC =+,①BC =,①2BD CD =, ①在Rt ①BCD 中,①DBC =30°, 即①BDC =60°, ①①BAC =60°, ①①BAC =①BDC , ①A 、B 、C 、D 四点共圆, ①①BCD =90°, ①BD 是该圆的直径, ①①BAD =90°, ①AB =5,AD =2,①BD①12CD BD =BC ==, ①BH ①AC ,①①ABH 、①BCH 是直角三角形,①①BAC =60°, ①①ABH =30°, ①1522AH AB ==,即BH ===, ①①BCH 是直角三角形,①CH ==①52AC AH CH =+=故答案为:52+【点睛】本题考查了勾股定理、四点共圆、圆周角定理以及含30°角的直角三角形的性质等知识,利用四点共圆是解答本题的关键. 38.710【分析】设上区的桌位数为x ,单个桌位座位数为a ,中区的桌位数为y ,单个桌位座位数为b ,下区的桌位数为z ,单个桌位座位数为c ,第一天下区的坐有观众的桌位数为m ,根据中区的观众数占入场观众数的14,上座率为35,可得3ma +2mb +mc =35(xa +yb +zc ),6b=3a +c ①,设第二天上区的坐有观众的桌位数为n ,根据上区的观众数占入场观众数的25,上座率为34,可得na +nb +2nc =34(xa +yb +zc ),3a =2b +4c ①,联立①①可得b =54c ,a =136c ,进一步得到mc =350(xa +yb +zc ),nc =965(xa +yb +zc ),根据第三天上区的观众数与第二天上区的观众数相同,中区的观众数是第一天的中区的观众数的13,下区的观众数是当天上区和中区观众数的总和,可得第三天上区的观众数为na =136nc ,中区的观众数为13×2mb =23 mb =56mc ,下区的观众数为136nc +56mc ,依此可求第三天的上座率.【详解】解:设上区的桌位数为x ,单个桌位座位数为a ,中区的桌位数为y ,单个桌位座位数为b ,下区的桌位数为z ,单个桌位座位数为c ,第一天下区的坐有观众的桌位数为m ,∵中区的观众数占入场观众数的14,上座率为35,∴3ma+2mb+mc=35(xa+yb+zc),2mb=14(3ma+2mb+mc),∴6b=3a+c①,设第二天上区的坐有观众的桌位数为n,∵上区的观众数占入场观众数的25,上座率为34,∴na+nb+2nc=34(xa+yb+zc),na=25(na+nb+2nc),∴3a=2b+4c①,把①代入①得6b=2b+4c+c,即b=54 c,把b=54c代入①得3a=52c+4c,即a=136c,∴3m×136c+2m×54c+mc=35(xa+yb+zc),整理得mc=350(xa+yb+zc),∴n×136c+n×54c+2nc=34(xa+yb+zc),整理得nc=965(xa+yb+zc),∵第三天上区的观众数与第二天上区的观众数相同,中区的观众数是第一天的中区的众数的13,下区的观众数是当天上区和中区观众数的总和,∴第三天上区的观众数为na=136nc,中区的观众数为13×2mb=23mb=56mc,下区观众数为136nc+56mc,∴第三天的上座率为135266nc mcxa yb zc⎛⎫+⎪⎝⎭++()()135276610xa yb zc xa yb zcxa yb zc⎡⎤+++++⎢⎥⎣⎦==++.故答案为:710.【点睛】本题考查了应用类问题,不定方程的应用,解题的关键是正确读懂题意列出方程和代数式.39.(1)证明见解析【分析】(1)根据题意和菱形的性质,利用SAS 证明ADE CDE ≌△△,即可得出结论. (2)①首先根据题意,得到ABD △为等边三角形,然后过点D 作DH AB ⊥于H ,在Rt ADH 中,依据30ADH ∠=︒,得到32AH =,然后利用勾股定理,得到DH 的长,然后再过点E 作EG DF ⊥于G ,依据1DF =,3CD =,得到3CDE FDE S S =△△,再由(1)得ADE CDE ≌△△,得到3ADE FDE S S =△△,进而得到2ADF FDE S S =△△,然后利用三角形的面积,算出EG 的长.即得到点E 到CD 的距离;①在Rt EDG 中,依据60EDG ∠=︒,得到30DEG ∠=︒,EG =DG x =,利用30︒所对的直角边等于斜边的一半,得到2DE x =,再利用勾股定理,解出x 的值,即可得到DE 的长,然后在Rt EFG 中,31144EF =-=,EG =EF 的长,即可得出EF ED 的值. (1)证明:①在菱形ABCD 中,60DBA ∠=︒, ①AD DC =,120ADE CDE ∠=∠=︒, 在ADE 和CDE 中, AD DCADE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩, ①ADE CDE ≌△△(SAS ), ①AE CE =. (2)解:①依题意ABD △为等边三角形,过点D 作DH AB ⊥于H , 在Rt ADH 中,60DAH ∠=︒,30ADH ∠=︒,3AD =,则32AH =,①DH ==过点E 作EG DF ⊥于G , ①1DF =,3CD =,①3CDE FDE S S =△△,由(1)得,ADE CDE ≌△△, ①3ADE FDE S S =△△, ①2ADF FDE S S =△△, 由12ADF S DF DH =⋅△,12FDE S DF EG =⋅△,①12EG DH ==;①在Rt EDG 中,60EDG ∠=︒,则30DEG ∠=︒,EG = 设DG x =,则2DE x =,222(2)x x +=⎝⎭, 解得:34x =±(负值舍去)①34x =, ①32=DE , 在Rt EFG 中,31144EF =-=,EG =①EF =①232EF ED == 【点睛】本题考查了菱形的性质、全等三角形的性质与判定、等边三角形的性质、勾股定理、面积与等量代换、30︒所对的直角边等于斜边的一半等知识点,解本题的关键在熟练掌握相关性质与定理. 40.135【详解】由422223a b a b =+得4224230a ab b --=,即2222(3)()0a b a b -+=. 但220a b +≠(否则22230a b +=,与已知条件矛盾), 所以2230a b -=,即223a b ,22222222312010601035a b b b a b b b --==++. 41.(1)AB 边上的高为6013(2)4m =,9n =,被剪去的小正方形的边长为54【分析】(1)先利用勾股定理的逆定理证明ABC 是直角三角形,然后再利用等面积法进行计算即可解答;(2)利用拆项配成两个完全平方式,然后求出m ,n 的值,再利用等面积法进行计算即可解答.【详解】(1)解:①2222512169AC BC +=+=,2213169AB ==, ①222AC BC AB +=, ①ABC 是直角三角形,过点C 作CD AB ⊥于点D ,如图①,①1122ABC S BC AC AB CD =⋅=⋅△, ①560121313AC CD BC AB =⋅=⨯=; (2)解:①22818970m m n n -+-+=, ①2281618810m m n n -++-+=, ①()()22490m n +-=-,①()240m -≥,()290n -≥,①40m -=,90n -=, ①4m =,9n =,设剪去的小正方形的边长x , ①()2224m x x mn +-=, ①()2242449x x +-=⨯, 解得:54x =, 答:剪去的小正方形的边长为54.【点睛】本题考查了配方法的应用,勾股定理的逆定理,偶次方的非负性,剪纸问题,熟练掌握等面积法是解题的关键. 42.见解析【详解】因2(4)3()x y x y x y +=---,而3|(4)x y -,3|3()x y -,则3|(2)x y +. 又22472x xy y +-(2)(4)x y x y =+-,则()229|472x xy y +-.43.符合条件的两位数一共有12个:10,15,18,20,30,40,45,50,60,70,80,90 【详解】设0a b n ab =⨯(n 为自然数),则 10010a b na nb +=+,所以10(10)(1)n a n b -=-.由于19,09a b ≤≤≤≤,因此可得110n ≤≤.分析n 取值从1到10,符合条件的两位数一共有12个:10,15,18,20,30,40,45,50,60,70,80,90.44.(1)见解析;(2【详解】解 (1)由题意知45ACB DCE ∠=∠=︒,BC ,EC =, 所以DCA ECB ∠=∠,AC DCBC EC=,所以ADC BEC △△,故45DAC EBC ∠=∠=︒, 所以DAC ACB ∠=∠,所以//AD BC .(2)设AE x =,因为30ACE ∠=︒,可得AC =,2CE x =,DE DC =.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以APE DPC △△, 故可得12APE DPC S S =△△.又2EPC APE ACE S S S +=△△△,2EPC DPC CDE S S S x +==△△△,于是可得2(2DPC S x =△,21)EPC S x =△.所以DPC EPC S DP PE S ==△△ 45.n 的最小值等于34. 【详解】记{1,2,3,,50}S =,i A 是S 中能被i 整除的正整数组成的集合(1,2, 3)i =,2A ,3A 分别2A ,3A 中数的个数,由容斥原理有23A A ⋃=2323A A A A +-⋂5050502323⎡⎤⎡⎤⎡⎤=+-⎢⎥⎢⎥⎢⎥⨯⎣⎦⎣⎦⎣⎦2516833=+-=. 从23A A ⋃中任取3个数,其中至少有2个数属于2A 或3A 中同一个集合,它们不互质. 故所求n 的最小值34≥.其次,设1{1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47}B =,22222{2,3,5,7}B =,3{223,317,59}B =⨯⨯⨯,则1B ,2B ,3B 中共有164323++=个数,于是从S 内任取34个数,其中至少有34(5023)7--=个数属于123B B B ⋃⋃.由抽屉原理知,这7个数中至少有71133-⎡⎤+=⎢⎥⎣⎦个数属于1B ,2B ,3B 中同一个子集,它们两两互质. 综上所述,所求n 的最小值等于34. 46.57个【详解】因为正整数m ,n 满足mn 能被21整除,且130m n ≤≤≤,所以, (1)若21m =,则21n =,22,…,30.故满足条件的数对(,)m n 有10个. (2)若21m ≠,(①)当21n =时,1m =,2,…,20.满足条件的数对(,)m n 有20个. (①)当21n ≠时,因为2137=⨯,所以,1)如果3m a =,7n b =(a ,b +∈N ,且7≠a ,3b ≠),得13730a b ≤≤≤.1b =时,1a =,2; 2b =时,1a =,2,3,4;4b =时,1a =,2,3,4,5,6,8,9.故满足条件的数对(,)m n 有24814++=(个).2)如果7m a =,3n b =(a ,b +∈N ,且3a ≠,7b ≠),得17330a b ≤≤≤. 3b =,4时,a 的值均为1;5b =,6,8,9时,a 的值均为1,2;10b =时,a 的值为1,2,4.故满足条件的数对(,)m n 有2142313⨯+⨯+=(个). 综上,满足条件的数对(,)m n 共有1020141357+++=(个). 47.见解析.【详解】利用开平方运算检验前几项均符合(必要时可多算几项). 2222497,448967,444889667,444488896667====.由此我们猜想2144448889(66661)n nn+⋅⋅⋅⋅⋅⋅=⋅⋅⋅+.事实上,可设2144448889(1){1,2,,},9n nnxx xx x +⋅⋅⋅⋅⋅⋅=⋅⋅⋅+∈⋅⋅⋅, 即24111110811111(1111)n nnnx ⨯⋅⋅⋅⨯+⨯⋅⋅⋅+=⨯⋅⋅⋅+.令1111nm⋅⋅⋅=,则1091111191n nm =⨯⋅⋅⋅+=+, 代入上式,得()()2491811m m m mx +++=+, 整理成关于x 的方程,得22(3612)0mx x m +-+=, 解此方程,得6x =(负根舍去了).所以,2144448889(66661)n nn +⋅⋅⋅⋅⋅⋅=⋅⋅⋅+.另证1 21111444488894108109n nkkk n k n n+=+=+⋅⋅⋅⋅⋅⋅++∑∑()()221141101010411010n n +=+++++++++()()1221114101410199n n ++=+⋅-+⋅- ()221141041019n n ++=⋅+⋅+221121012110333n n ++⎛⎫⋅+⎛⎫==⋅+ ⎪ ⎪⎝⎭⎝⎭()21621101010933n +⎡⎤=-+⋅+⎢⎥⎣⎦()221610101076667n nn+⎡⎤=++++=⋅⋅⋅⎣⎦. 另证2144448889444488881n nnn+⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅+1144400088881n n n++=⋅⋅⋅⋅⋅⋅+⋅⋅⋅+1141111081111n n n ++=⋅⋅⋅⋅⋅+⋅⋅⋅⋅+1114111(91111)81111n n n +++=⋅⋅⋅⋅⋅⋅⋅⋅⋅++⋅⋅⋅⋅+21136(111)121111n n ++=⋅⋅⋅⋅+⋅⋅⋅⋅+21(61111)n +=⋅⋅⋅⋅+.48.本题有两种可能答案:情形1:B 组110分,C 组80分,D 组70分,E 组60分;情形2:B 组100分,C 组90分,D 组70分,E 组60分.填表进行检验见解析. 【详解】根据条件(1),每一竖行中,五组得分各不相同.对于一门单科,全部可能的不同得分是0,10,20,30和40,只有5种. 五门单科各组的分数总和是()5010203040500⨯++++=. 从500分中减去第1名A 组180分,其余四组总分之和是320分. 为了叙述简洁,约定B 组总分记为B ,C 组总分记为C ,其余类推. 那么,402060,E B C D E ≥+=>>>. 由此得60708090300E D C B +++≥+++=.这四组实际总分之和是320,只比最低可能限度多出20分.多出的20分,只有两种可能分配方案:或者都加给第2名B ,或者B 与第3名C 各加10分.因而,本题有两种可能答案:情形1:B 组110分,C 组80分,D 组70分,E 组60分; 情形2:B 组100分,C 组90分,D 组70分,E 组60分.为了满足条件(2),在情形1中,C 组应该有四门20分,一门0分;在情形2中,C 组有。

