5.1.2 垂线—垂线的定义与性质

合集下载

5.1.2 垂线(一)

5.1.2 垂线(一)

练习一、
E E
E 注意:画线段(或射线)的 垂线时,有时要将线段延 长(或将射线反向延长) 后再画垂线.
练习二、
1、如图,分别过A、B、C 作BC、AC、AB的垂线。 A
解:如图、AD⊥BC于D、 BE⊥AC于E、CF⊥AB于F
F C D
B E
2、如图,过P分别作OA、 OB的垂线。 O 解:如图、PM⊥OA于M、 PN⊥OB于N
新人教版-七年级(下)数学-第五章
5 .1.2 垂线(1)
观察与思考
垂直是相交的 一种特殊情况
一、垂直的概念
当两条直线相交所成的四个角中,有一个角 垂直 ,其中一条 直角 时,这两条直线互相_____ 是______ 垂足 。 直线叫另一条直线的垂线,它们的交点叫______
C
o
记做:
A
o
D
B
垂足为O
变式练习1
如图,直线AB、CD相交于点O,OE⊥AB, ∠1=125°,求∠COE的度数.
C A E O 1 D
B
例2 如图,直线AB、CD相交于点O,OE⊥AB于 O,OB平分∠ DOF,∠DOE=50°,求∠AOC、 ∠ EOF、 ∠ COF的度数. E
解:
∵ AB⊥OE (已知) ∴ ∠EOB=90°(垂直的定义) B A O ∵ ∠DOE= 50°(已知) C F ∴ ∠DOB=40°(互余的定义) ∴ ∠AOC= ∠DOB=40°(对顶角相等) 又∵OB平分∠DOF ∴ ∠BOF= ∠DOB=40°(角平分线定义) ∴ ∠EOF= ∠EOB+ ∠BOF=90°+40°=130° ∴ ∠COF=∠COD-∠DOF=180°-80°=100° (邻补角定义)

5.1.2_垂线(2)--

5.1.2_垂线(2)--

1.垂直定义:当两条直线相交所成的四个角 中,有一个角是直角时,这两条直线互相垂 直,其中一条直线叫另一条直线的垂线,它 a 们的交点叫垂足。 α b 2.垂直的表示: O 用“⊥”和直线字母表示垂直
例如、如图,a、b互相垂直, 垂足为O, 则记为: a⊥b或b⊥a,
若要强调垂足,则记为:a⊥b, 垂足为O.
C
E
B
∵ DE⊥BC于E(已知) A D ∴ DE<CD(垂线段最短)
∴ AB>AC>CD>DE
例4、如图,量出(1)村庄A与货场B的距离, (2)货场B到铁道的距离。
30 m 20 m
A
25m
8m 答:……。 B
C
0m
10 m
例5、如图, 1)画出线段BC的中点M,连结AM; 2)比较点B与点C到直线AM的距离。
C
想一想:
已知:如图AD<AE <AC<AB能说AD的 长是A到BC的距离吗?
A
答:不能。
B D EC
例3、如图:AC⊥BC于C,CD⊥AB于D,DE⊥BC 于E,试比较四条线段AB 、AC、DC和 DE的大小。
解: ∵ AC⊥BC于C(已知) ∴ AC<AB(垂线段最短) 又∵ CD⊥AD于D(已知) ∴ CD<AC(垂线段最短)
C
N
拓展应用1
如图:在铁路旁边有一张庄,现在要建一火 车站,为了使张庄人乘火车最方便(即距离最近) ,请你在铁路上选一点来建火车站,并说明理由。
张庄
垂线段最短
拓展应用2
问题1:长方体的顶点A处有一 只蚂蚁想爬到点C处,请你帮 它画出爬行的最佳路线。并说 明理由。 F问题2:若A处的蚂蚁想爬到棱 BC上,你认为它的最佳路线是 什么? E 问题3:若蚂蚁在点M处,想爬 到棱BC上,请你设计一条最佳 路线。

