第6章 聚合物的结晶态 6.4结晶行为和结晶动力学
高分子物理聚合物的结晶态

化学因素对稳定性的影响
某些化学物质可以与聚合物分子发生相互作用,影响晶体结构的稳 定性。
03 聚合物结晶态的结构与性质
晶体结构与形态
晶体结构
聚合物结晶态中分子链以有序的 方式排列,形成晶体结构。晶体 结构决定了聚合物的物理性质, 如硬度、韧性、热稳定性等。
04 聚合物结晶态的转变与动力学
聚合物结晶态的转变
熔融结晶
当温度升高到熔点以上时,聚合物从晶体态转变为液态。
退火结晶
将聚合物加热至高于熔点,然后缓慢冷却,使其重新结晶。
应力结晶
在拉伸或压缩应力的作用下,聚合物发生结晶。
聚合物结晶的动力学
1 2
结晶速率
描述聚合物结晶过程的快慢,通常用结晶速率常 数表示。
晶体缺陷与性质
晶体缺陷
聚合物结晶中存在各种缺陷,如位错、空穴、界面等。这些 缺陷影响聚合物的物理性质,如降低机械性能、耐热性和光 学性能。
性质与应用
聚合物结晶态的性质决定了其在不同领域的应用。例如,在 塑料加工中,通过控制结晶形态和尺寸可以提高产品的机械 性能和热稳定性;在纤维制造中,结晶结构影响纤维的强度 和弹性。
分离与提纯
利用聚合物结晶态的差异,可以实现 混合物中不同组分的分离和提纯,如 利用聚合物吸附剂进行吸附分离和色 谱分离等。
化学反应控制
通过控制聚合物的结晶形态,可以影 响化学反应的速率和选择性,从而实 现化学反应的高效控制。
聚合物结晶态的研究展望
新型聚合物材料的开发
01
随着对聚合物结晶态的深入了解,有望开发出具有优异性能的
无定形态
聚合物分子无序排列,没 有明显的晶体结构。如聚 甲基丙烯酸甲酯、聚碳酸 酯等。
第六章 聚合物的结晶态(新)

2、间规PVC 商用为无规,不结晶。 正交,两链锯齿形平面成180°,均平行b轴 3、等规聚α 烯烃 不对称碳原子有各种取代基,由于空间位阻,反 式旁式交替出现的构象能量比全反式低,因此这类 聚合物在晶体中为反式旁式交替出现的螺旋形构象 如PP等为H31的螺旋构象,意为在一个等同周期 中,含有3个重复单元,转1圈。 取代基位阻增大,螺旋扩张,如聚四-甲基-1-戊 烯等为H72
多层晶片的 跨层折叠
连接链
4、隧道—折叠链模型
由于实际高聚物结晶大多是晶相与非晶相共存的, 以上各模型都有片面性。 各种形态都有:晶区、非晶区、伸直链、折叠链、 空穴
5、插线板模型 以PE为例,分子的无规线团在熔体中松弛时间太长, 而实验观察到聚乙烯的结晶速度又很快,结晶时分子 链根本来不及作规则的折叠,而只能对局部链段作必 要调整,即分子链是完全无序进入晶片的。 1)同一晶片中,相邻排列的两 段分子链,不是同一个分子相 连接的链段,而是相邻接的 段和属于不同分子的链段。 2)多层晶片时,一根分子可 以从一个晶片通过非晶区, 进入另一个晶区。再回来也 不是临近的再进入。
6.4.4 影响结晶速度的其它因素
本质上,不同高聚物的结晶速度的差别,是各自
的分子链扩散进入晶相所需的活化能,随分子结 构不同而不同的缘故。 1、链结构愈简单、对称性愈高、立体规整性愈好、 取代基的空间位阻愈小、柔顺性愈好,则结晶速 度愈大。如PE 2、同一高聚物,在相同条件下,分子量低时,结 晶速度大。 3、有的杂质可阻碍结晶的进行,而有的能促进结 晶(成核剂)
设
n vt v 1 1 1 kt1 当 时(体积收缩了一半时 ) e 2 ln kt1n2 v0 v 2 2 2
得 t1 2
最新10高分子物理课件第六章第16讲聚合物的结晶动力学

1
h0 ht ~ t
h
ht - h h0 - h
G=
1 t1
2
0.5
温度
恒定
0
t1/2
t
6.4.3 等温结晶动力学