初一数学竞赛培优讲义 含答案 全册 共15讲 改好98页

初一数学竞赛培优讲义  含答案 全册  共15讲 改好98页

装订线初一数学竞赛培优第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。

因此,不等式x<y与x≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ;4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数。

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。

初中数学竞赛模拟题50题-含参考答案

初中数学竞赛模拟题50题-含参考答案

初中数学竞赛模拟题50题含答案一、单选题1.已知2πx <,x 是整数,则符合条件的x 的值有( )A .5个B .6个C .11个D .13个 2.已知a ,b 为正整数,满足2240ab b a ---=,则a b +的最大值为( ) A .7 B .18 C .29 D .30 3.若x a =,代数式22x x +的值为1-,则当x a =-时,代数式22x x +的值为( )A .1-B .1C .2D .3 4.在实数范围内,方程x 4﹣16=0的实数根的个数是( )A .1B .2C .3D .4 5.若a ,b ,c ,d 为整数,且a <2b ,b <3c ,c <4d ,d <100,则a 可能取的最大值是( )A .2367B .2375C .2391D .2399 6.关于x的方程1x x -=的根的个数为( ). A .0个 B .1个C .3个D .4个 7.若方程22320x px p +--=的两个不相等的实数根1x ,2x 满足()232311224x x x x +=-+,则实数p 的所有可能的值之和为( )A .0B .34-C .-1D .54- 8.已知22211148()34441004A =⨯+++---,则3A 的整数部分[]3A 是( ) A .72 B .73 C .74D .75 9.已知a ,b 满足(a +1)2﹣(b ﹣2c ﹣3|=0,则a +b +c 的值等于( ) A .2 B .3 C .4 D .5 10.若2(3)(5)15x x x mx -+=+-,则m 的值为( )A .-8B .2C .-2D .-511x 的取值范围是( )A .>4xB .x ≥5x ≠C .>4x 且5x ≠D .45x << 12.已知a ,b 满足|a ﹣3|+(b +2)2=0,则单项式﹣5axa ﹣by 的系数和次数分别是( )A .﹣15,6B .﹣15,5C .﹣5,6D .﹣5,5 13.已知333411112212221A =++++++-,则A 与1的大小关系是( ). A .1A >B .1A =C .1A <D .无法确定 14.111100011000100011000n n n n ---⋅⋅⋅⨯⋅⋅⋅-⋅⋅⋅-⋅⋅⋅=个个个个( ) A .10n B .210n + C .210n D .2210n +15.在11,,0.2020,722πn 是大于3的整数)这5个数中,分数的个数为( )A .2B .3C .4D .516.点D 、E 、F 分别在ABC 的三边BC 、AB 、AC 上,且AD 、BF 、CE 相交于一点M ,若5AB AC BE CF+=,则AM MD =( ) A .72 B .3 C .52 D .217.计算=( )A 1B .1CD .218.有2014个数排成一行,其中任意相邻三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则这2014个数的和等于( )A .2014B .1C .0D .-119.若p 为质数,33p +仍为质数,则3333p +的末位数字是( ).A .5B .7C .9D .不能确定 20.若1059,1417,2312分别被自然数x 除时,所得余数都是y ,则x y -=( ). A .15 B .1 C .164 D .179二、填空题21.能使2256n +是完全平方数的正整数n 的值为__________.22.在一张冬景照片上,人们分别戴着帽子、系着围巾和戴着手套.只戴帽子的人数等于只系围巾和只戴手套的人数之和;只有4人没有戴帽子;戴着帽子和系着围巾,但没有戴手套的有5人;只戴帽子的人数两倍于只系围巾者;未戴手套有8人,未系围巾有7人;三样东西都用的人数比只戴帽子的人数多一个.那么:(1)有______人同时用上了帽子、围巾和手套;(2)有______人只戴了手套;(3)有______人只系了围巾;(4)有______人既戴了帽子,又戴了手套,但没有系围巾;(5)有______人戴着手套.23.如图,ABC 中,90ACB ∠=︒,D 、E 分别在AC 、BC 边上,BE AD =,AE 、BD 相交于点F ,且4tan 3AFD ∠=,若13AE =,15BD =,则AD 的长为______.24.如图所示,正方形ABCD 的边长为10cm ,点E 在边CB 的延长线上且10cm EB =,点P 在边CD 上运动,EP 与AB 的交点为F .设cm DP x =,EFB △与四边形AFPD 的面积和为2cm y ,那么y 与x 之间的函数关系式是________.25.若方程219990x x a -+=有两个质数根,则=a ______.26.若实数,x y 满足333333331,134365456x y x y +=+=++++,则x y +=_____. 27.一组同学被分派去给1775棵小树苗浇水,每位同学每小时浇完30棵小树苗.1小时后,一些同学被分派去做其它工作;2小时后,相同数量的同学被分派去做其它工作;3小时后,又有相同数量的同学被分派去做其它工作;浇完这些小树苗共用3小时10分钟.则在开始的1.5小时内浇完的小树苗数为______.28.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放____个球.29.如果某数可以表示成91的某个倍数的数字和,就把这个数叫做“和谐数”那么,在1,2,…,2008中,和谐数的个数是_________.30.边长为整数,周长为12的三角形的面积的最大值是_________.31.如图,正方形ABCD 中,点E 在AB 边上且2AE BE =.连接CE ,取CE 边上中点G ,作GH CG ⊥且CG GH =,连接.CH 将CGH 绕着点C 逆时针旋转得到''.CG H当'H 恰好落在AH 的延长线上时,连接'.'HG CG 与'HH 交于F ,若AH =FH =______.32.有8个整数,它们都不是5的倍数,那么它们的4次方的和被5除,得到的余数是__________.33.4444412319901991+++++的个位数字是_________.34.已知k 为不超过50的正整数,使得对任意正整数n ,6312321n n k +⨯+⨯-都能被7整除.则这样的正整数k 有______个.35.如图,在△ABC 中,△B =△CAD ,32BD AC =,则ABD CADS S ∆∆=______36.1998年某人的年龄恰等于他出生的公元年数的数字之和,那么他的年龄是__________岁.37.若a ,b ,c ,d 为非负整数,且()()22221993a b c d ++=,则a b c d +++=_________.38.已知19921991199031555522A =+⋅+⋅+为自然数,则A 被3除的余数为______. 39.已知整数13456ab (a ,b 各表示一个数字)能被198整除,那么=a ______,b =_____.三、解答题40.分解因式:222222()()x x a a x a x a ++++.41.某项工程,甲工程队先做20天后,由于另有任务不做,由乙工程队接替,结果乙队再做50天就恰好完成任务.已知乙队单独完成任务的时间是甲队的2.5倍.请问:(1)甲队单独做需要多少天才能完成任务?(2)若甲工程队先做x 天后,由乙工程队接替,结果乙队再做y 天就恰好完成任务.其中x ,y 都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?42.如图(1),大正方形的面积可以表示为()2a b +,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即222a ab b ++.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:()2222a b a ab b +=++.把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”.(1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个等式:______;(2)如图(3),Rt ABC △中,90ACB ∠=︒,3CA =,4CB =,5AB =,CH 是斜边AB 边上的高.用上述“面积法”求CH 的长;(3)如图(4),等腰ABC 中,AB AC =,点O 为底边BC 上任意一点,OM AB ⊥,ON AC ⊥,CH AB ⊥,垂足分别为点M ,N ,H ,连接AO ,用上述“面积法”求证:OM ON CH +=.43.设,,,a b x y 满足2233443,7,16,42ax by ax by ax by ax by +=+=+=+=,求55ax by +的值.44.试比较1111(1)13521x n n =+++++-与1111()242y n n =+++的大小. 45.已知()1n n >个整数(可以相同)12,,,n x x x ,满足12129111n n x x x x x x +++==.求当n 取最小值时,12,,,n x x x 中的最大值. 46.计算:(1)2222123n +++⋯+;(2)3333123n +++⋯+.47.将8个数14,30,33,75,143,169,4445,4953分成两组,每组4个数,使一组中4个数的乘积与另一组中4个数的乘积相等,应该怎样分组?48.任给20个互不相等的正整数,每一个数都不大于100.证明:把这20个正整数两两相减(大减小)所得的差中至少有三个相等.49.如图.已知ABC 为等腰直角三角形,90A ∠=︒,D 、E 分别为AC BC 、上的两点,CD ,连接DE ,将DE 绕点E 逆时针旋转90︒得EF ,连接DF 与AB 交于点M .(1)如图1,当30DEC ∠=︒时,若2BC =AD 的长;(2)如图2,连接CF ,N 为CF 的中点,连接MN ,求证:MN =; (3)如图3,连接AF ,将AF 绕点A 顺时针旋转60︒得AG ,连接FG 、BG 、CG ,若4AC =,当ACG 周长取得最小值时,直接写出BCG 的面积.参考答案:1.D【分析】利用去绝对值符号,得出关于x 的解集范围,再根据整数的定义,求出符合条件的值的个数.【详解】解:||2x π<,22x ππ∴-<<,3.14π≈,6.28 6.28x ∴-<<, x 是整数,x ∴可取6,5,4,3,2,1,0,1,2,3,4,5,6------有13个,故选:D .【点睛】本题考查了去绝对值符号及无理数,解题的关键是:会去绝对值符号求解不等式的解集.2.D【详解】由2240ab b a ---=得2426122a b a a +==+--. a ,b 为正整数,226a ∴-∣. △3a =,27b = △4a =,14b = △15a =,3b = △28a =,2b =a b ∴+最大为30.3.D【分析】将等式变形可得()210a +,然后利用非负数性质得出12a n =-=,,然后将当1x =时,代入代数式求值即可.