直方图计算与均衡

合集下载

直方图均衡化计算

直方图均衡化计算

直方图均衡化计算直方图均衡化是基于灰度直方图的图像增强的一种方法,还有另外一种方法是直方图规定化。

均衡化的目的是将原始图像的直方图变为均衡分布的的形式,将一非均匀灰度概率密度分布图像,通过寻求某种灰度变换,变成一幅具有均匀概率密度分布的目的图像。

具体原理如下:1、连续灰度级:假定:r代表灰度级,P(r)为概率密度函数。

r值已经过归一化处理,灰度值范围在[0,1]之间。

r与P(r)之间的关系如下:非均匀分布的连续灰度直方图均衡化的目的是将上面的非均匀分布变成如下图所示的均匀分布:均匀分布的连续灰度直方图我们接下来要做的是要找到一种变换S=T(r)使直方图变平直,为使变换后的灰度仍保持从黑到白的单一变化顺序,且变换范围与原先一致,以避免整体变亮或变暗,需要有如下规定:(1)在0 <= r <= 1中,T(r)是单调递增函数,且0 <= T(r) <= 1;(2)反变换r=(s),(s)也为单调递增函数,且0 <= s <= 1。

直方图均衡化变换公式推导图示因为灰度变换不影响像素的位置分布,而且也不会增减像素数目,所以有如下的推导公式:2、离散灰度级:设一幅图像的像素总数为n,分为L个灰度级,其中::表示第K个灰度级出现的个数。

:第K个灰度级出现的概率。

(0<=<=1, k=0,1,2,...,L-1),公式如下:计算的基本步骤如下:(1)求出图像中所包含的灰度级,一般都经过归一化处理,范围在[0,1]之间,也可以定在[0,L-1]之间。

(2)统计各灰度级的像素数目(k=0,1,2,...,L-1)。

(3)计算图像直方图。

(4)计算变换函数,即:(5)用变换函数计算映射后输出的灰度级。

(6)统计映射后新的灰度级的像素数目。

(7)计算输出图像的直方图。

根据上面推导出来的公式以及计算步骤,我们可以结合栗子来加深理解~~~eg:设图像有64*64=4096的像素,有8个灰度级,灰度分布如下所示:由上图我们知道该图像的,和,下一步我们要做的就是通过变换函数求,即:依次可求得,,,,。

图像直方图均衡化原理

图像直方图均衡化原理

图像直方图均衡化原理
图像直方图均衡化是一种常用的图像增强方法,通过调整图像的像素灰度分布,使得图像的对比度增强、细节更加清晰。

其原理主要分为以下几个步骤:
1. 统计像素灰度值的分布:首先,对待处理的图像,统计每个灰度级别的像素点数量,得到原始图像的灰度直方图。

2. 计算累计分布函数:根据灰度直方图,计算每个灰度级别对应的累计分布函数,即该灰度级别及其之前的像素点的累积数量比例。

3. 灰度映射:对于每个像素点,将其灰度值通过累计分布函数进行映射,得到新的灰度值。

通常情况下,可以通过线性映射或非线性映射来实现,使得图像的灰度分布变得更加均匀。

4. 重构图像:将经过灰度映射处理后的灰度值替换原始图像中的对应像素点的灰度值,从而得到均衡化后的图像。

通过图像直方图均衡化处理,可以提高图像的对比度,使暗部和亮部细节更加突出,同时抑制了图像中灰度级别分布不均匀的问题。

这种方法在图像增强、图像分析等领域都有广泛应用。

直方图均衡化原理

直方图均衡化原理

直方图均衡化原理直方图均衡化是一种用于增强图像对比度的经典方法,它通过重新分布图像的像素值来实现增强图像的对比度和亮度。

在本文中,我们将介绍直方图均衡化的原理,包括其基本概念、算法步骤和应用场景。

直方图均衡化的基本概念是通过重新分布图像的像素值,使得原始图像的像素值分布更加均匀,从而增强图像的对比度和亮度。

这种方法的核心思想是将原始图像的灰度直方图进行变换,使得变换后的直方图更加平坦,从而实现对比度的增强。

直方图均衡化的算法步骤可以简单概括为以下几步,首先,计算原始图像的灰度直方图,即统计图像中每个像素值的出现次数;然后,根据原始图像的灰度直方图计算累积分布函数(CDF),用于描述像素值的累积分布情况;接着,根据CDF对原始图像的像素值进行映射,得到变换后的图像;最后,根据映射后的像素值重新构建图像,实现对比度增强。