聚合物结晶过程主要分为两步: 成核过程(Nucleation), 常见有两种成核机理:
均相成核: 由高分子链聚集而成, 需要一定的过冷度 异相成核: 由体系内杂质引起, 实际结晶中较多出现
结晶过程主要分为成核与生长两个过程, 因 此, 影响成核和生长过程的因素都对结晶速 度有影响
主要包括:
结晶温度 外力, 溶剂, 杂质 分子量
结晶温度对结晶速度的影响
成核过程: 涉及晶核的形成与稳定; 温度越高, 分子链的聚集越不容易, 而且形成的晶核也不稳 定. 因此, 温度越高, 成核速度越慢
高密度聚乙烯
141.4
414.4
---
全同立构聚丙烯
183
456
348
等规聚苯乙烯
240
513
449
聚甲醛
183
456
358
全同立构聚丁烯-1
142
415
---
天然橡胶
30
303
248
尼龙6
229
502
413
Hale Waihona Puke 尼龙66267540
420
聚对苯二甲酸乙二醇酯
270
543
459
Tmax (0.80 ~ 0.85)Tm ( K )
均相成核
n=生长维数+1
n=3+1=4
n=2+1=3
n=1+1=2
异相成核
11级高分子物理6 聚合物的结晶态

2019/11/7
5
单晶
0.01%的极稀溶液中缓慢结晶而成菱形片状的片晶, 厚度10nm,大小几μm至几十μm
2019/11/7
6
单晶
2019/11/7
7
球晶
球晶是聚合物结晶中最常见的特征形式。 当结晶性聚合物从浓溶液中析出或从熔体冷却结晶时,
在不存在应力或流动的情况下,都倾向于生成这种更 为复杂的结晶形态。 球晶呈圆球形,直径常在0.5~100μm之间,大的甚至 达cm数量级。
53
6.5.6 杂质对共聚物的熔点的影响
结晶组分的活度
1 Tm
1 Tm0
R Hu
lnaA
如果杂质浓度很低, aA≡XA
各种低分子稀释剂造成的熔点降低关系式
高分子重复单元的 摩尔体积
T1mT1m 0H RuV Vu 1 112
低分子摩尔体积
良溶剂比不良溶剂使熔点降低的效应更大。
vt v exp(ktn) v0 v
vt v 1 v0 v 2
t1/ 2
ln 2 k
1/ n
k ln 2 tn
1/2
2019/11/7
29
6.4.2 Avrami方程用于聚合物的结晶过程
Avrami方程可定量地描述聚合物的结晶前期, 即主期结晶阶段。
在结晶后期,即次期结晶或二次结晶阶段, 由于生长中的球晶相遇而影响生长,方程与 实验数据偏离。
二次结晶问题,在生产中必须考虑。聚酰胺 塑料等制品要在120℃进行热处理即“退 火”,以加速次期结晶过程,促使结晶达到 完全,避免产生变形、开裂。
2019/11/7
30
6.4.3 温度对结晶速度的影响
第六章聚合物结晶态第二讲

2、结晶生长速率的测定
偏光显微镜、小角激光散射法测定球晶半径随时间的增大速 率,即球晶的径向生长速度。
3、结晶总速率的表征
膨胀计法、光学解偏振法和动态X-射线衍射法等测定半结晶 时间t1/2(结晶过程进行到一半所需的时间)。以半结晶时间 t1/2的倒数1/t1/2作为结晶总速率的表征参数。
第六章聚合物结晶态第二讲
1、膨胀计法
❖ 膨胀计法是通过跟踪测定高聚物结晶过程中的比容 变化来计算结晶速率,设备简单,结果较可靠。
❖ 缺点:测量系统的热容量大,从熔融温度降低到结 晶温度需要较长的热平衡时间,而且难于区别降温 引起的体积收缩和结晶作用引起的体积收缩,因此 难于测定结晶速率较大的结晶过程。
第六章聚合物结晶态第二讲
6.4.2 Avrami方程用于聚合物的结晶过程
❖ 高聚物在等温结晶时, 结晶度随时间而不断 增加,最后趋于一个 极限结晶度,这个结
vt v expktn