【详解】解:△x a =,代数式22x x +的值为1-,△221a a +=-,△()210a +=,△()210a +≥,△1020a n +=-=,,解得12a n =-=,, 当1x =时,代数式22123x x +=+=.故选择D .【点睛】本题考查完全平非负数性质,算术平方根非负性质,完全平方公式,代数式求值,掌握完全平非负数性质,算术平方根非负性质,完全平方公式,代数式求值是解题关键.4.B【分析】先移项得出x 4=16,再根据四次方根的定义求出方程的解即可.【详解】解:x 4-16=0,x 4=16,x =±2,即方程x 4-16=0的实数根的个数是2,故选:B .【点睛】本题考查了解高次方程,能求出x5.A【分析】需要根据题意确定d 的取值,然后依次可得出c 、b 、a 的最大值,继而可得出答案.【详解】解:△d <100,d 为整数,△d 的最大值为99,△4499396c d <=⨯=,c 为整数,△c 的最大整数为395,△333951185b c <=⨯=,b 为整数,△b 的最大整数为1184,△2211842368a b <=⨯=,a 为整数,△a 的最大整数为2367.故选:A【点睛】本题考查了整数问题,解答本题的关键是根据题意确定d 的值.6.B【详解】依题意0x ≥且2x ≥,故2x ≥,原方程化为1x x -1,所以3x =.故选B .7.B【详解】解:由一元二次方程的根与系数的关系可得122x x p +=-,1232x x p ⋅=--.△()22221212122464x x x x x x p p +=+-⋅=++, ()()()23321212121232496x x x x x x x x p p p ⎡⎤+=++-⋅=-++⎣⎦. △()232311224x x x x +=-+得()223312124x x x x +=-+,△()2246442496p p p p p ++=+++, △(43)(1)0p p p ++=,△10p =,234p =-,31=-p . 代入检验可知:以10p =,234p =-均满足题意,31=-p 不满足题意. 因此,实数p 的所有可能的值之和为1233044p p ⎛⎫+=+-=- ⎪⎝⎭. 故选B .8.B 【详解】因211111()4(2)(2)422n n n n n ==---+-+, 所以11111111148()()()()415263798102A ⎡⎤=⨯-+-+-++-⎢⎥⎣⎦ 1111111112()123499*********=⨯+++----11125121001011021()99=-⨯+++. 若设111112()99100101102B =⨯+++,则4163312 1.59911B <⨯⨯=<,且4243312 1.410217B >⨯⨯=>,故375373.5A B =->,且375373.6A B =-<,所以[]373A =.故选B9.C【分析】根据完全平方和算术平方根以及绝对值都是非负数,列出方程求解即可.【详解】解:根据题意,得,2(1)|3|0a c +-=,△a +1=0,2﹣b =0,c ﹣3=0,解得a =﹣1,b =2,c =3,所以a +b +c =﹣1+2+3=4.故选:C .【点睛】本题考查了完全平方和算术平方根以及绝对值都是非负数,非负数的性质:几个非负数的和为0,那么这几个数都为0,掌握非负数的性质是解题的关键.10.B【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【详解】解:△22(3)(5)21515x x x x x mx -+=+-=-+,△2m =.故选:B .【点睛】本题主要考查了多项式乘以多项式,恒等原理等,熟练掌握多项式乘以多项式的法则,恒等的两个代数式对应项系数相等,是求解的关键.11.C【详解】依题意得270321544x x x x x x x x ⎧⎧-≥≤≥⎪⎪-≠⇒≠≠⎨⎨⎪⎪>>⎩⎩且,4x ⇒>且5x ≠.故选C . 12.A【分析】先根据绝对值和偶次方的非负数的性质得出a ﹣3=0,b +2=0,解方程求出a 与b ,然后代入单项式得出单项式,根据单项式的系数与次数定义求解即可.【详解】解:△|a ﹣3|+(b +2)2=0,|a ﹣3|≥0,(b +2)2≥0,△根据绝对值与偶次方非负数性质可得a ﹣3=0,b +2=0,解得a =3,b =-2,△单项式﹣15x5y 的系数为-15,次数为5+1=6次.故选择A .【点睛】本题考查绝对值与偶次方非负数性质,单项式的次数与系数,解一元一次方程,掌握非负数性质,和单项式相关定义是解题关键.13.C【详解】解 因11111818910158A =++++<⨯=.故选C 14.C 【详解】原式()()221011011010n n n n =+-+-= 15.B【分析】先把12【详解】解:1111222==-,当(3)n n >n 与2n -不可能同时取到完全平方数,设2n s =,22n t -=,有222s t -=,()()21s t s t +-=⨯, △2s t +=,1s t -=, △32s =,12t =不是整数解,不是分数. 2π是无理数,不是分数, 故分数有三个:17,0.2020,12. 故选:B .【点睛】本题考查的是实数的分类,把12进行化简是解答此题的关键.16.B 【详解】设AM t MD =,由题设可得AMC DMC BMC BMC S tS AE EB S S ==△△△△,AMB BMD BMCBMC S tS AF FC S S ==△△△△, 所以22DMC BMD BMC BMC tS tS AB AC AE AF BE CF EB FC S S ∆∆+=++=++△△ ()222DMC BMD BMC BMC BMCt S S tS t S S +=+=+=+△△△△△, 又已知5AB AC BE CF +=,所以25t +=,所以3t =,即3AM MD=. 17.B【详解】1)(31=-+=.18.B【详解】由已知可知,前n 个数的排列顺序为1,1,0,-1,-1,0,1,1,0,…由此可见,从第7个数开始循环,即每隔6个数循环,这6个数的和等于0.又因为201463354=⨯+,所以这2014个数的和等于1,故选B .19.A【详解】由33p +为质数可知p 为偶数,又p 为质数,则2p =.故()833334332332233p +=+=⨯+. 因为()842的末位数字为6,故()8422⨯的末位数字为2.因此,3333p +的末位数字为5. 20.A【详解】设三数除以x 的商分别为a ,b ,c ,则可得1059,1417,2312.ax y bx y cx y +=⎧⎪+=⎨⎪+=⎩①②③ △-△得()3582179b a x -==⨯,△-△得()8955179c b x -==⨯,△-△得()12537179c a x -==⨯.即179,164x y ==.故15x y -=.21.11【详解】当8n <时,()82256212n n n -+=+,若它是完全平方数,则n 必为偶数.若2n =,则22256265n +=⨯;若4n =,则42256217n +=⨯;若6n =,则6225625n +=⨯;若8n =,则8225622n +=⨯.所以,当8n ≤时,2256n +都不是完全平方数.当8n >时,()882256221n n -+=+,若它是完全平方数,则821n -+为一奇数的平方.设8221(21)n k -+=+(k 为自然数),则102(1)n k k -=+.由于k 和1k +一奇一偶,所以1k =,于是1022n -=,故11n =.22. 3 1 1 4 10【详解】如图,按题目中条件顺序依次可列方程:(1)A C F =+;(2)4C E F ++=;(3)5B =;(4)2A C =;(5)8A B C ++=;(6)7A G F ++=;(7)1D A =+.可求出2,5,1,3,2,1,4A B C D E F G =======.于是,题目中各空白区应填入的数依次是△3,△1,△1,△4,△10.23.【分析】作出辅助线,由AAS 证明△ADM ≅△BEH ,再由4tan tan 3DM BH AFD BFH FM FH ∠∠====,设DM =4x ,FM =3x ,BH =4y ,FH =3y ,利用勾股定理列式计算即可求解.【详解】解:过B 作BH △AE 交AE 的延长线于H ,过D 作DM △AE 于M ,△△ACB =△AHB =90︒,△A 、C 、H 、B 四点共圆,△△CAH =△CBH ,即△DAM =△EBH ,△BE =AD ,△DMA =△EHB =90︒,△△ADM ≅△BEH (AAS ),△DM =EH ,AM =BH , △4tan tan 3DM BH AFD BFH FM FH ∠∠====, 设DM =4x ,FM =3x ,BH =4y ,FH =3y ,△DM =EH =4x ,AM =BH =4y ,EF =FH -EH =3y -4x ,AE =AM +MF +FE =4y +3x +(3y -4x )=7y -x =13,△BD =DF +BF 5515x y +=,△由△△解得:1x =,2y =,△DM =4,AM =8,△AD=故答案为:【点睛】本题考查了全等三角形的判定和性质,锐角三角函数的定义,勾股定理等知识,解题的关键是学会利用参数构建方程组解决问题,24.550(010)y x x =+<<【详解】解 由DP x =得10PC x =-. 又12BF BE PC EC ==,即11(10),10(10)22BF x AF BF x =-=-=+, 所以EFB AFPD y S S =+四边形11()22BE BF AF DP AD =⨯⨯++⨯ 111110(10)(10)102222x x x ⎡⎤=⨯⨯-+++⨯⎢⎥⎣⎦550(010)x x =+<<.故应填550(010)y x x =+<<.25.3994【详解】设219990x x a -+=的两根为12,x x ,则12121999,x x x x a +==.因1999必是一个偶数与一个奇数之和,且偶数中只有2为质数,故12,x x 中必有一个为2,另一个为199921997-=,所以219973994a =⨯=.故填3994.26.432【详解】解 因题目中条件去分母整理后可写为:()()()223323333346364460x y x y -+--⋅-+-⋅=, (()()()223323333546564460x y x y -+--⋅-+-⋅=,故依题目条件知33t =或35t =是关于t 的方程()()23333334664460t x y t x y -+---+-⋅=的两根.由韦达定理,得33333546x y +=+--,所以33333456432x y +=+++=.27.945【详解】设开始有n 位同学,每次有k 位同学被分派去做其它工作.因为每位同学浇完一棵小树苗需要2分钟,所以10分钟内每位同学浇完5棵小树苗.因此,3030()30(2)5(3)1775n n k n k n k +-+-+-=即21355.19k n +=. 因为n 和k 都是正整数,所以21355k +必须是19的倍数.并且使得n ,n k -,2n k -和3n k -也是正整数的k 值仅有一个,即3k =,从而22n =.故在开始的1.5小时内浇完的小树苗数为30221519945.⨯+⨯=28.15个球【详解】解:先画一个“初始图”:○ A B C D E ○ A B C D E ○按照题目要求,逐一确定各个字母的颇色,得到:○ ○ ○ ○ D ○ ○ ○ ○ ○ D ○显然,D 应为黑色.