2016年秋季学期新人教版八年级数学上册12.2.5 三角形全等的条件

合集下载

八上数学人教版课程三角形全等的判定

八上数学人教版课程三角形全等的判定

文章编号:A0001概念梳理:1. 三角形全等的概念在数学上,当两个三角形的对应三条边相等时,我们可以说这两个三角形是全等的。

这个概念在数学课程中是非常基础也是非常重要的,因为全等三角形具有许多重要的性质和应用。

2. 三角形全等的判定条件要判定两个三角形是否全等,我们需要掌握一些判定条件,包括SSS 全等判定、SAS全等判定、ASA全等判定以及其他一些特殊情况的判定方法。

这些判定条件是同学们学习三角形全等的重要工具,也是对自己知识掌握程度的检验。

3. 八年级上册数学人教版课程关于三角形全等的教学内容在八年级上册数学教材中,三角形全等是一个重要的知识点,通过学习这一部分内容,同学们可以进一步巩固和扩展自己的几何知识,并且为高中数学课程的学习打下坚实的基础。

文章主体:一、SSS全等判定条件在课程中,我们首先学习了SSS全等判定条件。

当两个三角形的三条边分别相等时,我们可以说这两个三角形是全等的。

在实际的教学中,老师通常会通过具体的例子和练习来帮助我们理解这一判定条件。

通过练习,我们可以更加熟练地应用这一条件来判断两个三角形是否全等。

二、SAS全等判定条件除了SSS全等判定条件,SAS全等判定条件也是我们在课程中学习到的重要内容。

SAS全等判定条件是指当两个三角形的两边和夹角分别相等时,这两个三角形是全等的。

理解和掌握SAS全等判定条件可以帮助我们更好地运用几何知识,在解决实际问题时提供更多的思路和方法。

三、ASA全等判定条件除了SSS和SAS全等判定条件之外,ASA全等判定条件也是课程中的重要内容。

ASA全等判定条件是指当两个三角形的一对对应角和夹边分别相等时,这两个三角形是全等的。

在教学中,老师会通过多种方式来向我们解释和演示ASA全等判定条件的具体应用,帮助我们更好地理解和掌握这一知识点。

四、其他判定条件除了SSS、SAS和ASA全等判定条件外,课程中还会介绍一些特殊情况下的全等判定条件,比如一些特殊角的情况,或者是一些特殊形状的条件。

八年级数学上册 12.2 三角形全等的判定 第2课时 用“SAS”判定三角形全等说课稿 (新版)新人

八年级数学上册 12.2 三角形全等的判定 第2课时 用“SAS”判定三角形全等说课稿 (新版)新人

八年级数学上册 12.2 三角形全等的判定第2课时用“SAS”判定三角形全等说课稿(新版)新人教版一. 教材分析本次说课的内容是新人教版八年级数学上册第12.2节三角形全等的判定,第2课时,主要讲解的是用“SAS”判定三角形全等。

这一节内容是在学习了三角形相似和三角形全等的概念基础上进行的,是三角形全等判定方法中的重要一环。

通过本节课的学习,学生能够理解和掌握“SAS”判定三角形全等的方法,并能够运用到实际问题中。

二. 学情分析根据我对学生的了解,他们在学习了三角形相似和三角形全等的基础上,对于全等的概念已经有了初步的认识,但是对于如何用“SAS”判定三角形全等,可能还存在着一些理解和运用上的困难。

因此,在教学过程中,我需要通过具体的例子和练习题,引导学生理解和掌握“SAS”判定三角形全等的方法。

三. 说教学目标本次课的教学目标是让学生理解和掌握“SAS”判定三角形全等的方法,能够运用“SAS”判定三角形全等,并能够解决实际问题。

四. 说教学重难点教学重点是让学生理解和掌握“SAS”判定三角形全等的方法,教学难点是如何引导学生理解和运用“SAS”判定三角形全等。

五. 说教学方法与手段在教学过程中,我会采用讲解法、示范法、练习法等教学方法。

通过讲解法,让学生了解“SAS”判定三角形全等的原理;通过示范法,让学生直观地理解“SAS”判定三角形全等的步骤;通过练习法,让学生巩固“SAS”判定三角形全等的方法。

