电磁干扰抑制技术全面概述
电磁屏蔽原理

电磁屏蔽原理
电磁屏蔽是一种能有效抑制外界电磁波干扰的技术,它通常用于电子设备的数据传输,保证信号完整无损地传输到目标位置。
今天,电磁屏蔽技术已经在电子行业广泛应用,比如电脑、手机、手表、汽车电子、数码产品等。
本文将着重介绍电磁屏蔽的原理,并分析其优缺点。
电磁屏蔽原理如下:一是屏蔽器,其作用是将有害的电磁辐射阻隔在室内,从而确保设备不受外界干扰;二是金属屏蔽器,其作用是把外来电磁波撞击在金属外壁上,使它们不能进入室内,从而减少了干扰;三是电磁屏蔽布,它可以有效阻止电磁波射透,并降低电磁波传播的距离,使室内内部设备有效地保护。
电磁屏蔽技术的优点是:一是保护性很强,可以有效防止外界电磁辐射对设备的伤害;二是可以减少电磁波的距离,并有效抑制电磁波的传播;三是能够提高设备的可靠性,确保信号可靠有效地传输到目标位置;四是为用户提供防止电磁辐射伤害的安全机制,保护用户的身体健康,同时也能有效减少一些由电磁辐射引起的设备故障。
而电磁屏蔽技术的缺点也是显而易见的:一是电磁屏蔽技术的实施需要一定的成本,而且可能要重新设计电子设备的外壳,从而增加了设备成本;二是电磁屏蔽的规格较高,在设计过程中,可能会出现不同的技术问题,从而导致设备性能的降低;三是电磁屏蔽技术在某些环境中并不完美,比如在低频电磁场中,它可能无法有效阻挡外界电磁辐射,从而出现设备故障。
综上所述,电磁屏蔽是一种有效的技术手段,它可以阻挡外界的电磁辐射,保护室内设备的完整性,并提高设备的可靠性,为用户提供更加安全的环境。
但是,电磁屏蔽技术也有一定的局限性,它需要花费一定的成本,而且在特定环境下也可能不能完全阻挡外界电磁辐射,因此需要设计者在进行电磁屏蔽设计之前,要对不同环境进行全面研究和分析。
电磁兼容解决方案

电磁兼容解决方案电磁兼容(Electromagnetic Compatibility,简称EMC)是指各种电子设备在相互连接和共存的情况下,能够在无干扰和无辐射的条件下正常工作的能力。
在现代社会中,电子设备的广泛应用使得电磁兼容问题日益突出。
为了解决这一问题,人们提出了各种电磁兼容解决方案。
本文将从五个方面详细介绍这些解决方案。
一、电磁屏蔽技术1.1 金属屏蔽:利用金属材料对电磁波进行屏蔽,如使用金属外壳、金属屏蔽罩等。
1.2 电磁屏蔽涂料:在电子设备表面涂覆电磁屏蔽涂料,以提高设备的屏蔽性能。
1.3 电磁隔离设计:通过合理的电路布局和屏蔽结构设计,减少电磁辐射和电磁感应。
二、电磁干扰抑制技术2.1 滤波器设计:在电子设备的电源线路、信号线路等关键位置添加滤波器,以阻止电磁干扰信号的传播。
2.2 接地设计:合理的接地设计能够有效地抑制电磁干扰,如采用单点接地、分层接地等方法。
2.3 电磁屏蔽设计:在电子设备内部采用屏蔽隔离措施,减少电磁干扰的传播。
三、电磁辐射控制技术3.1 电磁辐射测试:通过对电子设备进行电磁辐射测试,了解辐射源和辐射路径,从而采取相应的控制措施。
3.2 电磁辐射限制:根据不同的电子设备,制定相应的辐射限制标准,确保设备的辐射水平在合理范围内。
3.3 电磁辐射抑制:采用电磁屏蔽、滤波器等措施,减少电磁辐射的产生和传播。
四、电磁感应抑制技术4.1 电磁感应测试:通过对电子设备进行电磁感应测试,了解感应源和感应路径,从而采取相应的控制措施。
4.2 电磁感应限制:根据不同的电子设备,制定相应的感应限制标准,确保设备的感应水平在合理范围内。
4.3 电磁感应抑制:采用电磁屏蔽、隔离设计等措施,减少电磁感应的产生和传播。
五、电磁兼容测试技术5.1 电磁兼容测试方法:制定合理的测试方法,对电子设备进行电磁兼容测试,评估设备的兼容性能。