即:○ ○ ○ ○ ● ○ ○ ○ ○ ○ ● ○再按要求尝试增加小球,确定最后结果如下:○ ○ ○ ○ ● ○ ○ ○ ○ ○ ● ○ ○ ○ ○29.2007【详解】理由:注意到91713=⨯.数字和为1的数不是91的倍数.1001,10101,10011001,101011001,100110011001,1010110011001,…都是91的倍数,而它们的数字和依次是2,3,4,5,6,7,…因此,在1,2,…,2008中,能够表示成91的某个倍数的数字和的数的个数是2007.故答案为:2007.30.【详解】设三角形的三边长分别为a ,b ,c ,且a b c ≤≤,则12a b c ++=.可得312c ≥,即4c ≥.又因为a b c +>,所以212c <,即6c <.故46c ≤<,c 可取4或5.当4c =时,4,8a b a b ≤≤+=,所以4a b ==.此时三角形面积为214S == 当5c =时,7a b +=.当1a =时,6b =.此时a c b +=,不合题意.当2a =时,5b =.此时三角形面积为2122S =⋅ 当3a =时,4b =. 此时三角形为直角三角形,三角形面积为313462S =⋅⋅=.显然132S S S >>,所以所求最大面积为31【分析】连接BH ,EH ,设CG 、BH 交于点O ,证明B 、C 、H 、E 四点共圆,CBH △ABH ,求得BC 、AE 的长,过点E 作EM AH ⊥于点M ,作G 关于CH 的对称点J ,连接CJ 交AH 于点T ,过点T 作TN CH ⊥于点N ,则四边形CGHJ 是正方形,设AM a =,则HM AH a ==,由勾股定理及全等三角形的判定与性质即可得到答案.【详解】连接BH ,EH ,设CG 、BH 交于点O ,四边形ABCD 是正方形,90ABC ∴∠=︒,BA BC =,GH CG ⊥且CG GH =,CGH ∴是等腰直角三角形, G 是CE 边上的中点,CG GE ∴=,HC HE ∴=,CHE ∴是等腰直角三角形,B ∴、C 、H 、E 四点共圆,△CH CH =,45CBH CEH ∴∠=∠=︒,45HBA HBC ∴∠=∠=︒,在CBH 和ABH 中,CB AB CBH ABH BH BH =⎧⎪∠=∠⎨⎪=⎩,CBH ∴≌()ABH SAS ,CH AH ∴=,正方形ABCD 中,点E 在AB 边上且2AE BE =,3BC BE ∴=,CE ∴,CHE △是等腰直角三角形,CH ∴==,CH AH ==,2BE ∴=,36BC BE ∴==,4AE =,过点E 作EM AH ⊥于点M ,作G 关于CH 的对称点J ,连接CJ 交AH 于点T ,过点T 作TN CH ⊥于点N ,则四边形CGHJ 是正方形,设AM a =,则HM AH a ==,在Rt AME 中,222EA AM EM -=,在Rt HME 中,222HE HM EM -=,2222EA AM HE HM ∴-=-,即22224)a a -=-,MA ∴=HM∴==EM∴==3tan4HMHEMEM∴∠==,3sin5HMHEMHE∠==,90CHE∠=︒,90CHJ EHM∴∠+∠=︒,90EHM HEM∠+∠=︒,CHJ HEM∴∠=∠,CJ AH⊥,EM AH⊥,90EMH HJC∴∠=∠=︒,在CJH和HME中,EMH HJCCHJ HEMCH HE∠=∠⎧⎪∠=∠⎨⎪=⎩,CJH∴≌()HME AAS,JH EM∴=,THN THC HEM∴∠=∠=∠,3tan4THN∴∠=,3sin5THN∠=,3tan4TNTHNNH∴=∠=,3sin5TNTHNTH=∠=,设3TN b=,则4NH b=,353sin5TN bTH bTHN===∠,45HCG∠=︒,四边形CGHJ是正方形,45TCN∴∠=︒,3CN TN b==,7CH b∴=,b∴=,JT JH TJ ∴=-== 将CGH 绕着点C 逆时针旋转得到''CG H ,'CH CH ∴=,'45HCG HCG ∠=∠=︒,45FCH TCH ∴∠=∠=︒,'CH CH =,'FH C THC ∴∠=∠,在THC 和'FH C 中,''FH C THC CH CH FCH TCH ∠=∠⎧⎪=⎨⎪∠=∠⎩, THC ∴≌()'FH C ASA ,'H F HT ∴=,'CH CH =,'CJ HH ⊥,'JH JH ∴=,''JH TH JH FH ∴-=-,即FJ TJ JH =+==【点睛】此题考查了直径所对的圆周角是直角,解直角三角形,全等三角形的判定与性质,添加辅助线并求得正方形的边长是解题的关键.32.3【详解】一个整数不是5的倍数,它的个位数字可能是1,2,3,4,6,7,8,9,把它们4次方后,研究它们的个位数字,分别是:444411;216;381;4256====;444461296;72401;84096;96561====.即它们的个位数字不是1就是6,并且6被5除也是余1.所以一个不是5的倍数的整数,它的4次方被5除一定余1.这8个整数,它们的4次方的和被5除所得余数为3.33.8【详解】理由:4444123101616561613(mod10)++++≡++++++++≡, 4441112203(mod10)+++≡,……4441981198219903(mod10)+++≡,从而4444123199031997(mod10)++++≡⨯≡,则4444412319901991718(mod10)+++++≡+≡. 所以4444412319901991+++++的个位数字是8.34.7 【详解】填7.理由:6312321n n k +⨯+⨯-2227281n n k =⨯+⨯-22(1)21n k ≡⨯-+-21(mod7)k ≡+.但63123210(mod 7)n n k +⨯+⨯-≡,则210(mod7)k +≡,即217k m +=(m 为奇数).因为150k ≤≤,所以,37101m ≤≤. 故1,3,,13m =,相应的3,10,,45k =,共7个.35.3【分析】由题中条件可得△ACD △△BCA ,得出AC 2=CD •BC ,利用等式的性质进行恒等变式,可得221=0DC BD DC AC AC AC+⋅-,设DC x AC =,建立方程,解方程可求得1=2DC AC ,再根据相似三角形的性质,可求得1=4ADC ABC S S △△,可得3=4ABD ABC S S △△,据此即可求得. 【详解】解:△△B =△CAD ,△C =△C , △△ACD △△BCA , △=AC DC BC AC,即AC 2=DC •BC ,得()22==AC BD DC DC BD DC DC +⋅⋅+, 可得222=1BD DC DC AC AC⋅+, 得221=0DC BD DC AC AC AC+⋅-, 设DC x AC=, 32BD AC =, 23102x x ∴+-=, 解得112x =,22x =-(舍去), 1=2DC AC ∴, 2==4ABC ADC S AC S DC ⎛⎫ ⎪⎝⎭△△, 1=4ADC ABC S S ∴△△, 3==4ABD ABC ADC ABC S S S S ∴-△△△△, 34314ABC ABDCAD ABC S S S S ∆∆==△△, 故答案为:3.【点睛】本题考查了相似三角形的判定与性质,等式的恒等变式,利用方程求解,解题的关键是利用等式的性质进行恒等变式.36.18【详解】设某人出生于19xy 年,则他的年龄应为1910x y x y +++=++(岁).所以19981910xy x y -=++,即981010x y x y --=++,得11288x y +=,则88112x y -=. 又易知x 只能取偶数取0,2,4,6,8x =,相应地,44,33,22,11,0y =.只有8,0x y ==满足条件.所以所求年龄为18岁.37.56【详解】因为1993是质数,22a b +与22c d +都是正整数,所以22a b +与22c d +分别取值1与1993.若22221,1993a b c d +=+=.(1)221a b +=.可知0,1a b ==或1,0a b ==.因此1a b +=.(2)221993c d +=.若31,31c d ≤≤,则22223119921993c d +≤⨯=<.所以c ,d 中至少有一个大于31.又由于24520251993=>.因此,若设c 为c ,d 中较大的一个,则3244c ≤≤.依次取32,33,,43,44c =,可得只有2199343-是完全平方数.所以43,12c d ==或12,43c d ==,则55c d +=.因此,15556a b c d +++=+=.当22221993,1a b c d +=+=,同样可得所求和为56.38.2【详解】填2.理由:199219901990199219903155555585522A =+⋅⋅+⋅+=+⋅+. 因为45被3除余数为1,所以199219905252A ≡+⋅+()()49849744252522≡+⋅⋅+498349712112≡+⋅⋅+5≡2(mod3)≡.所以A 被3除的余数为2.39. 8 0【详解】解 设13456n ab =.因为1982911=⨯⨯,所以n 被9整除,即1345619a b a b ++++++=++能被9整除,所以8a b +=或17a b +=.因为n 能被11整除,所以(146)(35)3a b a b +++-++=-+能被11整除.所以8a b -=或3a b -=-.联立方程组8,8a b a b +=⎧⎨-=⎩;8,3;a b a b +=⎧⎨-=-⎩17,8;a b a b +=⎧⎨-=⎩17,3.a b a b +=⎧⎨-=-⎩ 可得只有第1个和第4个方程组有整数解8,0,a b =⎧⎨=⎩和7,10.a b =⎧⎨=⎩ 而10b =不合题意,所以8,0a b ==.40.222()x ax a ++【详解】解法一 原式222222[()()]x x a a x a a x =++++22222()()x a x a a x ++=+222222()(2)x a x ax a a x =++++222222()2()()x a ax x a ax =++++222()x a ax =++222()x ax a =++.解法二 原式22222[()]()x x a a a x a =++++22222(22)()x x ax a a x a =++++2222()2()[()]x x a x a a x a =++++⋅22[()]x a x a =++222()x ax a =++.41.(1)甲队单独做需要40天才能完成任务;(2)甲队实际做了14天,乙队做了65天.【分析】(1)甲队单独做需要x 天才能完成任务,则乙队单独做需要2.5x 天才能完成任务,总任务量为1,根据题意列分式方程,求解即可得到答案;(2)根据题意列分式方程,整理得到51002y x =-,再根据x 、y 的取值范围得不等式,求整数解即可得到答案.【详解】(1)解:甲队单独做需要x 天才能完成任务,则乙队单独做需要2.5x 天才能完成任务,由题意得:11205012.5x x⨯+⨯=, 解得:40x =,2.5100x =, 经检验,40x =是原方程的解,答:甲队单独做需要40天才能完成任务;(2)解:由题意得:11140100x y +=, 整理得:51002y x =-,70y <,5100702x ∴-<, 12x ∴>,15x <且为整数,13x ∴=或14,当13x =时,51100136722y =-⨯=,不是整数,不符合题意,舍去,当14x =时,510014652y =-⨯=,答:甲队实际做了14天,乙队做了65天.【点睛】本题考查了分式方程的应用,不定方程求特殊解。