v0 v
晶过程与小分子结晶
相似,可用Avrami
ν :高聚物的比容
方程来描述:
v0,v∞ ,vt :分别为最 初,最终和时间t时的比容
❖ 淬火工艺通常使结晶高聚物的熔点下降和熔限增大, 而退火处理则相反。
第六章聚合物结晶态第二讲
℃
熔 融 温 度
熔化完成 结晶温度
开始熔化
结晶温度(oC)
结晶第温六章度聚合与物结熔晶态限第二的讲 关系
6.5.2 晶片厚度对熔点的影响
❖ 晶片厚度增加意味着结晶更完善,熔点升高,一般 认为,晶片厚度对熔点的这种影响与结晶的表面能 有关。
❖ Tmax可由玻璃化温度Tg和熔点Tm用以下经 验公式估算
聚合物的结晶动力学

聚合物的结晶动力学本节主要内容:讨论结晶的过程和速度问题,即结晶的动力学问题。
目的:了解聚合物的结构和外界条件对结晶速度和结晶形态的影响,进而通过结晶过程去控制结晶度和结晶形态,以达到控制最终产品性能的目的。
一、高分子结构与结晶的能力聚合物结晶过程能否进行,必须具备两个条件:1、聚合物的分子链具有结晶能力,分子链需具有化学和几何结构的规整性,这是结晶的必要条件——热力学条件。
2、给予充分的条件-适宜的温度和充分的时间——动力学条件。
(一)链的对称性大分子链的化学结构对称性越好,就越易结晶。
例如:聚乙烯:主链上全部是碳原子,结构对称,故其结晶能高达95%;聚四氟乙烯:分子结构的对称性好,具有良好的结晶能力;聚氯乙烯:氯原子破坏了结构的对称性,失去了结晶能力;聚偏二氯乙烯:具有结晶能力。
主链含有杂原子的聚合物,如聚甲醛、聚酯、聚醚、聚酰胺、聚砜等,虽然对称性有所降低,但仍属对称结构,都具有不同程度的结晶能力。
(二)链的规整性主链含不对称碳原子分子链,如具有空间构型的规整性,则仍可结晶,否则就不能结晶。
如自由基聚合制得的聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯等为非晶聚合物,但由定向聚合得到的等规或间规立构聚合物则可结晶。
二烯类聚合物:全顺式或全反式结构的聚合物有结晶能力;顺式构型聚合物的结晶能力一般小于反式构型的聚合物。
反式对称性好的丁二烯最易结晶。
(三)共聚物的结晶能力无规共聚物:1、两种共聚单体的均聚物有相同类型的晶体结构,则能结晶,而晶胞参数随共聚物的组成而发生变化。
2、若两种共聚单元的均聚物有不同的晶体结构,但其中一种组分比例高很多时,仍可结晶;而两者比例相当时,则失去结晶能力,如乙丙共聚物。
嵌段共聚物:各嵌段基本上保持着相对独立性,能结晶的嵌段可形成自己的晶区。
例如,聚酯—聚丁二烯—聚酯嵌段共聚物中,聚酯段仍可结晶,起物理交联作用,而使共聚物成为良好的热塑性弹性体。
影响结晶能力的其它因素:1、分子链的柔性:聚对苯二甲酸乙二酯的结晶能力要比脂肪族聚酯低2、支化:高压聚乙烯由于支化,其结晶能力要低于低压法制得的线性聚乙烯3、交联:轻度交联聚合物尚能结晶,高度交联则完全失去结晶能力。
聚合物的结晶动力学和结晶热力学

第十五讲聚合物的结晶动力学和结晶热力学本讲内容:聚合物的结晶行为和结晶动力学•高分子的结构和结晶能力、结晶速度•结晶动力学及测量•结晶速度的主要影响因素聚合物的结晶热力学•结晶聚合物的熔融过程与熔点•熔点的影响因素重点及要求:掌握高分子的结构和结晶能力、结晶速度;结晶动力学及测量;影响结晶速度的主要因素;结晶聚合物的熔融过程与熔点;熔点的影响因素教学目的:学习高分子的结晶以及影响结晶的因素 5.4 结晶行为和结晶动力学聚合物结晶性聚合物非结晶性聚合物结晶条件1.结晶性聚合物在T m 冷却到T g 时的任何一个温度都可以结晶2.不同聚合物差异很大,结晶所需时间亦5.4.1 结晶特性结晶非晶结晶的必要条件内因:化学结构及几何结构的规整性外因:一定的温度、时间条件:结构简单规整,链的对称性好,取代基空间位阻小,则结晶度高,结晶速度快。
