同济大学《高等数学》5.1节 定积分的概念与性质

合集下载

同济大学高等数学第六版上册第五章第一节定积分的概念与性质

同济大学高等数学第六版上册第五章第一节定积分的概念与性质
称 f ( x ) 在区间[a , b] 上可积.
三、存在定理
定理1
当函数 f ( x ) 在区间 a , b] 上连续时, [
[ 称 f ( x ) 在区间 a , b] 上可积.
定理2
[ 设函数 f ( x ) 在区间 a , b] 上有界,
且只有有限个间断点, 则 f ( x ) 在
区间[a , b ]上可积.

b
b
b
a [ f ( x ) g( x )]dx
n
b
lim [ f ( i ) g ( i )]xi
0 i 1
n
n
lim f ( i )xi lim g( i )xi
a f ( x )dx g( x )dx. a
b
0 i 1 b
注意:
被 积 表 达 式
积 分 变 量
[a , b] 积分区间
(1) 积分值仅与被积函数及积分区间有关, 而与积分变量的字母无关.
a f ( x )dx a f (t )dt a f (u)du
(2)定义中区间的分法和 i 的取法是任意的.
b
b
b
[ (3)当函数 f ( x ) 在区间 a , b] 上的定积分存在时,
难点
定义及换元法和分部法的运用
基本要求
①正确理解定积分的概念及其实际背景 ②记住定积分的性质并能正确地运用 ③掌握变上限定积分概念,微积分基本定理, 并会用N-L公式计算定积分, ④能正确熟练地运用换元法和分部积分法 计 算定积分 ⑤正确理解两类广义积分概念, 并会用定义 计算一些较简单的广义积分。
定积分的概念
前一章我们从导数的逆运算引出了不定积 分,系统地介绍了积分法,这是积分学的第一类 基本问题。本章先从实例出发,引出积分学的第 二类基本问题——定积分,它是微分(求局部量 )的逆运算(微分的无限求和——求总量),然 后着重介绍定积分的计算方法,它在科学技术领 域中有着极其广泛的应用。 重点 定积分的概念和性质,微积分基本公 式,定积分的换元法和分部积分法

高等数学-定积分的概念与性质

高等数学-定积分的概念与性质

= σ=1 ( ) .
→0
其中()称为被积函数,()称为被积表达式,称为积分变量,
[, ]称为积分区间,称为积分下限,称为积分上限.
15
02 定积分的定义


注(1)定积分‫)( ׬‬是一个数值,它只与被积函数()

和积分区间[, ]有关,而与积分变量的符号无关,即
(2)近似(“以直代曲”)
在区间 [−1 , ] 上任取一点 ,以 ( ) 为高,
y
y=()
以 为底,作小矩形.小矩形的面积为
( ) ,用该结果近似代替[−1 , ]上的小
O
a
x i -1 ξ i x i
b
x
曲边梯形的面积 ,即
≈ ( ) ( = 1, 2, ⋯ , ).

‫)( ׬‬
=

‫)( ׬‬
=

‫)( ׬‬.
(2)定积分存在,与区间的分法和每个小区间内 的取法无关.
Hale Waihona Puke (3)按照定积分的定义,记号‫)( ׬‬中的, 应满足关系
< ,为了研究的方便,我们补充规定:
① 当 =
② 当 >


时,‫ = )( ׬ = )( ׬‬0;
在区间 [1,2] 内, 0 ≤ < 2 < 1 ,
则( )3 < .由性质5.5的推论1,得
2
‫׬‬1
>
2
‫׬‬1 ( )3 .
28
极限,得 σ=1 ( ) .
→0
如果对于[, ]的任意分法及小区间[−1 , ]上点 的任意
取法,上述极限都存在,则称函数()在区间[, ]上可积,

第5.1节 定积分的概念及性质

第5.1节  定积分的概念及性质

§5.1 定积分的概念及性质一、定积分的定义5.1.1 定积分: 设)(x f 是定义在],[b a 上的有界函数,在],[b a 上任取一组分点b x x x x x a n i i =<<<<<<=−L L 110,这些分点将],[b a 分为n 个小区间],[10x x ,],[21x x ,…,],[1n n x x −记每个小区间的长度为:),,2,1(1n i x x x i i i L =−=∆−,并记},,,max{21n x x x ∆∆∆=L λ再任取点),,2,1(],[1n i x x i i i L =∈−ξ,作和式:∑=∆ni i i x f 1)(ξ,若和式的极限∑=→∆ni i i x f 1)(lim ξλ存在,则称)(x f 在区间],[b a 上可积,并称该极限为)(x f 在区间],[b a 上的定积分,记为∫b adx x f )(,即∑∫=→∆=ni i i bax f dx x f 1)(lim )(ξλ其中)(x f 称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限,],[b a 称为积分区间。