5.1.2 垂线

5.1.2  垂线
5.1.2
垂线
温故知新
探索新知
小试牛刀
小结反思
课后演练
温故知新
问题1:如右图,直线AB,CD 相交于点O, (1)∠AOC的对顶角是哪个角?这 两个角的关系怎样? ∠BOD,相等 (2)∠AOC的邻补角有几个?是哪 几个角? 2个,∠AOD,∠BOC
A C O B C
D
问题2:如右图,直线AB,CD相交于点O, A 当∠AOC=90°时,∠BOD,∠AOD,∠BOC等 于多少度?为什么?
注意:画线段(或射线)的垂线时,有时要将线段延长 (或将射线反向延长)后再画垂线.
E
小结反思
同学们,一堂课就要结束了,下面我们互相分享一 下各自的学习成果吧! 1.垂线的定义: 当两条直线相交所成的四个角中,有一个角是直角时, 这两条直线互相垂直,其中一条直线叫做另一条直线的垂线, 它们的交点叫做垂足. 2.垂线的画法: 一、放;二、靠;三、移;四、画. 3.垂线的性质: (1)在同一平面内,过一点有且只有一条直线与已知直线 垂直;(2)垂线段最短. 4.垂线段的定义: 由直线外一点向直线引垂线,这点与 垂足间的线段叫做垂线段. 5.点到直线的距离: 从直线外一点到这条直线的垂线段 的长度,叫做点到直线的距离.
A. B. C. D. 3.如图,过点C作CD⊥AB,垂足为D,则点C到直 线AB的距离是( B ) A.线段CA的长 B.线段CD的长 C.线段AD的长 D.线段AB的长
4.如图,BO⊥AO,∠BOC与∠BOA的度数之 72 度. 比为1:5,那么∠COA= ______ 5.如图,已知直线AB,CD都经过O点,OE 为射线,若∠1=35°, ∠2=55°,则OE 与AB的位置关系是 垂直 . 6.如图,直线AB,CD相交于点O,OE⊥AB, 35° ∠1=125°,则∠COE的度数______. 7.画一条线段或射线的垂线,就是画它们所 在直线的垂线,如图,请你过点P画出射线 AB或线段AB的垂线. E E

5.1.2_垂线(第2课时)

5.1.2_垂线(第2课时)

一条直线的垂线有无数条。
例3:下列说法(1)一条直线只有一条垂线; (2)两条直线相交就是垂直;
(3)线段和射线也有垂线。
(3) 其中正确的有___________________________ 一条直线的垂线有无数条。 垂直是相交的的一种特殊情况 画一条线段或者射线的垂线,就是画它 们所在直线的垂线。
2.选择题 过点 P 向线段 AB所在直线引垂线,正确的是( C ). A B C D
填空题
1.若直线m、n相交于点O, m⊥n 。 ∠1=90°,则__________
看谁做得快
m
1
O
n
2.若直线AB、CD相交于点O, 且AB⊥CD,那么∠BOD=____ 90。 ° 3.如图,BO⊥AO,∠BOC 与∠BOA的度数之比为1:5, 那么∠COA=_____, 72° ∠BOC的补角为______ 162 度。
过点p画出线段AB的垂线 P P P
M
A BA B A
----------B
过一点做已知线段的垂线,垂足可能在 线段上、线段的延长线上。
过点p画出射线AB的垂线
P
M A B
课堂练习 选择题: 1、 两条直线相交所成的四个角中,下列条件中能判 定两条直线垂直的是 ( ) C (A) 有两个角相等 (C) 有三个角相等 ( B)有两对角相等 ( D)有四对邻补角
E
N
B
D O A
(C)144°
(D) 54°
B
E
C
1、 落 2、 靠 3、 移 4、 画
o
过直线外一点有且只有一条 直线与已知直线垂直。
1、 落 2、 靠 3、 移 4、 画
o
过直线上一点有且只有一条 直线与已知直线垂直。

5.1.2-垂线(第1课时)