5.2 电磁兼容测试标准:根据不同的应用领域和设备类型,制定相应的兼容性测试标准,确保设备的兼容性能达到要求。
新能源汽车电动驱动系统电磁干扰抑制技术的实验与优化

新能源汽车电动驱动系统电磁干扰抑制技术的实验与优化近年来,随着环境保护意识的提升和对传统燃油车污染的认识加深,新能源汽车逐渐成为未来汽车发展的趋势。
然而,随之而来的问题是新能源汽车电动驱动系统中存在的电磁干扰,这种干扰会对系统的性能和稳定性产生不利影响。
因此,如何有效抑制新能源汽车电动驱动系统中的电磁干扰成为当前研究的热点之一。
一、背景介绍新能源汽车的快速发展使得电动驱动系统的设计和优化变得尤为重要。
电动驱动系统由电机、电控器、电池组等部分组成,其中电机是实现电能转换为机械能的核心部件。
然而,电动驱动系统的高频电流和电压信号会在系统中引起电磁干扰,影响系统的正常工作。
电磁干扰不仅会降低系统的工作效率,还会导致系统的稳定性和可靠性下降,甚至对周围的其他电子设备造成干扰。
因此,研究如何有效抑制新能源汽车电动驱动系统中的电磁干扰对于提高系统性能和减少对环境的影响具有重要意义。
二、电磁干扰的来源与特点新能源汽车电动驱动系统中的电磁干扰主要来源于以下几个方面:1. 电机部分:电机在工作过程中会产生高频电流和电压信号,这些信号会通过电机的绕组和电缆在系统中传播,引起电磁干扰。
2. 电控器部分:电控器是控制电机运行的核心部件,其内部的功率变换部分和控制逻辑电路会产生电磁辐射和传导干扰。
3. 电池组部分:电池组中的大电流放电和充电会引起电磁干扰,影响系统的稳定性和电磁兼容性。
电磁干扰的特点主要表现在以下几个方面:1. 频谱宽:电动驱动系统中的电磁干扰频率范围广泛,从几十千赫兹到数兆赫兹不等。
2. 信号强度大:电动驱动系统中的电磁干扰信号强度往往较大,对系统和周围设备的影响较为显著。
3. 传播路径复杂:电动驱动系统中的电磁干扰信号通过电缆、绕组、导线等多种传播路径传播,路径复杂多样。
针对电磁干扰的来源和特点,需要通过一系列的实验研究和优化设计,才能有效地抑制电动驱动系统中的电磁干扰,提高系统的性能和稳定性。
三、电磁干扰抑制技术研究现状目前,国内外学者围绕新能源汽车电动驱动系统中的电磁干扰问题展开了大量的研究工作,主要包括以下几个方面:1. 电磁兼容性设计:通过对系统结构、布局、接地、屏蔽等进行合理设计,减小电磁干扰的产生和传播。
电磁兼容技术研究

电磁兼容技术研究电磁兼容技术(Electromagnetic Compatibility)是处理电子设备之间相互干扰的一门技术,主要解决的问题是设备电磁干扰、敏感度、抗干扰性和其它兼容性问题。
在当今的高科技产业中,电磁兼容技术的地位日益重要,其市场需求也日渐旺盛。
电磁兼容技术的相关研究领域涉及电磁场理论、电磁波传播、电磁干扰发射、电磁辐射检测与测量、防护及抑制等。
它主要包括传输线路和接口中的信号干扰、设备内可靠性问题、对移动电话和其他电子设备的电磁干扰等方面,其研究目的是为保证产品在使用时不互相干扰,有效地提高设备的抗干扰能力,提高产品的质量和稳定性,在市场竞争中获得更好的竞争力。
电磁兼容技术研究主要包括以下几个方面:一、电磁辐射控制技术电磁辐射是电子设备发射的电磁能量,对其他设备造成破坏和干扰的主要原因。
因此,为了减小电磁辐射对周围环境造成的影响,控制电磁辐射是必不可少的技术之一。
电磁辐射控制技术主要包括屏蔽、过滤、接地和减少电磁场辐射等方法,来达到控制电磁辐射的目的。
二、电磁干扰抑制技术电磁干扰抑制是指在一定环境或一定条件下防止外部电磁场对产生干扰的设备或电子系统产生损害的技术。
电磁干扰抑制技术的实现方法主要包括传输线路和接口中的信号干扰、设备防护、抑制电磁波辐射等。