注:(1)定积分∫b adx x f )(表示一个常数值,它与被积函数)(x f 和积分区间],[b a 有关;(2)定积分的本质是一个和式的极限,该极限与区间的划分以及点i ξ的取法无关;5.1.2 函数可积的条件:(1)若)(x f 在],[b a 上连续,则)(x f 在],[b a 上可积; (2)若)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在],[b a 上可积; (3)若)(x f 在],[b a 上单调有界,则)(x f 在],[b a 上可积; (4)有界不一定可积,可积一定有界,无界函数一定不可积。

5.1.3 定积分的几何意义:∫b adx x f )(表示以)(x f y =为曲边,以b x a x ==,为侧边,x 轴上区间],[b a 为底边的曲边梯形面积的代数和。

同济大学(高等数学)_第五章_定积分及其应用

同济大学(高等数学)_第五章_定积分及其应用
边长及高均为 1 所以
5
01(1 x)dx

1 11 2
1 2

图 5-4
例 3 利用定积分的几何意义,证明 1 1 x 2 dx .
1
2
证明
令 y 1 x2 , x [1,1]
,显然 y 0 ,则由 y 1 x 2 和直线
x 1, x 1, y 0 所围成的曲边梯形是单位圆位于 x 轴上方的半圆.如图 5-5 所示.
b
a
f
( x)dx

c
a
f
(x)dx

b
c
f
(x)dx

这个性质表明定积分对于积分区间具有可加性
值得注意的是不论 a, b, c 的相对位置如何总有等式
b
a
f
(x)dx

c
a
f
(x)dx
b
c
f
(x)dx
成立 例如 当 a b c 时 由于
c
a
f
(x)dx

b
a
f
(x)dx
求曲边梯形的面积的精确值
显然 分点越多、每个小曲边梯形越窄 所求得的曲边梯形面积 A 的近似值就越接近 曲边梯形面积 A 的精确值 因此 要求曲边梯形面积 A 的精确值 只需无限地增加分点 使
每个小曲边梯形的宽度趋于零 记 maxx1, x2 ,L , xn , 于是 上述增加分点 使每
si v( i )ti (i 1,2,L , n).
于是这 n 段部分路程的近似值之和就是所求变速直线运动路程 S 的近似值 即
n
S v(i)ti i 1
求精确值

高教社2024高等数学第五版教学课件-5.1 定积分的概念与性质

高教社2024高等数学第五版教学课件-5.1 定积分的概念与性质
第五章 定积分
第一节 定积分的概念与性质
一、问题的提出
实例1 (求曲边梯形的面积)
由连续曲线 = ()(() ≥ 0)、
轴、直线 = 、 = 所围成的图形
称为曲边梯形。
用矩形面积近似取代曲边梯形面积
y
o
y
a
b
(四个小矩形)
x
o
a
b
x
(九个小矩形)
显然,小矩形越多,矩形总面积越接近曲边梯形面积.
→0
= max ∆
1≤≤
= σ=1 ± σ=1
=
→0

‫ ׬‬
±

‫ ׬‬
→0

性质1可以推广到有限个可积函数作和或者作差的情况.
性质2 被积函数的常数因子可提到积分号的外面,即

‫)( ׬‬
总有下式成立:



‫ )( ׬ = )( ׬‬+ ‫)( ׬‬.
例如,若 < < ,则

‫ ׬‬

=

‫ ׬‬
+

‫ ׬‬





故 ‫ )( ׬ = )( ׬‬− ‫)( ׬‬
= ‫ )( ׬‬+ ‫)( ׬‬.