直方图均衡化的应用场景非常广泛,包括但不限于医学图像处理、遥感图像处理、数字摄影等领域。

在医学图像处理中,直方图均衡化可以帮助医生更清晰地观察病灶,提高诊断准确性;在遥感图像处理中,直方图均衡化可以增强图像的细节信息,提高图像的可视化效果;在数字摄影中,直方图均衡化可以改善照片的曝光不足或曝光过度的问题,提高照片的质量。

总之,直方图均衡化作为一种经典的图像增强方法,具有重要的理论意义和实际应用价值。

通过重新分布图像的像素值,直方图均衡化可以有效地增强图像的对比度和亮度,提高图像的质量和可视化效果。

在实际应用中,我们可以根据具体的需求选择合适的直方图均衡化算法,从而实现对图像的有效增强和优化。

希望本文对直方图均衡化的原理有所了解,对读者有所帮助。

如果您对直方图均衡化还有其他疑问或者需要进一步的了解,欢迎继续阅读相关的文献资料或者咨询相关领域的专业人士。

感谢您的阅读!。

直方图均衡化原理与实现

直方图均衡化原理与实现

直⽅图均衡化原理与实现直⽅图均衡化(Histogram Equalization) ⼜称直⽅图平坦化,实质上是对图像进⾏⾮线性拉伸,重新分配图像象元值,使⼀定灰度范围内象元值的数量⼤致相等。

这样,原来直⽅图中间的峰顶部分对⽐度得到增强,⽽两侧的⾕底部分对⽐度降低,输出图像的直⽅图是⼀个较平的分段直⽅图:如果输出数据分段值较⼩的话,会产⽣粗略分类的视觉效果。

直⽅图是表⽰数字图像中每⼀灰度出现频率的统计关系。

直⽅图能给出图像灰度范围、每个灰度的频度和灰度的分布、整幅图像的平均明暗和对⽐度等概貌性描述。

灰度直⽅图是灰度级的函数, 反映的是图像中具有该灰度级像素的个数, 其横坐标是灰度级r, 纵坐标是该灰度级出现的频率( 即像素的个数) pr( r) , 整个坐标系描述的是图像灰度级的分布情况, 由此可以看出图像的灰度分布特性, 即若⼤部分像素集中在低灰度区域, 图像呈现暗的特性; 若像素集中在⾼灰度区域, 图像呈现亮的特性。

图1所⽰就是直⽅图均衡化, 即将随机分布的图像直⽅图修改成均匀分布的直⽅图。

基本思想是对原始图像的像素灰度做某种映射变换, 使变换后图像灰度的概率密度呈均匀分布。

这就意味着图像灰度的动态范围得到了增加, 提⾼了图像的对⽐度。

图1 直⽅图均衡化通过这种技术可以清晰地在直⽅图上看到图像亮度的分布情况, 并可按照需要对图像亮度调整。

另外,这种⽅法是可逆的, 如果已知均衡化函数, 就可以恢复原始直⽅图。

设变量r 代表图像中像素灰度级。

对灰度级进⾏归⼀化处理, 则0≤r≤1, 其中r= 0表⽰⿊, r= 1表⽰⽩。

对于⼀幅给定的图像来说, 每个像素值在[ 0,1] 的灰度级是随机的。

⽤概率密度函数来表⽰图像灰度级的分布。

为了有利于数字图像处理, 引⼊离散形式。

在离散形式下, ⽤代表离散灰度级, ⽤代表 , 并且下式成⽴:其中, 0≤≤1, k=0, 1, 2, …, n-1。

式中为图像中出现这种灰度的像素数, n是图像中的像素总数, ⽽就是概率论中的频数。

《直方图的均衡化》课件

《直方图的均衡化》课件

直方图均衡化的效果评估
直方图均衡化的效果可以通过比较处理前后的直方图、对比度和视觉效果来 评估,通常希望处理后的图像具有更均匀的像素值分布和更好的对比度。
结论和总结
直方图的均衡化是一种有效的图像增强技术,在图像处理和计算机视觉中具有广泛的应用,能够改善图 像的质量和视觉效果。
《直方图的均衡化》PPT 课件
直方图的均衡化是什么
直方图的均衡化是一种图像增强技术,通过调整图像的亮度分布,使得图像中的像素值更均匀地分布在 整个灰度范围内,从而改善图像的对比度和视觉效果。
直方图的基本概念
直方图是用于表示图像中像素值分布的统计图,横坐标表示像素值,纵坐标 表示该像素值对应的像素数量。
直方图的均衡化原理
直方图均衡化的原理是通过对图像的像素值进行变换,使得原始图像的像素值分布更均匀,同时增强图 像的对比度。
直Байду номын сангаас图均衡化的应用场景
直方图均衡化广泛应用于图像增强、图像处理、计算机视觉等领域,可以改 善图像的质量、增强图像的细节和对比度。
直方图均衡化的步骤
直方图均衡化的步骤包括计算原始图像的像素值累计分布函数、对像素值进 行映射,以及将映射后的像素值替换到原始图像中。