初中数学竞赛---代数式竞赛50道综合题练习(含答案解析)

初中数学竞赛---代数式竞赛50道综合题练习(含答案解析)

16.(2021·全国·九年级竞赛)分解因式: (c a)2 4(b c)(a b) . 【答案】 (a c 2b)2 【详解】解法一 原式 (c2 2ca a2 ) 4(ab b2 ac bc) (c2 2ca a2 ) (4ab 4bc) 4b2 (a c)2 4b(a c) (2b)2 (a c 2b)2 . 解法二 原式 [(c b) (a b)]2 4(c b)(a b) (c b)2 2(c b)(a b) (a b)2 4(c b)(a b) (c b)2 2(c b)(a b) (a b)2 [(c b) (a b)]2 (a c 2b)2 .
17.(2021·全国·九年级竞赛)分解因式: x2 (x a)2 a2x2 a2 (x a)2 . 【答案】 (x2 ax a2 )2 【详解】解法一 原式 [x2 (x a)2 a2 (x a)2 ] a2x2 (x2 a2 )(x a)2 a2 x2 (x2 a2 )(x2 2ax a2 ) a2 x2 (x2 a2 )2 2ax(x2 a2 ) (ax)2 (x2 a2 ax)2 (x2 ax a2 )2 . 解法二 原式 x2[(x a)2 a2 ] a2 (x a)2 x2 (x2 2ax 2a2 ) a2 (x a)2 (x2 )2 2x2 a(x a) [a(x a)]2 [x2 a(x a)]2 (x2 ax a2 )2 .
4.(2021·全国·九年级竞赛)
1
1
的值为( ).
4 59 30 2 3 66 40 2
A.无理数 【答案】D
B.真分数
C.奇数
D.偶数
【详解】原式
1
1
4 (5 2)2 25 2 3 32 3 (5 2)2 25 2 4 42

七年级数学尖子生培优竞赛专题辅导第十五讲 多边形的有关问题(含答案)

七年级数学尖子生培优竞赛专题辅导第十五讲 多边形的有关问题(含答案)