因为 ≤ () ≤ ,由性质4得

‫ ׬‬


≤ ‫ ׬ ≤ )( ׬‬,

又‫ = ׬‬− ,

故( − ) ≤ ‫ ( ≤ )( ׬‬− ).
性质6(积分中值定理)


[, ],使‫)( ׬‬
设函数()在[, ]上连续,则至少存在一点

5.1 定积分的概念与性质

5.1 定积分的概念与性质

lim ෍ ( )Δ =
→0
=1
则称这个极限为函数()在区间[, ]上的定积分,记为

න ()d
第一节 定积分的概念与性质

定积分
第五章

积分上限


定积分
积分和
න ()d = = lim ෍ ( )Δ
积分下限
→0

=1
被积被
积分积
[, ]积分区间 函 变 表
[, ]
[, ]

( − )≤ න ()d ≤( − ) ( < )


∵ ≤()≤,



∴ න d≤ න ()d≤ න d ,




( − )≤ න () d≤( − ).

第一节 定积分的概念与性质
此性质可用于
估计积分值的
第五章
8. 定积分中值定理
如果 () 在区间[, ]上连续, 则至少存在一点 ∈ [, ], 使

න ()d = ( )( − )


设()在[, ]上的最小值与最大值分别为 , ,

1
න ()d≤
则由性质7可得 ≤

根据闭区间上连续函数介值定理, ∃ ∈ [, ], 使
= lim ෍ ( )
=
lim ෍ ( ) ⋅
→∞
− →∞

故它是有限个数的平均值概念的推广.
第一节 定积分的概念与性质
把区间[, ]分成个小区间,
[0 , 1 ], [1 , 2 ], ⋯ , [−1 , ], ⋯ , [−1 , ]
各个小区间的长度依次为

高等数学课件--D5_1定积分概念与性质

高等数学课件--D5_1定积分概念与性质
第五章 定积分
积分学
不定积分
定积分
第一节 定积分的概念及性质
一、定积分问题举例
第五章
二、 定积分的定义
三、 定积分的近似计算 四、 定积分的性质
2012-10-12 同济高等数学课件
目录 上页 下页 返回 结束
一、定积分问题举例
矩形面积
梯形面积
1. 曲边梯形的面积 设曲边梯形是由连续曲线 以及两直线 所围成 , 求其面积 A .
b
c
b
当 a , b , c 的相对位置任意时, 例如 a b c ,
则有
a
b
c
c
a f ( x ) dx a f ( x ) dx

c
b
f ( x ) dx
b
a f ( x ) dx a f ( x ) dx

b
c
f ( x ) dx
b
c
a f ( x ) dx
7. 设 M max f ( x) , m min f ( x) , 则
[ a , b]
( a b)
2012-10-12 同济高等数学课件
目录 上页 下页 返回 结束
例4. 试证: 证: 设 f (x)
f (x)

sin x ,
x x cos x sin x
则在 (0 , 2 ) 上, 有
2
n
0
y
i 1
lim

2012-10-12
yx
2
n
1 3
同济高等数学课件
注 目录 上页 下页 返回 结束
O
i n
1 x
例2. 用定积分表示下列极限:

第五章 积分 5-1 定积分的概念与基本性质

第五章 积分 5-1 定积分的概念与基本性质
性质 4 若 f (x) 是 [a, b] 上的连续函数, 则 | f (x) | 也是 [a, b] 上的连续函数, 从而可积, 且
b
b
|
a
f (x)d
x|
|
a
f (x)|d
x.
证明 由于 | f (x) | f (x) | f (x) |, 应用性质 3
b
b
b
a | f (x)|d x | a f (x) d x a | f (x)|d x,
43
4
1
1
1
2
7 1 sin 2
1 sin 2 x 1 sin 2
, 3
3
4
所以
21
3
4
4 7
d
x
3
4
dx 1 sin 2
x
3
4
2 3
d
x
.
18
《高等数学》课件 (第五章第一节)
推论 2 设 f R [a, b], 且在 [a, b] 上 f (x) 0, 则
b
a f ( x) d x 0.
性质 2 (积分对区间的可加性) 设 a c b, f R [a, b], 则 f R [a, c], f R [c, b],

b
c
b
f (x) d x f (x) d x f (x) d x.
a
a
c
一般, 当上式中三个积分都存在时, 无论 a, b, c 之间具有怎样 的大小关系, 等式都成立.
当 f (x) R [a, b] 时, 可在积分的定义中, 对 [a, b] 作特殊的分
划, 并取特殊的 i [x i 1, x i] , 计算和式. 如等分区间 [a, b], 并取 点 i 为 [x i 1, x i] 的右端点 x i 或左端点 x i 1 或中点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档