图像处理基础(8):图像的灰度直方图、直方图均衡化、直方图规定化(匹配)

图像处理基础(8):图像的灰度直方图、直方图均衡化、直方图规定化(匹配)

图像处理基础(8):图像的灰度直⽅图、直⽅图均衡化、直⽅图规定化(匹配)本⽂主要介绍了灰度直⽅图相关的处理,包括以下⼏个⽅⾯的内容:利⽤OpenCV 计算图像的灰度直⽅图,并绘制直⽅图曲线直⽅图均衡化的原理及实现直⽅图规定化(匹配)的原理及实现图像的灰度直⽅图⼀幅图像由不同灰度值的像素组成,图像中灰度的分布情况是该图像的⼀个重要特征。

图像的灰度直⽅图就描述了图像中灰度分布情况,能够很直观的展⽰出图像中各个灰度级所占的多少。

图像的灰度直⽅图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数:其中,横坐标是灰度级,纵坐标是该灰度级出现的频率。

不过通常会将纵坐标归⼀化到[0,1]区间内,也就是将灰度级出现的频率(像素个数)除以图像中像素的总数。

灰度直⽅图的计算公式如下:p (r k )=n kMN其中,r k 是像素的灰度级,n k 是具有灰度r k 的像素的个数,MN 是图像中总的像素个数。

OpenCV 灰度直⽅图的计算直⽅图的计算是很简单的,⽆⾮是遍历图像的像素,统计每个灰度级的个数。

在OpenCV 中封装了直⽅图的计算函数calcHist ,为了更为通⽤该函数的参数有些复杂,其声明如下:void calcHist( const Mat* images, int nimages,const int* channels, InputArray mask,OutputArray hist, int dims, const int* histSize,const float** ranges, bool uniform = true, bool accumulate = false );该函数能够同时计算多个图像,多个通道,不同灰度范围的灰度直⽅图.其参数如下:images ,输⼊图像的数组,这些图像要有相同⼤⼤⼩,相同的深度(CV_8U CV_16U CV_32F ).nimages ,输⼊图像的个数channels ,要计算直⽅图的通道个数。

直方图均衡化

直方图均衡化
• 基本思想是把原始图的直方图变换为均匀分 布的形式,这样就增加了像素灰度值的动态 范围,从而达到增强图像整体对比度的效果
直方图均衡化
0≤r≤1 • T (r) 满足下列两个条件: (1) 在区间0≤r≤1中为单值且单调递增 (2)当0≤r≤1时,0≤ ≤1 • 条件(1)保证原图各灰度级在变换后仍保
定义(2):
一个灰度级在范围[0,L-1]的数字图像的直 方图是一个离散函数
p(rk ) nk rk / n
n 是图像的像素总数
nk是图像中灰度级为rk的像素个数
rk是第 个灰度级, = 0,1,2,…,L-1
比较两种定义
h(rk ) nk
p(rk ) nk / n
其中,定义(2)
定义(1) 定义(2)
直方图均衡化
对于离散值:
pr
(rk
)
nk n
已知变换函数的离散形式为:
sk 称作直方图均衡化
将输入图像中灰度级为 rk(横坐标)的像素映射到
输出图像中灰度级为 s k(横坐标)的对应像素
得到:
即:
sk
T(rk )
k j0
pr (rj )
k j0
nj n
• 使函数值正则化到[0,1]区间,成为实数函数
• 函数值的范围与象素的总数无关
• 给出灰度级 rk 在图像中出现的概率密度统

图像直方图的定义举例
直方图均衡化
• 直方图应用举例——直方图均衡化 • 希望一幅图像的像素占有全部可能的灰度级 且分布均匀,能够具有高对比度
• 使用的方法是灰度级变换:s T (r)
持从黑到白(或从白到黑)的排列次序
• 条件(2)保证变换前后灰度值动态范围的 一致性