三、电磁兼容测试技术电磁兼容测试技术是为了验证产品的电磁兼容性能是否符合标准和要求,以检测产品的抗电磁干扰和抗电磁辐射的能力。
目前在电子产品国际市场上,电磁兼容测试已经成为了一个必要的测试手段和技术要求。
四、抗电磁干扰设计技术抗电磁干扰设计技术主要是为了提高电子设备的防干扰能力。
通过选用抗干扰组件、采用符合电磁兼容标准的电路设计、实施合理的布线及排布等一系列防干扰措施来提高电子设备的抗干扰能力。
总的来说,电磁兼容技术的发展趋势是辐射源控制和干扰标准化。
控制辐射源和制定适当的干扰标准,可以使得电子产品可以平稳地演化,并为新型电子产品的研究和发展创造条件,为电子设备在各种复杂的电磁场环境下工作提供稳定可靠的保证。
集成电路测试中的新型芯片电磁干扰抑制技术研究

集成电路测试中的新型芯片电磁干扰抑制技术研究随着社会高科技的不断发展,集成电路的发展越来越快。
在集成电路制造中,运用先进的技术来测试芯片的可靠性是至关重要的。
由于芯片本身的特性和测试环境的不确定性,芯片电磁干扰的问题越来越受到了大家的关注。
因此,如何在测试过程中有效地抑制芯片的电磁干扰成为了一个热门的话题。
本文将探讨一种新型的芯片电磁干扰抑制技术在集成电路测试中的应用。
一、什么是芯片电磁干扰?首先我们需要了解什么是芯片电磁干扰。
芯片电磁干扰(EMI)是指电器或通信设备在使用时由于电磁作用而产生干扰,使得其他设备不能工作正常。
芯片集成了许多电子元器件,如晶体管、电容、电感等,这些元器件都会产生电磁场。
由于芯片内部电路的高速运行、频繁的开关等特性,会产生高频电磁干扰,而这种电磁干扰会通过导线、电源等途径传播到其他设备上,影响到设备的正常工作。
二、传统的芯片电磁干扰抑制方法在集成电路测试中,传统的电磁干扰抑制方法主要是通过屏蔽和滤波来实现。
屏蔽是指用金属或合金等材料将芯片包裹起来,从而防止电磁波通过芯片表面进入或从芯片内部逃逸出去。
滤波是指通过滤波电路来过滤掉芯片输出信号中的高频噪声,从而减少电磁干扰的影响。
然而,传统的屏蔽和滤波方法存在一些不足。
首先是成本较高,需要使用昂贵的金属材料进行屏蔽,或需要加装滤波电路,这使得芯片的制造成本和测试成本都相应地提高。
其次是效果有限,屏蔽材料和滤波电路无法完全消除电磁干扰,仍然会影响到芯片和其他设备的正常工作。
因此,研究新型的芯片电磁干扰抑制技术已成为当下的热门话题。
三、新型芯片电磁干扰抑制技术近年来,一种新型的芯片电磁干扰抑制技术——基于三维电磁仿真和设计的解决方案已经被提出。
这种解决方案是基于电磁理论和计算机仿真技术,针对芯片的特性和测试环境的不确定性,通过优化芯片的电磁场分布和信号传输路径,从而实现电磁干扰的抑制。
该技术采用了三维电磁仿真软件,对芯片的电磁场进行分析和优化。
浅谈开关电源电磁干扰及其抑制技术

浅谈开关电源电磁干扰及其抑制技术摘要:开关电源以其重量轻、体积小、效率高、可靠性高等优点得到了广泛的应用。
然而,开关电源的电磁干扰不容忽视。
近年来,随着科学技术的发展,电磁干扰问题涉及到的领域不断扩大。
特别是消费类电子电源的体积越来越小,功率越来越大,开关电源的功率密度越来越大,电磁干扰越来越严重,将极大地影响人们的生活和设备的运行。
因此,开关电源的电磁干扰抑制技术一直是国内相关技术人员的研究重点。
关键词:开关电源;电磁干扰;抑制技术引言随着电子信息技术的飞速发展,开关电源以其转换效率高、稳定性好等优点被广泛应用于各个领域。
开关电源在实际应用中经常发生电磁干扰,影响开关电源的使用体验。
解决开关电源的电磁干扰问题,促进开关电源的可靠稳定应用。
1.开关电源工作机理开关电源的主要作用是将电网交流电,转换为设备所需要的直流电,保证用电设备的正常运转。