第十五讲 多边形的有关问题趣题引路】如图15-1,用黑白两种颜色的正六边形地砖按如下所示的规律,拼成若干个图案. (1)第四个图案中有白色地面砖 块. (2)第n 个图案中有白色地面砖 块. 第一个图案有白砖数6, 6=4×1+2; 第二个图案有白砖数10,10=4×2+2; 第三个图案有白砖数14,14=4×3+2; 第四个图案有白砖数18,18=4×4+2; ……一般地,第n 个图案有白色地砖(4n +2)块.图15-1...知识拓展】1.多边形的基本知识主要是指多边形的边、内外角、对角线、凸多边形、凹多边形等基本概念和多边形内角和定理、外角和定理,其中多边形内、外角和定理是解有关多边形问题的基础.2.多边形的许多性质与问题往往可以利用三角形来解决,将多边形问题转化为三角形问题来解决是解多边形问题的基本策略,从凸n 边形的一个顶点引出的对角线把凸n 边形分成(n -2)个三角形,凸n 边形一共可引出(3)2n n -条对角线. 3.多边形的内角和是随着多边形的边数变化而变化的,但外角和却总是不变的,所以,我们常以外角和的“不变”来制约内角和的“变”,把内角问题转化为外角问题来处理,这也是解多边形相关问题的常用技巧.4.多边形的内角和为(n -2)180°;外角和为360°; 正多边形的每个内角为(2)180n n -,每个外角为360n.一、多边形的内角与外角例1 (2003年全国联赛题)在凸10边形的所有内角中,锐角的个数最多是( )个. A .0 B .1 C .3 D .5解析 由于任何凸多边形的所有外角之和都是360°,故外角中钝角的个数不超过3个.又因为内角与外角互补,因此,内角中锐角最多不能超过3个.实际上,容易构造出内角中有三个锐角的凸10边形.故选C .点评 把内角问题转化为外角问题考虑.例2 一个凸n 边形,除了一个内角外,其余(n -1)个角之和为2002°,求n 的值.解析 本题实际上是求多边形内角和的延伸,要注意n 为自然数且每个内角不大于180°这两个隐含条件.解 设除去的这个内角是x 度,则(n -2)×180°-x °=2002°,那么(n -2)×180°=2002°+x°.显然2002°+x °应是180°的倍数,故x °=158°,这时求得n =14.二、多边形的边例3 (2002年全国竞赛题)若1239A A A A 是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于( )A .B .C .()12a b + D . a b + 解析 此题以正九边形为背景,考察观察能力和构造能力.不必画出完整图形,只需画出有用的局部图形.图15-215解 如图15-2,延长A 1A 2、A 5A 4.相交于点P ,连结A 2A 4,则A 2A 4// A 1A 5,且A 2A 4=A 1A 3=b ,因为正九边形的每一个内角为(92)1801409-⋅=,所以∠A 2A 1A 5=∠A 4A 5A 1(92)18031402-⋅-⨯=60=,故△P A 1A 5和△P A 2A 4均为正三角形.所以A 2P =A 2 A 4=A 1 A 3=b .于是A 1 A 5=A 1 P =A 1 A 2+A 2 P =a +b .选D .例4 (1999年全国联赛题)设有一个边长为1的正三角形,记作A 1[如图15-3(1)].将A 1的每条边三等分,在中间的线段上向形外作正三角形,去掉中间的线段后所得到的图形记作A 2,[如图15-3(2)];将A 2的每条边三等分,并重复上述过程,所得到的图形记作A 3[如图15-3(3)];再将A 3的每条边三等分,并重复上述过程,所得到的图形记作A 4,那么,A 4的周长是 .图15-3(1)解析 从基本图形入手计算,寻找规律.解 从A 1开始,每进行一次操作,所得到的图形的周长是原来图形周长的43倍.所以, A 2的周长是4343⨯=;A 3的周长是416433⨯=;A 4的周长是41664339⨯=.三、多边形的对角线问题例5 (1)计算凸十边形所有对角线的条数,以及以凸十边形顶点为顶点的三角形的个数.(2)在凸十边形每个顶点处任意标上一个自然数,在(1)中的三角形,若三个顶点所标三数之和为奇数,则该三角形称为奇三角形;若三数之和为偶数,则称偶三角形,试判断:奇三角形个数是奇数还是偶数,并证明你的结论.解析(1)共有(103)10352-⨯=条对角线,因为边与对角线共有45条,每条属于8个三角形的边,则三角形个数为4581203⨯=个. (2)奇三角形个数是偶数.因为凸十边形每个顶点属于40个三角形,也就是说凸十边形每个顶点所写的数在总和中计算了40次,那么总和应为十顶点所标数和的40倍,则一定是偶数,偶三角顶点之和必为偶数.故奇三角形个数必为偶数.四、多边形的证明问题例6 已知凸六边形的周长等于20,各边长都是整数,且以它的任意三条边为边都不能构成三角形.求证:这样的六边形有无穷多个.解析 由n 边形(n ≥4)的不稳定性知,若存在一个这样的六边形,则必有无穷多个.故下面寻找是否存在六个正整数a 1,a 2,…,a 6(不妨设a 1≤a 2≤…≤a 6),满足(1)12620a a a +++=;(2)12123234345456,,,,a a a a a a a a a a a a a a ≤+≤+≤+≤+≤; (3)123456++a a a a a a ++>.如果这样的六边形存在,则以126a a a ,,,为边长的六边形即符合要求.实际上,对任选三个整数61i j k a a a a ≤≤≤≤,必有i j k a a a +≤,可见此六边形的任意三边不能构成三角形,如121a a ==,32a =,43a =,55a =,68a =,满足上述全部条件.所以,这样的六边形有无穷多个.点评 本题首先证明了这样的六边形存在,然后根据n 边形(n ≥4)的不稳定性,说明这样的六边形有无穷多个.五、多边形中的开放性问题例7 (1999年全国联赛题)在正五边形ABCDE 所在平面内能找到点P ,使得△PCD 与△BCD 的面积相等,并且△ABP 为等腰三角形.这样的不同的点P 的个数为( )A .2B .3C .4D .5解析 可先动手画出简图.由△PCD 与△BCD 的面积相等及等积变换的思想,点点P 应在平行于CD 且与CD 的距离等于B 点到CD 的距离的直线l 上,这样的直线l有两条,且位于CD 的两侧.然后再根据△ABP 为等腰三角形确定点P 的个数.图15-4如图15-4,由S △PCD =S △BCD 知,点P 只能在直线l 1(即直线BE )与直线l 2上,其中l 2与CD 平行且与CD 的距离等于l 1与CD 的距离.在等腰△ABP 中,按其底边可分如下三种情形:(1)当AB 为底边时,AB 的垂直平分线分别与l 1、l 2交于P 1、P 2,则P 1、P 2是符合条件的点. (2)当P A 为底边时,以B 为圆心,BA 为半径作圆,与l 1交于P 3、P 4两点,则P 3、P 4符合条件. (3)当PB 为底边时,只有E 点符合条件.综上所述,共有P 1、P 2、P 3、P 4、E 五个点符合题设全部条件,故应选D .点评 解答这类计数问题,需要分清谁是底,谁是腰,可直接通过作图确定点P 的个数,这里主要应用了交轨法.好题妙解】佳题新题品味例1 一个凸多边形的每一内角都等于140°,那么,从这个多边形的一个顶点出发的对角线的条数有( )A .9条B .8条C .7条D .6条解析 每一内角为140°,得每一外角为40°,360°÷40°=9,即边数为9,故从一个顶点可作对角线9-3=6条,选D .例2 设12n A A A 是一个有n 个顶点的凸多边形,对每一个顶点(1,2,3,,)i A i n ,将构成该角的两边分别反向延长至12,i i A A ,连接12,i i A A ,得到两个角12,i i A A ∠∠(扫描件版本中有错),那么所有这些新得到的角的度数的和是 .解析 注意每一内角与相邻的外角互补即可求. 故:n ×180°-(n -2)·180°=360°.例3 正五边形广场ABCDE 的周长为2000m ,甲、乙两人分别从A 、C 两点同时出发绕广场沿A →B →C →D →E →A 的方向行走,甲的速度为50m/min ,乙的速度为46m/min ,则出发后经过 min ,甲、乙第一次行走在同一条边上.解析 设甲走完x 条边时,两人走在同一条边上,此时甲走了400x m ,乙走了4004636850xx ⨯=m ,甲、乙两人的距离不大于正五边形的边长400m ,所以(368x +800)-400x ≤400.解得x ≥12.5.而x 为整数,取x =13. 所以,甲、乙走了40010450x=min 后走到一条边上.中考真题欣赏例4 (吉林省)如图15-5,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.(1)在第n 个图中,每一横行共有 块瓷砖,每一竖列共有 块瓷砖(均用含n 的代数式表示).(2)设铺地面用瓷砖的总数为y ,请写出y 与(1)中n 的函数关系式(不要求写自变量n 的取值范围). (3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 值. (4)若黑瓷砖每块4元,白瓷砖每块3元,在问题(3)中共需花多少元钱购买瓷砖? (5)是否存在黑瓷砖与白瓷砖块数相等的情况?请通过计算说明,为什么?图15-5解析()()()() 1231n n n n n n n n ⨯⨯⨯+⨯⨯⨯⨯⨯⨯+++: 1 2 3 白砖: 1 2 2334 黑砖:34-1 2 45-2 3 56-3 4-解(1)n +3,n +2.(2)y =(n +3)(n +2). (3)当y =506时,(n +3)(n +2)=506, 解得n 1=20,n 2=-25(舍去). 白色砖数:n (n +1)=20×(20+1)=420. 黑色砖数:506-420=86.(4)共需钱数:86×4+420×3=1604(元)(5)n (n +1)=(n +2)(n +3)-n (n +1),化简得n 2-3n -6=0,解得n .因n 的值不是整数, ∴不存在黑、白瓷砖块数相等的情形.竞赛样题展示例1 (2004年江苏省初中竞赛题)在一个多边形中,除了两个内角外,其内角之和为2002°,则这个多边形的边数为( )A .12B .12或13C .14D .14或15解析 设这个多边形为n (n 为正整数)边形,由题意2002°<(n -2)×180°<2002°+360°,111113159090n <<. 所以,n =14或15.选D .例2 (2002年上海市竞赛题)平面上有7个点,它们之间可以连一些线段,使7点中的任意3点必存在2点有线段相连.问至少要连多少条线段?证明你的结论.解析(1)若7个点中,有一点孤立(即它不与其他点连线),则剩下6点每2点必须连线,此时至少要连65152⨯=条. (2)若7点中,有一点只与另一点连线,则剩下5点每2点必须连线,此时至少要连541112⨯+=条. (3)若每一点至少引出3条线段,则至少要连732⨯条线段.由于线段数为整数,故此时至少要连11条. (4)若每点至少引出2条线段,且确有一点(记为A )只引出2条线段AB 、AC ,则不与A 相连的4点每2点必须连线,要连4362⨯=条.由B 引出的线段至少有2条,即除BA 外还至少有一条.因此,此时至少要连6+2+1=9条.图15-6图15-6给出连9条线的情况.综合(1)~(4),至少要连9条线段,才能满足要求.例3 (第14届希望杯)两条直线上各有n 个点,用这n 对点按如下规则连结线段: ①同直线上的点之间不连结;②连结的任意两条线段可以有共同的端点,但不得有其他的交点. (1)画图说明当n =1,2,3时,连结的线段最多各有多少条?(2)由(1)猜想n (n 为正整数)对点之间连结的线段最多有多少条,证明你的结论. (3)当n =2003时,所连结的线段最多有多少条?图15-7解析 (1)由图15-7可以看出,n =1时,最多可以连结1条线段,n =2时,最多可以连结3条线段,n =3时,最多可以连结5条线段.(2)猜想:对于正整数n ,则n 对点直接连结的直线段最多有2n -1条. 证明 将直线标记为l 1、l 2,它们上面的点从左到右排列分别为123,,,,n A A A A 和123,,,,n B B B B ,设这n 对点之间连结的直线段最多有P n 条,显然,其中必有n n A B 这一条,否则,P n 就不是最多的数. 当在l 1,l 2分别加上第n +1个点时,不妨设这两个点在A n 与B n 的右侧,那么除了原来已经有的P n 条直线段外,还可以连结A n+1B n ,An +1B n +1这两条线段,或连结A n B n +1,A n +1B n +1这两条线段. 所以P n +1≥P n +2.l 2l 1B n+1B i+1B i A n+1A n另一方面,设对于n +1对点有另一种连法:考虑图中以A n +1为端点的线段,若以A n +1为端点的线段的条数大于1,则一定可以找到一个i ≤n ,使得对于任意的j <i ,A n +1B j ,都不在所画的线段中,这时,B i +1,B i +2,...,B n +1,只能与A n +1连结,不妨设A n +1B i +1,A n +1B i +2,…,A n +1B n +1都已连结,此时图中的线段数为P n +1,我们做如下操作:去掉A n +1B i ,连结A n B i +1,得到新的连结图,而新的连结图满足要求且线段总数不变,将此操作一直进行下去,直到与A n +1连结的线段只有一条A n +1B n +1为止.最后图中,与点B n +1相关的线段只剩两条,即A n B n +1,A n +1B n +1,去掉这两条线段,则剩余P n +1-2条线段,而图形恰是n 对点的连结图,所以P n +1-2≤P . 由此我们得到P n +1=P n +2,而P 1=1,P 2=3,所以P n =1+2×(n -1)=2n -1. (3)当n =2003时,P 2003=4005(条).过关检测】A 级1.一个凸n 边形共有54条对角线,则它的内角和是( ) A .1080° B .1440° C .1800° D .1620°2.(1999年全国初中联赛试题)一个凸n 边形的内角和小于1999°,那么n 的最大值是( ) A .11 B .12 C .13 D .143.(第12届“希望杯”邀请赛试题)凸n 边形中有且仅有两个内角为饨角,则n 的最大值是( ) A .4 B .5 C .6 D .74.(美国中小学数学课程标准)如图,用硬纸片剪一个长为16cm 、宽为12cm 的长方形,再沿对角线把它分成两个三角形,用这两个三角形可拼出各种三角形和四边形来,其中周长最大的是 cm ,周长最小的是 cm .16cm12cm5.如图,ABCD 是凸四边形,AB =2,BC =4,CD =7,则线段AD 的取值范围是 .DC BA6.如图,五边形ABCDE 中,AB=AE ,BC+DE=CD ,∠ABC +∠AED =180°,连接AD . 求证:AD 平分∠CDE .EDBAB 级1.一个凸n(n≥4)边形的每个外角的度数均为相等的奇数,则这样的凸多边形共有()A.4种B.6种C.3种D.2种2.一个凸n边形最小内角为95°,其他内角依次增加10°,则n等于()A.6 B.12 C.4 D.103.如图所示,CD//AF,∠CDE=∠BAF,AB⊥BC,∠C=124°,∠E=80°,求∠F的大小.F EDCBA4.若凸4n+2边形A1A2…A4n+2(n为自然数)的每个内角都是30°的整数倍,且∠A1=∠A2=∠A3=90°.求n所有可能的值.5.平面上给出4点,其中任意3点不共线,这4点组成4个三角形.请判断;这4个三角形中最多有几个锐角三角形?证明你的结论.6.已知一个凸n边形各内角度数均相等,且度数是奇数.问这样的多边形有几种?证明你的结论.()。