(A) PE 和PTFE 均能结晶,PE 的结晶度高达95%。
(B)聚异丁烯PIB,聚偏二氯乙烯PVDC,聚甲醛POMCH 2C CH 3n CH 3CH 2C Cl n ClO CH 2n 结构简单,对称性好,均能结晶(C )聚酯类、聚酰胺虽然结构复杂,但无不对称碳原子,链呈平面锯齿状,还有氢键,也易结晶NylonPET (D) 定向聚合的聚合物具有结晶能力定向聚合后,链的规整性有提高,从而可以结晶。
Isotactic PP 全同聚丙烯影响因素•分子量•共聚•嵌段•支化5.4.2 Dynamics of Crystallization 解决结晶速度和分析结晶过程中的问题结晶过程中会有体积变化,热效应;也可直接观察。
1.Polarized-light microscopy2.DSC3.Volume dilatomter 体膨胀计法直接观察热效应体积变化(1) Polarized-light microscopy0s30s60s90s120s Polarized-light microscope in our Univ.(2) DSC -结晶放热峰Calculation∞∞∞=∆∆=∫∫A Adt dt H d dt dt H d x x ttt 00)/()/((3) Volume dilatomter 体积膨胀计反S 曲线规定:体积收缩进行到一半时所需要的时间倒数为此温度下的结晶速度12/1−=t Avrami Equation )exp(0n t Kt V V V V −=−−∞∞tn K V V V V t lg lg ]ln lg[0+=−−−∞∞主期结晶:可用Avrami 方程次期(二次)结晶:偏离Avrami 方程的聚合物后期结晶不同成核和生长类型的Avrami 指数值生长类型均相成核n =生长维数+1异相成核n =生长维数三维生长(球状晶体)n =3+1=4n =3+0=3二维生长(片状晶体)n =2+1=3n =2+0=2一维生长(针状晶体)n =1+1=2n =1+0=1n 值等于生长的空间维数和成核过程中的时间维数之和What ’s the meaning of K ?210=−−∞∞V V V V t Let n t K 2/12ln =K –其物理意义也是表征结晶速度结晶速度的影响因素温度–最大结晶温度压力、溶剂、杂质分子量(1) Temperature 晶核的形成晶体的生长与温度有不同的依赖性低温有利晶核的形成和稳定高温有利晶体的生长从而存在最大结晶温度T maxm T T *)85.0~80.0(max =5.1837.063.0max −+=g m T T T Reference低温高温(2)压力、溶剂、杂质(添加剂)压力、应力加速结晶溶剂小分子溶剂诱导结晶杂质(添加剂)若起晶核作用,则促进结晶,称为“成核剂”若起隔阂分子作用,则阻碍结晶生长加入杂质可使聚合物熔点降低(3)分子量分子量M 小,结晶速度快分子量M 大,结晶速度慢5.4.3 Thermodynamics of crystallization 结晶热力学m mm S H T ∆∆=熔融热焓∆H m :与分子间作用力强弱有关。
高分子物理-聚合物的结晶态

• 对各种聚合物的结晶速度与温度关系的考 察结果表明,聚合物本体结晶速度—温度 曲线都呈单峰形,结晶温度范围都在其玻 璃化温度与熔点之间,在某一适当温度下, 结晶速度将出现极大值。
• 经验关系式
Tmax 0.63Tm 0.37Tg 18.5
也有人提出仅从熔点对Tmax进行更简便的估算