开关电源电路主要由以下的部分组成:一、输入整流滤波电路;二、反馈控制电路;三、初级功率回路;四、次级整流滤波电路。
其中输入滤波电路主要包括过滤电网杂波的输入滤波器,其能阻止开关电源本身产生的干扰影响到电网,同时也能滤除电网的干扰,保证开关电源正常运行。
整流电路,将电网交流电转化为脉冲直流电。
给控制回路提供能量基础;反馈控制电路是是利用现代电力电子技术,通过对输出电压电流的采样比较,反馈控制开关管开通和关断的时间比率,以实现稳定输出,来满足电气设备的要求,保证整个电气部分的正常运行。
初级功率回路主要由高频变压器、初级开关管、功率检测电阻等组成。
接受反馈控制回路的调节,将整流电路的脉冲直流电,通过高频变压器传递到次级;次级整流滤波电路主要由次级二极管,储能及滤波电容和恒流恒压控制电路组成。
和反馈控制电路相关联,将变压器从初级传递的能量整流后进行一系列的处理,以提供设备所需的直流电压和电流。
1.电磁干扰的危害开关电源内部出现的电磁干扰可分为两种,一种是干扰信号通过导线或公共电源线进行传输,互相产生干扰称为传导干扰;另外一种是开关电源产生的干扰信号通过空间耦合把干扰信号传给另一个电网络或电子设备,称为辐射干扰。
电磁干扰抑制技术分享

电磁干扰抑制技术分享电磁干扰抑制技术是一种应用于电子设备和通信系统中的重要技术手段,主要用于解决电磁干扰对系统正常工作造成的影响。
在当今高科技发展的时代,电子设备和通信系统广泛存在,电磁环境复杂多变,因此电磁干扰抑制技术显得尤为重要。
首先,电磁干扰是指电磁波在传输、发射或接收过程中与原正常信号相混叠而导致系统性能下降的现象。
电磁干扰可能来自各个方面,例如电源线、雷电、射频设备、微波炉等,对系统的稳定性和可靠性造成威胁。
因此,采取有效的电磁干扰抑制措施对于确保设备和系统的正常运行至关重要。
电磁干扰抑制技术主要包括以下几个方面:1. 电磁波屏蔽技术:通过采用金属屏蔽罩、金属板、金属丝网等材料,将设备或器件包裹在内部,有效屏蔽外界电磁波的干扰,保护内部电路不受外界影响。
2. 地线设计技术:地线在电磁干扰抑制中扮演着至关重要的角色,合理设计和布置地线可以有效降低设备受电磁干扰的风险,提高系统的稳定性和可靠性。
3. 滤波器技术:滤波器是一种具有特定频率传递和阻断功能的电路元件,通过合理设计滤波器可以屏蔽不同频率范围的电磁波干扰,保障系统的正常工作。
4. 耦合器设计技术:对于共模干扰和不同模干扰问题,耦合器设计技术可以有效减少信号与干扰信号的耦合程度,降低干扰对系统性能的影响。
总的来说,电磁干扰抑制技术是一门综合性的技术,需要结合电磁学、信号处理、数字电路等多方面知识,才能有效应对复杂多变的电磁环境。
仅仅依靠一个简单的技术手段或方法是难以满足电磁干扰抑制的需求的。
在实际应用中,电磁干扰抑制技术不仅可以应用于电子设备、通信系统等领域,还可以应用于航空、军事、医疗等领域,起到重要的保障作用。
只有不断加强技术研究、提升技术水平,才能更好地应对电磁干扰问题,确保系统的正常运行和信息的安全传输。
综上所述,电磁干扰抑制技术是一项重要且必不可少的技术,在当今电子信息技术发展的大背景下,亟需加强研究和应用,以确保设备和系统的正常运行、信息的安全传输。
第7讲-电磁干扰隔离及抑制技术

电磁干扰隔离及抑制技术
Ø
这在核测试时常常采用
Ø
瞬时干扰的出现时间无确定的规律,采用被动的时间 回避方法
u
u
在瞬时干扰前期征兆出现时,利用高速电子开关将信号通道、电源 切断,暂时停止工作。将存贮的信息迅速转移至存贮器中,待瞬时 干扰过去后,再重新恢复工作 对卫星、航天飞行器、飞行中的导弹的电子系统的防护特别有用, 因为很难采用屏蔽隔离等防护方法来有效减弱核辐射或者电磁脉冲
7.