2020初中数学竞赛 初三集训 面积问题与面积方法专题(含答案)

2020初中数学竞赛 初三集训 面积问题与面积方法专题(含答案)

与 BE 之交点,延长 PQ 交 BC 于 R ,求 BR . RC
解析 如图,由梅氏定理 AB DQ CE = 1 ,即 DQ = 10 ,又 AC EQ BD = 1 ,即 EQ = 12 .
DB CQ EA
CQ 27 CE QB DA
QB 25
5/7
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
QAP = QAB + BAP = PAC + BAP = BAC = 60 ,
结合 AQ : AP = 2 :1知, APQ = 90 ,于是 PQ = 3AP = 3 .
所以 BP2 = 25 = BQ2 + PQ2 ,从而 BQP = 90 .于是
AB2 = PQ2 + ( AP + BQ)2 = 28 + 8 3 , 故
( 90 ),则由四边形的“余弦定理”(见题 13.1.7):
A
a
d
θ
B O
D
b
c
C
cos = a2 + c2 − b2 − d 2 , 2 AC BD
于是
S四边形ABCD
=
1 2
AC BD sin
=
1 (a2 4
+
c2
− b2

d 2 ) tan
.
一般地,有
S四边形
=
1 4
|
(a2

b2
A
E α
θ
D
θ
B
C
由三角形内角和,

+
2(2
+)
= 180 ,得
+
=
60

初中数学第15章面积问题与面积方法竞赛专题复习(人教版带答案)

初中数学第15章面积问题与面积方法竞赛专题复习(人教版带答案)