• 特点:晶片厚度=分子链长度。
• 例如:PE在>200oC,>4000atm下的结晶。
晶片厚度=103~104 nm,基本上为 伸直的分子链的长度。
• 目前认为:伸直链晶片是一种热力学上最稳 定的高分子晶体。
6. 纤维状晶和串晶
在存在流动场时,高分子链 的构象发生畸变,成为伸展 的形式,并沿流动的方向平 行排列,在适当的条件下, 可发生成核结晶,形成纤维 状晶。
• 随着交联度增加,聚合物便迅速失去结晶能力。
• 分子间力也往往使链柔性降低,影响结晶能力。 但是分子间能形成氢键时,则有利于结晶结构的 稳定。
特例: 以下两种结构单元所组成的无规共聚物在整个 配比范围内都能结晶,且晶胞参数不发生变化。
6.1 常见结晶性聚合物中晶体的晶胞
• 一、晶胞:晶区结构具有重复性,最小重复 单元称为晶胞。
高分子溶液温度较低时边搅 拌边结晶,可以形成一种类 似于串珠结构的特殊结晶形 态——串晶。
6.3 结晶聚合物的结构模型
• 1. 缨状微束模型 • 结晶聚合物中,晶区与非晶区互相穿插,
同时存在,在晶区中,分子链互相平行排 列形成规整的结构,但晶区尺寸很小,一 根分子链可以同时穿过几个晶区和非晶区, 晶区在通常情况下是无规取向的;而在非 晶区中,分子链的堆砌是完全无序的。也 称两相模型 。
4. 小角激光散射法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结晶性聚合物在Tm冷却到Tg时的任何一个温 度都可以结晶 不同聚合物差异很大,结晶所需时间不同; 同一高聚物,结晶温度不同时,结晶速度亦 不相同。
2.
(1) 链的对称性和规整性
分子链的对称性越高, 规整性越好, 越容
易规则排列形成高度有序的晶格
(A) PE和PTFE 均能结晶, PE的结晶度 高达95%, 而且结晶速度极快
Vt -V lg[ -ln ] V0 -V
次期结晶: 结晶后 期偏离Avrami方 程
斜率为n
截距为lgK
T3 T2 T1
主期结晶: 可用 Avrami方程描 述前期结晶
lgt
Avrami指数n
生长类型
三维生长 (球状晶体)
二维生长 (片状晶体) 一维生长 (针状晶体)
= 空间维数 + 时间维数
h
ht - h h0 - h
1
G= 1
t1
2
0.5
温度 恒定
0
t1/2
t
6.4.3 等温结晶动力学
聚合物结晶过程主要分为两步: 成核过程(Nucleation), 常见有两种成核机理:
均相成核: 由高分子链聚集而成, 需要一定的过冷度
异相成核: 由体系内杂质引起, 实际结晶中较多出现
第6章 聚合物的结晶态
聚合物的结晶动力学 Crystallization kinetics of polymers
6.4 结晶行为和结晶动力学
结晶性聚合物
结晶条件
非晶态 晶态
聚 合 物
非结晶性聚合物
分子结构的对 称性和规整性 结晶条件,如 温度和时间等
6.4.1 分子结构与结晶能力、结晶速度
高分子结晶的特点:
(1) PLM
55 50 45 40
121℃ 123℃ 124℃ 125℃
Diameter (μm)
35 30 25 20 15 10 5 0 0 200 400 600 800 1000 1200
Crystallization Time (s)
R G t
(2) DSC
ΔHt
Endotherm Up
(2) 其它结构因素
分子量 共聚
无规, 交替, 嵌段, 接枝
支化 交联
分子链的柔顺性
分子间作用力
6.4.2 结晶速度与测量方法
结晶动力学主要研究聚合物的结晶速度,