5.1.2-垂线(第1课时)
(C) 2 (D) 1
看谁做得快
m
1.若直线m、n相交于点O, m⊥n 。 ∠1=90°,则__________ 2.若直线AB、CD相交于点O, 且AB⊥CD,那么∠BOD=____ 90。 ° 3.如图,BO⊥AO,∠BOC 与∠BOA的度数之比为1:5, 那么∠COA=_____, 72° ∠BOC的补角为______ 162 度。
D
A. 两点之间线段最短 B. 点到直线的距离 C. 两点确定一条直线 D. 垂线段最短
举一反三 3.如图5-1-27,在铁路旁有一李庄,现要建一火车站, 为了使李庄人乘车最方便,请你在铁路线上选一点来建 火车站,应建在( A )
A. A点
B. B点
C. C点
D. D点
课堂练习 1.过点 P 向线段 AB 所在直线引垂线,正确的是( C). A B C D
2.垂直的表示:
用“⊥”和直线字母表示垂直
例如、如图,a、b互相垂 直, 垂足为O,则记为: a⊥b或b⊥a, 若要强调垂足,则记为:a⊥b, 垂足为O.
a
α
b
O
M F
E
O E
N
A
O
B
记作: MN⊥EF , 垂足为O.
或者MN⊥EF于o
记作: AB⊥OE垂足为O.
或者AB⊥OE于O
3.垂直的书写形式: D A 如图,当直线AB与CD 相交于O点,∠AOD=90° 时,AB⊥CD,垂足为O。 O 书写形式: C ∵∠AOD=90°(已知) B ∴AB⊥CD(垂直的定义) 反之,若直线AB与CD垂直,垂足为 O,那么,∠AOD=90°。 书写形式: ∵ AB⊥CD (已知) ∴ ∠AOD=90° (垂直的定义) 应用垂直的定义:∠AOC=∠BOC=∠BOD=90°

人教初中数学七下 5.1.2 垂线(第1课时)课件 【经典初中数学课件】

人教初中数学七下 5.1.2 垂线(第1课时)课件 【经典初中数学课件】

②性质:∵ AB⊥CD (已知) ∴ ∠AOD=90° (垂直的定义)
(∠AOC=∠BOC=∠BOD=90° )
合作探究 达成目标
例1:如图,直线AB,CD相交于点O,OE⊥CD于 O, ∠AOE:∠COE=1:3,求∠BOD的度数。
解:∵OE⊥CD ∴ ∠COE=90°
E
A
D
又∵∠AOE:∠COE=1:3
请 风景4:二元一次方程组的
思 考

x=1
x= 2
x=6
y=6 y=5

y=1
方程x+y=7的解集
x=6 x=7 y=1 y=3

x= 5 y= -1
方程2x-y=11的解集
x=1
x= 2
y=6
y=5

方程x+y=7的解集
x=6 x= 7 x= 5
y=1
y= 3

y= -1
方程2x-y=11的解集
求a的值. a=7
2. 已知
x=2 y=b
是方程2x+3y=13的一个解,
求b的值. b=3
水天 一色
3. 你能写出以
x 1 为解的二元一次方程.
y3
你还能写出两个以 x 1 为解得二元一次
方程组吗?
y3
4、二元一次方程 x2y 8 的正整数解.
破茧成蝶
1、已知方2程xa3 3y 4 是二元一次方程, a的求值?
创设情景 明确目标
在相交线的模型中,固定木条a,转动木条b,
当b的位置变化时,a、b所 b 成的角α也会发生变化. b
b
bb
当α =90°时,a与b垂直.
α )α

5.1.2垂线ppt课件

5.1.2垂线ppt课件

THANKS
感谢观看
详细描述
首先,确定给定的点和平行线。然后,选择一个与该平面垂直的平面,并将给 定点包含在该平面内。最后,过该点作与该平面垂直的直线,即为所求的垂线 。
过一点作已知直线的垂面
总结词
通过给定的点,使用三维几何的知识,可以作出已知直线的垂面。
详细描述
首先,确定给定的点和已知直线。然后,选择一个与该直线垂直的平面,并将给 定点包含在该平面内。最后,过该点作与该平面垂直的平面,即为所求的垂面。
总结词
通过给定的点,使用直角三角形的性质,可以作出已知直线 的垂线。
详细描述
首先,将给定的点和已知直线连接,形成一个直线段。然后 ,以该点为顶点,直角三角形的直角边与已知直线重合,构 造一个直角三角形。最后,沿着直角三角形的斜边进行延长 ,即可得到过该点的垂线。
过一点作已知平面的垂线
总结词
通过给定的点,使用空间几何的性质,可以作出已知平面的垂线。
机械制造应用
在机械制造中,垂线是确 定机器部件位置和方向的 重要依据。
数学应用
在数学中,垂线是解决几 何问题的重要工具,如求 点到直线的距离、确定直 线的位置等。
02
垂线的判定
直线与直线垂直的判定
判定定理
空间中的垂直关系
两条直线所成的角为直角,则这两条 直线垂直。
如果两条直线所成的角为直角,则它 们垂直。
这个平面垂直。
平面与平面垂直的判定
判定定理
如果一个平面内的两条相交直线都与另一个平面 垂直,那么这两个平面垂直。
推论
如果一个平面内的无数条直线都与另一个平面垂 直,那么这两个平面垂直。
空间中的垂直关系
如果一个平面内的两条相交直线都与另一个平面 垂直,那么这两个平面垂直。