平衡电路实例
VN 1
电磁干扰隔离及抑制技术
V3 Z1 = 1 Z1 + jωC 31
V3 Z 2 = 1 Z2 + jωC32
VN 2
7.
7.
电磁干扰隔离及抑制技术
平衡电路实例
共模抑制比(CMRR)
有时称为平衡系数 Ø共模抑制比 (Common Mode Rejectio隔离及抑制技术
不平衡电路转换为平衡电路
扭绞线平衡结构减小感性耦合
电磁干扰隔离及抑制技术
MK =
µ 0 l a14 a23 ln 2π a13 a 24
7.
平衡电路用于差分放大器
电磁干扰隔离及抑制技术
双端输入
单端输入
7.
差分放大器
辅助电源-VC和射极电阻RE都是为了稳定差分放大器的工作 电流,改善差分放大器性能而设置的 电磁干扰隔离及抑制技术 7. RE对共模EMI信号有很强的电流负反馈左用,RE阻值越大, 对共模EMI信号的抑制能力便越强 对要放大的差分信号VS没有影响
电磁干扰隔离及抑制技术 7.
Ø
Ø
共模抑制比(CMRR)
Ø
例如某平衡电路的CMRR是60dB
ü
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
電磁干擾抑制技術全面概述
提起電磁干擾(EMI)這個詞,人們或許還感陌生,但EMI的影響卻是幾乎每
個人都曾身經歷過的。
例如,觀看電視時,附近有人使用電鑽、電吹風等電器,會使電視畫面出現雪花點,所聲器裏發出剌耳的雜訊……這類現象人們早已司空見慣、習以為常了,但是電磁干擾的危害卻遠不止如此。
事實上,電磁干擾已使民航系統失效、通信不暢、電腦運行錯誤、自控設備誤動作等,甚至危及人身安
全。
因此,加強電磁容性(EMC)知識的普及,提高EMI抑制技術,已成為當務之急。
所謂電磁相容性是指電子線路、系統相互不影響,在電磁方面相互相容的狀態。
對於EMC技術的研究,國外是從本世紀三十年代開始的,一些國家和國際組織如美國聯邦通信委員會(FCC),德國電氣電子工程師協會(VDE)、國際無線電干擾特別委員會(CISPR)等先後制定了一些指導性檔和規程,目前已形成一套較完整的體系,並得到嚴格遵守,美國電腦業即全面執行FCC規程。
我國電
磁相容性工作起步較步較晚,相關標準自八十年代才陸續出臺,應用方面則由於缺乏經驗和技術而舉步艱難。
如何儘快趕上國際先進水準,使我國電子產品能滿足日益迫切的國內需求並在國際市場占一席之地,已成為為大家關心的重大課題。
本文願就電磁干擾抑制技術談一點淺見,拋磚引玉,與各位共同切磋。
電磁干擾的定義,是指由外部雜訊和無用電磁波在接收中所造成的騷擾。
一個系統或系統內某一線路受電磁干擾程度可以表示為如下關係式:
N=G&TI mes;C/I
G:雜訊源強度;
C:雜訊通過某種途徑傳到受干擾處的耦合因素;
I:受干擾電路的敏感程度。
G、C、I這三者構成電磁干擾三要素。
電磁干擾抑制技術就是圍繞這三要素所採
取的各種措施,歸納起來就是三條:一、抑制電磁干擾源;二、切斷電磁干擾耦合途徑;三、降低電磁敏感裝置的敏感性。
下麵就這三方面分別作出介紹。
一、抑制干擾源
要想掏干擾源,首先必須確定何處是干擾源,在越靠近干擾源的地方採取措施,
抑制效果越好。
一般來說,電流電壓劇變即di/dt或du/dt大的地方就是干擾源;具體來說繼電器開合、電容充電、電機運轉、積體電路開關工作等都可能成為干擾源。