分析其结晶过程 结晶过程中有体积的变化和热效应, 也可 直接观察晶体的生长过程 观察晶体生长 Polarized-light microscopy Atomic force microscopy 热效应 DSC Volume dilatometer 体膨胀计法 体积变化
(B)聚异丁烯PIB, 聚偏二氯乙烯PVDC, 聚甲醛POM
CH3 CH2 C CH3
n
Cl CH2 C Cl
O
n
CH2
n
结构简单,对称性好,均能结晶
(C) 聚酯与聚酰胺
O C CH2 4 O C O CH2 CH2 O
n
O C CH2 4
O C H N CH2 6 H N
n
虽然结构复杂,但无不对称碳原子,链 呈平面锯齿状,还有氢键,也易结晶
ΔH
0
2
4
6
Time /min
DSC curve for PE isothermal crystallization
相对结晶度
Re lative Crystallinity X (t ) : H t X (t ) H
(3) 体积膨胀计
规定: 体积收缩一半所需时间的倒数作为该 温度下的结晶速度 表示结晶过程中试样 体积收缩的大小 h0 ht ~ t
均相成核
n=生长维数+1
异相成核
n=生长维数
n=3+1=4
n=2+1=3 n=1+1=2
n=3+0=3
n=2+0=2 n=1+0=1
结晶速率常数K
Vt -V n = exp( -Kt ) V0 -V
Vt V 1 时, V0 V 2
ln 2 K n t1/ 2
G
1 t1
2
K ln 2
生长过程: 涉及分子链向晶核扩散与规整堆砌;
温度越低, 分子链(链段)的活动能力越小, 生长 速度越慢
总结晶速度: 在Tg~Tm之间可以结晶, 但结晶速
度有低温受生长过程控制, 在高温时受成核过 程控制, 存在一个最大结晶速度温度
4. 温度对结晶过程的影响 --结晶速率;球晶大小; 晶片厚度
生长过程(Growth)
高分子链扩散到晶核或晶体表面进行生长, 可以在原 有表面进行扩张生长, 也可以在原有表面形成新核而 生长
N
Heterogeneous
单位体积内 晶核的数目
Homogeneous t
实际聚合物结晶过 程中, 难以分别观察 成核与生长过程, 因 此, 经常将两个过程 一起研究
Avrami Equation
Vt -V n = exp( -Kt ) V0 -V
Avrami指数
结晶速率常数
ht - h n = exp( -Kt ) 膨胀计法 h0 - h H t At n 1 = exp( -Kt ) DSC法 1 - X t = 1 H A
Vt -V lg[-ln ] = lgK + nlgt V0 -V
1
n
5.4.4 影响结晶速度的因素
结晶过程主要分为成核与生长两个过程, 因
此, 影响成核和生长过程的因素都对结晶速 度有影响
主要包括:
结晶温度 外力, 溶剂, 杂质 分子量
结晶温度对结晶速度的影响
成核过程: 涉及晶核的形成与稳定; 温度越高,
分子链的聚集越不容易, 而且形成的晶核也不稳 定. 因此, 温度越高, 成核速度越慢
(D) 定向聚合的聚合物
定向聚合后,链的规整性有提高,从
而可以结晶 atactic isotactic syndiotactic PP PS PMMA
无规高分子是否一定不能结晶?
PVC: 自由基聚合产物, 氯原子电负较大, 分子链上相邻的 氯原子相互排斥, 彼此错开, 近似于间同立构, 因此具有微 弱的结晶能力, 结晶度较小(约5%) PVA: 自由基聚合的聚乙酸乙烯基酯水解而来, 由于羟基体 积小, 对分子链的几何结构规整性破坏较小, 因而具有结晶 能力, 结晶度可达60% 聚三氟氯乙烯: 自由基聚合产物, 具有不对称碳原子且无规, 但由于氯原子与氟原子体积相差不大, 仍具有较强的结晶 能力, 结晶度可达90%