直方图均衡的基本原理及流程

直方图均衡的基本原理及流程

直方图均衡的基本原理及流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!直方图均衡化是一种提高图像对比度的图像处理方法,它的基本原理是通过调整图像的灰度级分布,使得图像的直方图尽可能均匀地分布,从而达到增强图像中细节的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直方图计算与与均衡
一、实验要求:
1.读入给定的图像文件
2.求输入图像文件的直方图,并且利用MATLAB画出来
3.设计算法完成直方图的均衡,并利用MATLAB输出
4.将直方图均衡后的文件以图像形式输出
5.观察比较均衡前后图像与直方图的区别
二、实验原理
直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。

直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。

直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。

(I)直方图均衡化的过程:
1)列出原始图像和变换后图像的灰度级(L是灰度级的个数);
2)统计员图像中各灰度级的像素个数;
3)计算原始图像直方图P(i)=Ni/N;
4)计算累计直方图P(j)=P(1) + P(2) + P(3) +…+ P(i);
5)利用灰度值变换函数计算变换后的灰度值,兵四舍五入取整;j=INT[(L-1)Pj+0.5]
6)确定灰度变换关系i→j,据此将原图像的灰度值f(m,n)=i修正为g(m,n)=j;
7)统计变换后个灰度级的像素个数Nj;
8)计算变换后图像的直方图Pj=Nj/N
(II)图像均衡化后的缺点:
1)变换后图像的灰度级减少,某些细节消失;
2)某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。

直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。

这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。

通过这种方法,亮度可以更好地在直方图上分布。

这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展
常用的亮度来实现这种功能。

三、实验思路:
图一(直方图计算与均衡流程图)四、实验代码
clc;
clear;
X=imread('ccc.png');%
I=rgb2gray(X);%灰度化
[m,n]=size(I);
GP=zeros(1,256);
for k=0:255
GP(k+1)=length(find(I==k))/(m*n);%得到每个像素出现的概率end
S1=zeros(1,256);
for i=1:256
for j=1:i
S1(i)=GP(j)+S1(i);%得到像素的分布函数
end
end
S2=round(S1*256+0.5);%得到四舍五入的整数
for i=1:256
GPeq(i)=sum(GP(find(S2==i)))
end
figure(1);
subplot(2,2,1);SI=imhist(I);SI=SI/(m*n);bar(0:255,SI,'b'); xlim([0, 256])title('系统设计原图像直方图');
xlabel('灰度值');ylabel('出现概率');%系统直方图
subplot(2,2,2);bar(0:255,GP,'b');
title('自己设计原图像直方图');xlabel('灰度值');
ylabel('出现概率');xlim([0, 256])
subplot(2,2,3);bar(0:255,GPeq,'b');%自己绘制直方图
title('均衡后图像直方图');xlabel('灰度值');ylabel('出现概率'); xlim([0, 256])
subplot(2,2,4);bar(0:255,S2);title('函数直方图非线性均衡曲线')
II=I;
for i=0:255
II(find(I==i))=S2(i+1);
end
figure(2);
subplot(1,2,1);imshow(I);title('原图像');
subplot(1,2,2);imshow(II);title('均衡后图像');
五、实验结果与分析
图二直方图对比曲线
由图二可以发现自己设计的直方图与matlab自带的直方图显示数据相同,说明设计流程与结果都没有错误。

从原图像直方图可以发现大部分灰度级像素都是集中在90-150这个范围,这使得图像对比度不能够很好的体现,为了使图像更加直观容易理解,我将直方图进行了均衡,第四幅图是用来进行非线性均衡的曲线,将横轴与纵轴的映射关系颠倒,使得原来占灰度级概率大的区域得到拉伸,灰度级概率小的区域进行压缩,让图像的对比更加鲜明。

从第三幅图形可以发现均衡之后的灰度级大部分是均匀分布,对原图像有非常鲜明的改经,但是总体亮度没有改变。

图三均衡前后对比图像
从图片对比中可以发现在均衡后的图像轮廓更加清晰,左边原图对于草的直观印象就是一堆,看不出明显的差别,但是右边均衡之后的图像草的颜色出现了不同,有草与草之间出现的白色空隙,单独一颗草的杂乱轮廓。

路面也出现了坑坑洼洼的地形,将细节部分更加清晰表现出来。

六、思考题
1、在图像经过直方图均衡之后是否出现了背景增强?有什么解决办法?
答:直方图均衡之后会出现背景增强。

为了减少因为均衡技术而带来的不好背景增强,可以采用局部直方图均衡算法和限制对比度自适应直方图均衡化方法。

相关文档
最新文档