另外,市電電源也並非理想的50Hz正弦波,而是充滿各種頻率雜訊,是
個不可忽視的干擾源。
抑制方法可以採用低雜訊電路、瞬態抑制電路、旋轉裝置抑制電路、穩壓電路等;器件的選擇則盡可能採用低雜訊、高頻特性好、穩定性高的電子元件。
要注意,抑制電路中不適當的器件選擇可能會產生新的干擾源。
二、切斷電磁干擾耦合途徑
電磁干擾耦合途徑主要為傳導和輻射兩種。
雜訊經導線直接耦合到電路中最常見的。
抑制傳導干擾的主要措施是串接濾波器。
濾波器分為低通(LPF)、高通(HPE)、帶通(BPF)、帶阻(BEF)四種,根據信號與雜訊頻率的差別選擇不同類型的濾波器。
如果雜訊頻率遠高於信號頻率,常採用LC低通濾波器,這種濾波器結構簡單,濾除雜訊效果也較好。
但是對於軍用或TEMPEST技術以及要求較高的民用產品,則必須採用穿心式濾波器。
穿心式濾波器(Feed-thruFilters)也稱為穿越式濾波器,電路結構有C型、T型和LC型,其特點在於高頻特性優良,可工作在1GHz以上。
這是其“同軸”
性質決定的,由於它無寄生電感,提高了自諧頻率。
穿心式濾波器體積小、重量輕,允許電流大大,可廣泛用於各種不同場合。
對於通過供電電源線傳導的雜訊可以用電源濾波器來濾除。
只符合VDE0871標準的電源濾波器在30K-30MHZ範圍內插入損耗為20-100dB。
電源濾波器
不僅可以接在電網輸入處,也可接在雜訊源電路的輸出處,以抑制雜訊輸出,而且交直流兩用。
電源濾波器端口分高阻和低阻兩端,應根據輸入及負載阻抗不同來選擇正確的接法。
連接的原則是依照阻抗最失配,即高阻輸入端接濾濾器阻端,低阻負載端接濾波器高阻端;反之亦然。
對傳輸線路及印刷電路板的佈線設計,應注意進線與出線、信號線與電源線儘量分開。
對於重點線路可採用損耗線濾波器、三端子電容、磁環等器件進行干擾抑
制。
對於介面端,國外有帶濾波的D型、圓形、方形連接器產品,這類連接器
是在普通連接器上加裝電容或電感,構成濾波電路,其特點是不佔用。
PCB空
間,不增加體積,這對於現代元件高密度設計極為重要。
最近,國內也有廠家生產,品質不低於國外水準,可以替代進口。
對於輻射干擾,主要措施是採用遮罩技術和分層技術。
遮罩技術是一門科學,選擇適當的遮罩材料,在適當的位置遮罩,對遮罩效果至關重要。
尤其是遮罩室的設計。
可供選擇的遮罩材料種類繁多,有各種金屬板、指形鈹銅合金簧片、銅絲網、編織銅帶、導電橡膠、導電膠、導電玻璃等等。
應根據需要選擇。
遮罩室的設計應充分考慮門窗、通風口、進出線口的遮罩與搭接。
除靜電遮罩外,還需考慮磁遮罩以及接地和接大地技術。
三、降低電磁敏感裝置的敏感度
電磁敏感裝置的敏感是一柄雙刃劍;一方面人們希望接收裝置靈敏度高,以提高對信號的接收能力;另一方面,靈敏高受雜訊影響的可能性也就越大。
因此,根據具體情況採用降額設計、避設計、網路鈍化、功能鈍化等方法是解決問題的辦法。
綜上所述,對於電磁干擾的抑制方法很多,可以選擇一種或多種綜合運用。
但不論選擇什麼方法都應從設計之初就著手系統電磁相容性的考慮,而不是亡羊補
牢。
據報導,若在產品開始研製時即進行電磁相容設計,大約90%的傳導和輻射干擾都可以得到控制。
根據可靠性、安全性、品質要求、環境控制、效/費權衡,選擇適當的電磁干擾抑制技術,這就是電磁相容性的研究內容。