数学人教版《垂线》_ppt1

数学人教版《垂线》_ppt1
5
(2)几何语言: 因为 AB ⊥CD, 所以 ∠AOC = 90°(垂线的定义)
反之,因为 ∠AOC = 90°,
所以 AB⊥CD(垂线的定义)
应用垂直的定义: ∠AOD =∠DOB =∠BOC = 90°
6
小试身手1. 如图所示,直线 AB ⊥ CD 于点 O ,直线 EF经过 点 O ,若∠1 = 26°,则∠2 的度
学习垂线的画法探究垂线的性质,
或者AB⊥CD于点O 当两条直线相交所成的四个角中有一个角为 90°时,这两条直线互相垂直, 其中一条直线叫做另一条直线的垂线
在相交线的模型中,固定木条 a ,转动木条 b.当b 的位置发生变化时,
“⊥”读作“垂直于” ①两条直线相交,交点叫做垂足;
垂线的定义:当两条直线相交所成的四个角中有一个角是 90°时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线, 他们的交点叫做垂足 如图所示,若 AB ⊥ CD 于点 O ,则∠AOD = _____; 并会利用所 学知识进行简单的推理. 垂线性质:在同一平面内,过一点有且只有一条直线与已知直线垂直. 1.学习垂线的定义,学会用几何的语言表示
17
16
所以 ∠AOC = 90°(垂线的定义)
A B (2)几何语言: 因为 AB ⊥CD,
如图所示,直线 AB ⊥ CD 于点 O ,直线 EF经过点 O ,若∠1 = 26°,则∠2 的度数是( ) 在相交线的模型中,固定木条 a ,转动木条 b.当b 的位置发生变化时, ⑥若l1⊥l2,则l1是 l2的垂线,l2不是 l1的垂线. 在相交线的模型中,固定木条 a ,转动木条 b.当b 的位置发生变化时, 下列说法正确的有( )
③在同一平面内,一条直线有且只有一条垂线;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知3-讲
导引:要尽可能节省材料,也就是让管道的总长度尽可能
短.方案一中CE,DF是垂线段,而方案二中PC,
知1-讲
总 结
1.本题解题思路可概括为“顺藤摸瓜”,即由已知条 件 OE⊥CD入手,根据对顶角、邻补角、角平分线 的有关知识,逐步深入求得各角的度数. 2.已知两条直线垂直或已知一条直线的垂线时,能直 接得到90°的角,因此利用这个条件,并与角平分 线、余角、补角、邻补角、对顶角等知识相结合,
可求出图中其他未知各角的度数.
A.117°
C.153°
B.127°
D.试一试: 经过直线AB外一点P,按图所示的两种方法,
画出垂直于直线AB的直线.这样的垂线能画多少条呢?
如图,你能经过直线AB上一点P,画出垂直于直线AB 的直线吗?这样的垂线能画多少条呢?
知2-讲
2.垂线的画法 经过一点(已知直线上或直线外),画已知直线的垂线, 步骤如下: (1)靠线:让直角三角尺的一条直角边与已知直线重合; (2)过点:沿直线移动,使直角
90°;要让∠EOF=90°,需说明∠EOF=
∠AOC或∠EOF=∠BOC都可,这样就把问题 转化为说明∠AOE=∠COF(已知)了.
知1-讲
解:射线OE,OF互相垂直.理由如下: 因为CO⊥AB,所以∠AOC=90°. 又因为∠AOE=∠COF,
所以∠AOE+∠COE=∠COF+∠COE,
即∠AOC=∠EOF=90°. 所以OE与OF互相垂直(垂直定义).
知2-练
1 下列选项中,过点P画AB的垂线CD,三角板放法 正确的是( )
知2-练
2 下列说法正确的是(
)
A.在同一平面内,过直线外一点向该直线画垂线, 垂足一定在该直线上 B.在同一平面内,过线段或射线外一点向该线段 或射线画垂线,垂足一定在该线段或射线上
C.过线段或射线外一点不一定能画出该线段或射
线的垂线 D.过直线外一点与直线上一点画的一条直线与该 直线垂直
知3-讲
知识点
3
垂线的基本事实
关于垂线的基本事实: (1)在同一平面内,过一点有且只有一条直线与已知直线
垂直.
(2)连接直线外一点与直线上各点的所有线段中,垂线段