初中数学第15章面积问题与面积方法竞赛专题复习(人教版带答案)第15章面积问题与面积方法15.1.1★如图,(b)、(c)、(d)、(e)中直线与直线交于点,则:(a)中有;(b)、(c)、(d)、(e)中有 . 解析只要作相应的高,并运用比例即可. 15.1.2★若中有一点,延长、、,分别交对边于点、、,则 . 解析如图,易证,,,三式相加即得结论.15.1.3★求证:若点、、、是一直线上依次的任意四个不同点,点是直线外一点,则有 . 解析如图,,两式相乘,即得结论. 评注这个定理叫交比定理,在这里作为例子是为了强调交比(即上述比值)是一个重要的不变量,交比为2时,四点称为调和点列,此时,这种情形在几何中十分常见. 15.1.4★★如图,设,,,试用、、表示 . 解析用面积比或梅氏定理得出,,于是以及与的表达式,最后算得. 15.1.5★★ 已知为的角平分线上任一点,、延长线上分别有点、,,,求证: . 解析如图,连结、 . 至、距离相等,即,由,,有,故,于是. 15.1.6★★在的两边和上各取一点和,使得,与交于,求证:是的平分线. 解析如图,易知,又,故至的距离与至距离相等,于是平分 . 15.1.7★★已知的边、、上分别有点、、,且、、共点,求证: . 解析如图,设,,,则由塞瓦定理知 . 又知原式等价于证明,而,同理,,,于是问题变为证明,去分母、考虑并移项整理得上式等价于 .这显然成立,取等号仅当,此时、、为各边中点. 15.1.8★在凸四边形中,,,,,,求四边形的面积. 解析如图,,故本题只有一解(否则可能为钝角). 今延长、交于,则为等腰直角三角形, .又作,则 . . 又,故 . 于是. 15.1.9★★锐角中,,向外作正与正,设与交于点,与交于点,又与交于点,求证: . 解析结论转化为,两边同时除以,转化成线段之比,即求证,上式又等价为 . 这是成立的,因为左式右式,此处用到了与 . 15.1.10★在等腰中,,、分别在两腰、上,,与相交于点,四边形的面积为,求的面积. 解析如图,连结,设 .易知,,于是,,,,又,故, .15.1.11★设、、为锐角的三条高,若平分的三条高,若平分的面积,求证: . 解析如图,由条件知,由于∽ ,,故, . 又由相似知,故, . 又∽ ,得,于是,结论证毕. 15.1.12★★★设是内心,在、、上的身影分别是、、,延长后,交于,延长后与交于,求证: . 解析如图,连结、,本题等价于证明 . 而,,由知,于是只需证明 . 由,结论得证. 15.1.13★★★已知:锐角三角形,向外作正方形、,、交于,求证: . 解析1 如图(1),作,我们证明、、共点. 由于,,,故,而, . 设、交于,、交于 .于是,故结论成立. 解析2 如图(2),设是高,在延长线上分别找点、,使, .易知≌ ,,同理 . 的三条高在、、直线上.因此、、三线共点.15.1.14★★★求证:存在一个面积为的四边形,使形内任何一点,、、、至少有一个是无理数. 解析如图,作梯形,,,,与的距离为 .则 . 设是内部任一点,则与中至少有一个是无理数. 否则,若与均为有理数,设分别为、,则,整理得一个关于的二次方程,系数可以是整数.但决不是这个方程的根,矛盾. 因此与中至少有一个是无理数. 15.1.15★★设中,,点为其内部任一点,求证: . 解析此题用坐标法能使解题思路看起来更加清晰. 如图,设(,)、(,)、(,)、(,),则(,),于是. 15.1.16★★四边形的两条对角线垂直且交于点,、分别与、垂直,延长、,分别与、交于点、,求证: . 解析显然可将待证式改为 . 由于 . 同理,也是此式. 于是结论成立. 15.1.17★★已知凸五边形满足,,,,,求五边形的面积. 解析如图,作点关于的对称点,于是,,分别作和的角平分线,设交于点,则、分别垂直平分、,则点是的外心. 又由于,,因此 . 又由于,,因此,点为斜边的中点. 由≌ ,≌ ,以及≌ 得 . 为求,只需注意,,因此作点关于的对称点(图中未画出),有≌ ,于是. 15.1.18★★凸四边形中,、分别在、上,、将三等分,且,求证: . 解析如图,连结、、 . 由,(这是因为)知: . 由于,故 .因此,亦即 .由知, . 而,故,因而、为、中点.由此可得、分别为、的中位线,即, . 因此四边形为平行四边形,所以,,而,故,由此得四边形为平行四边形,故 . 15.1.19★★★ 为的内心,、分别为、的中点. 与延长线交于,延长线与延长线交于(如图),,求 . 解析设,,,,,内切圆半径为 . 由得 . 而 . 又 .所以,即 . 同理,对用同样的方法可得: . 两式相乘,利用得:,即 . 所以,. 15.1.20★★已知、为直角三角形()的角平分线,交于,求 . 解析设,, .由内角平分线性质,有,故,,,于是 . 而,故, . 同前面类似的算法可得:,故 . 利用, .15.1.21★★点为正三角形内一点,,,,试用、、表示 . 解析分别把、、绕点、、顺时针旋转,得、、三点,则、、是边长分别为、、的正三角形,而、与是边长各为、、的全等三角形,最终得,此处. 15.1.22★在凸四边形中有一点,满足,求证:点在该四边形的对角线上. 解析显然在对角线上时,上述结论成立.今用反证法,若点不在对角线上时,如图,不妨设与交于点,又不妨设点位于的内部.此时,与有一交点,记为 . 由题设得,于是由面积比知点、、共线.这样一来,点、均在直线上,点就在上,与假设矛盾. 15.1.23★★自的顶点引两条射线交边于、,使,求证: .又,反之如何?解析如图,由,得 . 又,故 . 两式相乘,即得 . 反之,若,作外接圆,分别交、于、 .则,,代入得,得,但、、、共圆,故四边形为等腰梯形,圆周角和所对弧相等,由于其和小于,故. 15.1.24★★★已知正三角形内一点,到、、的射影分别是、、,求证:;、和和面积和等于的一半. 解析如图,易知,,,三式相加即得结论 . 又过作,, . 、在上,、在上,、在上.易知、和均为正三角形,四边形、、均为平行四边形,记,,,,,,则. 15.1.25★★已知:凸五边形中,,,、分别是、中点,在上,,求证: . 解析如图,设中点为,连结、 .则,,, . 设、交于,则,,,故,. 15.1.26★凸四边形中,对角线相交于,、分别为、的中点,连结,交于,交于,、分别为、中点,分别与、交于、,求证: . 解析如图(图中点、未画出),连结、,则,,故∽ ,且,同理,于是在与中,与互补,,于是. 15.1.27★★ 已知为内一点,,求证: .解析如图,由余弦定理,同理,,三式相加,得,此即15.1.28★ 中,是高,,,,求 . 解析设 .分两种情况讨论,一种、在两侧,另一种、在同侧. 、在两侧时,,于是由面积,,即,得,得或 . 时,,不合要求;故, . 、在同侧时,,同样由面积公式,,即,得,无解. 15.1.29★★★设矩形的边、上分别有点、,满足是正三角形,求证: . 解析如图,设边长为 . . 取,使,,,连结、、,与交于,延长至,,连结,则 .又易知 .于是只要证明即可. 事实上, .于是结论成立.15.1.30★★★已知正三角形边长为,在上,,在上,,求的长. 解析如图,作、、分别与、、垂直,设,由,得 . 又由条件,知,同理,,故,于是 .由,得,又,,故 . 由于,,,故,于是 .(见题9.2.3.)15.1.31★用正弦定理证明三角形面积公式 . 这里、、为的三边长,为的外接圆半径. 解析 . 又,,,代入得 . 又找到外心,则 . 评注最后的结果中,、、可能取负值,但不影响结论. 15.1.32★★★已知,、分别在、上,,,,试用、、表示 . 解析如图(a)作,、在直线、上,设,又设,,,,则,,,因此,,于是有,展开得 . 记,则,解得 .所以 . 因为,故根号前应取“ ”号,于是解析2 如图(b),延长、交于,连结,设,则,于是有 .解出,以下同解析1. 15.1.33★已知面积为,、分别在边上,且,、在边上,,、在边上,,若、交于,求 . 解析如图,由于,,故,且 . 又作,交于,则为的高. 设至距离为,则由∽ ,知 .又,故,于是 .所以 . 15.1.34★已知的三边长分别为、、,面积为;的三边长分别为、、,面积为,且,,,则与的大小关系一定是() A.B. C. D.不确定解析构造与如下:(1)作∽ ,显然,即 . (2)设,,,则,,,即有 . (3)设,,,,则,,,即有 . 因此,与的大小关系不能确定.应选(D). 15.1.35★★用长为1、4、4、5的线段为边作梯形,求这个梯形的面积. 解析(1)当梯形的上底为,下底为时,两腰长均为,得等腰梯形(如图(a)所示). 作交于,交于,易知,且 .由勾股定理可得 .所以 .(2)当梯形的上底为,下底为时,两腰分别为和,得直角梯形(如图(b)所示). 过作交于,易知,,从而 .根据勾股定理的逆定理可知, .所以 . (3)若用长为的线段作梯形的腰,则无法完成符合条件的梯形. 15.1.36★★在直角三角形中,,,,分别以、、为边长向外作等边三角形、、,连结交于点,求的面积. 解析由题设得,,,,、、三点共线. 因为,而,所以 .即,从而 .于是. 15.1.37★设点、、、分别在面积为的四边形的边、、、上,且(是正数),求四边形的面积. 解析如图,连续、 .易知 . 因此 . 同理 . 所以 . 同理可证 . 所以. 15.1.38★如图,在中,,且到、的距离之比为 .若的面积为,的面积为,求的面积 . 解析由知,∽ ∽ ,所以 . 又由题设知,所以,,故,于是,. 15.1.39★★★凸四边形中,点在边上与交于点,若,且,,,求证:点、分别为与的中点. 解析如图,由于,延长、交于 . 设,则,故, . 又作,在上,连结、,与交于,则,故,四边形为平行四边形,为的中点. 于是为的中位线,故为之中位线,故、分别为、的中点. 15.1.40★★已知,,在上,且,求证: . 解析如图,设,,,则由条件知,此即,于是,注意即至距离,即至距离,故有,代入上式,有,即 .15.1.41★★点、分别是凸四边形的边、的中点,点、分别在、上使四边形为平行四边形,证明: . 解析如图, . 当时,为中位线,于是,为至距离,此正是,于是 . 若与不平行,设、中点分别为、,四边形亦为平行四边形,、的中点都是之中点,若与不重合,则与也不重合(否则、的中点不是同一点),因此与相互平分,,即,与、不平行矛盾.所以、是、的中点,此时易证. 15.1.42★★已知中,、分别在、上,、、分别为、、的中点,求证:、、三线共点. 解析如图,设、延长后交于,如能证明平分,则、、即共点. 易知,又,,于是,,故结论成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛培训(初二)(15)
一、填空题
1.计算(13+)2005-2(13+)2004-2(13+)2003+2005=_________.
2.一个正整数,如果加上100后是一个平方数,如果加上168后又是另一个平方数,则这个正整数是_________.
3.在四边形ABCD 中,AD=DC ,∠ADC=∠ABC=90°,DE⊥AB 于E ,若四边形ABCD 的面积为8,则DE 的长为___________.
4.在△ABC 中,AB=AC ,腰上的高BD=2,底边上的高AE=4,则tanC 的值为_________.
5.已知a 、b 、c 、d 均为质数,且满足10<c <d <20,又c -a 也是非偶质数, d 2-c 2=a 3b(a+b),则ab(c+d)的值为___________.
6.如图,在等边△ABC 中,M 、N 分别是AB 、AC 的中点,D 为MN 上任意一点,BD 、CD 的延长线分别交AC 、AB 于点E 、F ,若
311=+BF CE ,则S △ABC =__________. 二、简答题
1.已知非零实数a 、b 、c 满足a 2+b 2+c 2=1,3)11()11(
)11(-=+++++b a c c a b c b
a ,求a+b+c 的值.
2.甲、乙两班同时从学校A出发去距离学校75km的军营B军训,甲班学生步行速度为4km/h,乙班学生步行速度为5km/h,学校有一辆汽车,该车空车速度为40km/h,载人时的速度为20km/h,且这辆汽车一次恰好只能载一个班的学生,现在要求两个班的学生同时到达军营,问他们至少需要多少时间才能到达?
初中数学竞赛培训(15)
答 案
一、填空题
1.2005
解:设x=13+ 则x -1=3 ∴ x 2-2x -2=0
原式=x 2005-2x 2004-2x 2003+2005
=x 2003(x 2-2x -2)+2005
=2005
2. 156
解:设所求正整数为x , 则x+100=m 2, x+168=n 2,其中m 、n 都是正整数 ∴n 2-m 2=68
(n -m)(n+m)=22×17
∵n -m 、n+m 具有相同的奇偶性
∴⎩
⎨⎧⨯=+=-1722m n m n 解得⎩⎨⎧==18
16n m ∴x=156 3. 22
解:把△ADE 绕A 点旋到△DCF 处,使AD 与CD 重合
则△DCF ≌△ADE
∴DF=DE , ∠DCF=∠A
∵∠A+∠DCB=180°
∴∠DCF=∠DCB=180°
∴F 、C 、B 三点共线
∴S ABCD =S DEBF
易证DEBF 是正方形 ∴DE 2=8 ∴DE=22
4.15
解:∵AC ·BD=BC ·AE ,AE=4, BD=2 ∴AC=2BC
由三线合一可知 CE=
2
1BC ∴AC=4CE ∴tan C=15=CE AE 5. 180
解:因为a 、b 、c 、d 均为质数,且10<c <d <20
所以c 、d 只能为11、13、17或19,且c ≠19
又c -a 也是非偶质数,所以a=2
分别取c=11,13,17,则c -a=9,11,15,只有c=13符合要求
把c=13,a=2代入d 2-c 2=c 3b(a+b)
得d 2-132=8b(2+b)
(1)若d=17,则b 2+2b -15=0 解得b=3或b=-5(舍去)
(2)若d=19,则b 2+2b -24=0 解得b=4或b=-6 都不舍
∴a=2,b=3,c=13,d=17
∴ab(c+b)=6×30=180
6.43 解:过点D 作DS ∥BM ,DT ∥CN 交BC 于S 、T ,易证MDSB 、NDTC 都是平行四边形
△DCT 是等边三角形
DS ∥BM ⇒
BC
SC BF DS = DT ∥CN ⇒BC BT CE DT = ∴BC BC BC BC ST BC BT CS BF CE 32
12311=•=•+=+ ∴3BC=3, BC=1
∴S △ABC =4
3 二、简答题
1.解:∵abc ≠0
∴对第二个等式两边同乘abc ,得
a 2(c+b)+
b 2(a+c)+
c 2(b+a)=-3abc
a 2c+a 2b+
b 2a+b 2c+
c 2b+c 2a+3abc=0
ab(a+b)+bc(b+c)+ac(a+c)+abc+abc+abc=0
(a+b+c)(ab+bc+ac)=0
∴a+b+c=0 或ab+bc+ac=0
当ab+bc+ac=0时,由(a+b+c )2=a 2+b 2+c 2+2ab+2bc+2ac=1
得 a+b+c=±1
∴a+b+c=0 ,1 ,-1
2.解:
设甲班学生从学校A 乘汽车出发至E 处下车步行,乘车akm ,空车返回至C 处,乙班同学于C 处上车,此时已步行了bkm.
则⎪⎪⎩⎪⎪⎨⎧-=-+-=-+475207540
54020a b b a b b a a 解得a=60 b=20 ∴至少需要4
364152060=+(h )。

相关文档
最新文档