最短,简单说成:垂线段最短.(过直线外一点画已
知直线的垂线,连接这点与垂足之间的线段,叫这点 到已知直线的垂线段)
知1-讲
总 结
判断两直线(线段、射线所在直线)互相垂直,主要
依据是垂直定义,只要说明两条相交直线所构成的四
个角中有一个角是直角即可.
知1-讲
例2 如图,直线AB,CD相交于点O,过O点画射线OE,
OF,使OE⊥CD,OD平分∠BOF. 如果∠BOE=
50°,求∠AOC,∠EOF和∠AOF的度数. 导引:根据∠AOC与∠BOD是对顶角, 且∠BOD与∠BOE互余,即可 求出∠AOC的度数;根据OD平 分∠BOF,∠EOF=∠BOE+2∠BOD即可求出 ∠EOF的度数;根据∠AOF与∠BOF互补可求得
知3-讲
例4
如图所示,AB是一条河流,要铺设管道将河水引 到C、D两个用水点,现有两种铺设管道的方案: 方案一:分别过点C,D作AB的垂线,垂足分别 为点 E,F,沿CE,DF铺设管道; 方案二:连接CD交AB于点P,沿PC,PD铺设管 道.这两种铺设管道的方案哪一种更节省材料? 为什么?(忽略河流的宽度)
导引:观察图形不难看出,(1)(3)属于过直线外一点画 已知直线的垂线,(2)属于过直线上一点画已知
直线的垂线,所以按照“一靠、二过、三画”
的方法画图即可. 解:画出的直线m,n,p如上页图.
知2-讲
总 结
过已知点画已知直线的垂线,实际上就是过已知 点画一条直线,使所画直线与已知直线相交所成的角 是90°.
3
如图,CD⊥EF,∠1=∠2,则AB⊥EF.请说明理由
(补全解题过程).
解:因为CD⊥EF, 所以∠1=________(垂直的定义). 因为∠2=∠1,所以∠2=________, 所以AB________EF(垂直的定义).
知1-练
4
如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则 ∠BOD的度数是( )
线叫做另一条直线的垂线,它们
的交点 O叫做垂足.如图.
知1-讲
2.推理格式: 因为∠AOC=90°(已知), 所以AB⊥CD(垂直定义).
反过来:因为AB⊥CD(已知),
所以∠AOC=90°(垂直定义).
知1-讲
例1 如图,CO⊥AB于点O,∠AOE=∠COF,则射 线OE,OF是什么位置关系?请说明理由. 导引: 要判断OE,OF是什么位置关 系,其实质是说明OE,OF是 否垂直,即要看∠EOF是否为
知1-练
1
当两条直线相交所成的四个角中,有一个角是___
时,就说这两条直线互相垂直,其中的一条直线叫
做另一条直线的________,它们的交点叫做______.
2 垂直定义的应用格式:如图,
(1)因为∠AOC=90°,所以______. (2)因为AB⊥CD,所以∠AOC=_____°.
知1-练
第 5章
相交线与平行线
5.1
相交线
第 2 课时
垂线——垂线
的定义与性质
1
课堂讲解
垂直的定义 垂线的画法
垂线的基本事实
2
课时流程
逐点 导讲练 课堂 小结 作业 提升
知1-讲
知识点
1
垂直的定义
1.定义:当两条直线AB和CD所构成的四个角中有一个 为直角时,其他三个角也都成为直角,此时,直线 AB,CD互相垂直,记作“AB⊥CD”,其中一条直
三角尺的另一条直角边经过
已知点; (3)画线:沿直角边画线,则这
条直线就是经过这个点的已
知直线的垂线.如图.
知2-讲
例3 如图,M是三角形ABC中BC边上的任意一点,请 你按照下列要求画图: (1)过M点画直线AB的垂线m;
(2)过M点画直线BC的垂线n;
(3)过M点画直线AC的垂线p.
知2-讲
∠AOF的度数.
知1-讲
解:因为OE⊥CD,所以∠DOE=90°(垂直定义).
因为∠BOE=50°,
所以∠AOC=∠BOD=∠DOE-∠BOE= 90°-50°=40°. 因为OD平分∠BOF, 所以∠BOF=2∠BOD=80°.
所以∠EOF=∠BOF+∠BOE=80°+50°=130°,
∠AOF=∠AOB-∠BOF=180°-80°=100°.
相关文档
最新文档