六. 说教学过程1.导入:通过复习三角形相似和三角形全等的概念,引导学生进入本节课的学习。

2.讲解:“SAS”判定三角形全等的方法:首先,让学生观察两个三角形,找出它们的两个边和夹角分别相等;然后,根据全等三角形的性质,得出这两个三角形全等。

3.示范:通过具体的例子,演示如何用“SAS”判定三角形全等,让学生直观地理解全等的判定过程。

4.练习:让学生通过练习题,运用“SAS”判定三角形全等,巩固所学的方法。

人教版八年级数学上册教学课件三角形全等的判定

人教版八年级数学上册教学课件三角形全等的判定

AB = CD
A EB
∴△ADE≌△CBF ( SSS )
② ∵ △ADE≌△CBF
∴ ∠A=∠C (
全等三角形 对应角相等 )
课堂小结
内容
有三边对应相等的两个三角形 全等(简写成 “SSS”)
谈谈本节课你有思哪路些分析收获以结现合有及图条形件存找,在隐证含准的条备件条困和件惑?
边边边 应 用
书写步骤
学习目标
1.通过三角形的稳定性,体验三角形全等的 “边边边”条件.
2.掌握并会运用“边边边”定理判定两个三 角形的全等.
学习重、难点
重点:寻求三角形全等的条件的方法. 难点:寻求三角形全等的条件的依据.
尝试发现,探索新知
生生 互动
已知△ABC ≌△ DEF,找出其中相等的边与角:
谈谈本节课你有哪些收获以及存在的困惑?
A
A′
B
C
B′
C′
想一想: 作图的结果反映了什么规律?你能用文
字语言和符号语言概括吗?
知识要点
“边边边”判定方法
文字语言:三边对应相等的两个三角形全等。
(简写为“边边边”或“SSS”) A
几何语言:
在△ABC和△ DEF中,
AB=DE, BC=EF,
BD
C
CA=FD,
∴ △ABC ≌△ DEF(SSS). E
∴ ∠A=∠C (
)
重点:寻求三角形全等的条件的方法.
活,用智慧点亮人
生!
一部分,是否也能保证两个三角形全等呢?从这节课开始,我们来探究全等三角形的判定.
∴△ABC≌△FDE(SSS);
=,
∴ △ABD ≌ △ACD ( SSS ).
情景问题

人教版八年级数学上册 12.2三角形全等的判定 知识点归纳

人教版八年级数学上册 12.2三角形全等的判定 知识点归纳

人教版八年级数学上册 12.2三角形全等的判定 知识点归纳
全等三角形的判定依据:
①三边对应相等的两个三角形全等,简称“边边边”或“SSS ”。

②两边一夹角对应相等的两个三角形全等,简称“边角边”或“SAS ”。

③两角一夹边对应相等的两个三角形全等,简称“角边角”或“ASA ”。

④两角一对边对应相等的两个三角形全等,简称“角角边”或“AAS ”。

⑤一条斜边和一条直角边对应相等的两个直角三角形全等,简称“斜边直角边”或“HL ”。

温馨提示:“SSA ”和“AAA ”不能证明两个三角形全等。

全等三角形的证明格式:
SSS 、SAS 、ASA 、AAS 的证明格式: HL 的证明格式:
在△ABC 与△DEF 中 在Rt △ABC 与Rt △DEF 中 ∵{ 条件1条件2条件3
∵{条件1条件2 ∴△ABC ≌△DEF (条件) ∴△ABC ≌△DEF (HL )。

八年级数学上册课件三角形全等的条件HL

八年级数学上册课件三角形全等的条件HL
A
B
D
C

巩固练习
2.如图,C是路段的中点,两人 从C同时出发,以相同的速度分别 沿两条直线行走,并同时到达D,E 两地,⊥,⊥,D,E与路段的距离 相等吗?为什么?
D
A
C
E
B​
巩固练习
3.如图,,⊥, ⊥,. 求证:.
C
D
F
E
A
B

(1)学习了HL。 (2)由实践证明HL是真命题。


例题讲解:
例1. 已知: AC⊥BC,BD⊥AD,AC=BD.
求证:BC=AD.
D
C
A
B

巩固练习
1.如图,⊥,⊥, =。 求证∠1=∠2 。 A
12
B
D
C

如图所示,两根长度为10m的绳子,一端 系在旗杆上,另一端分别固定在地面上的两个 木桩上,两个木桩离旗杆底部的距离相等吗? 为什么?请说明评价 小结 作业布置

判定两个三角形全等 要具备什么条件?

边边边:
三边对应相等的两个 三角形全等。

边角边:
有两边和它们夹角对应 相等的两个三角形全等。

角边角:
有两角和它们夹边对应 相等的两个三角形全等

角角边:
有两角和其中一个角的 对边对应相等的两个三 角形全等

讨论
1.对于两个直角三角形,除了直角 相等的条件,还要满足几个条件,这两 个直角三角形就全等了?
A
D
B
CE
F

讨论
2.对于两个直角三角形,如果满足, 斜边和一条直角边对应相等,这两个直角 三角形全等吗?

数学人教版八年级上第十二章12.2 三角形全等的判定

数学人教版八年级上第十二章12.2 三角形全等的判定

12.2 三角形全等的判定1.三角形全等的判定方法一:边边边(SSS) (1)边边边:三边..对应相等的两个三角形全等(可以简写成“边边边”或“SSS ”). 这个判定方法告诉我们:当三角形的三边确定后,其形状、大小也就随之确定,这就是三角形的稳定性...,它在实际生活中应用非常广泛. (2)书写格式:①先写出所要判定的两个三角形;②列出条件:用大括号将两个三角形中相等的边分别写出; ③得出结论:两个三角形全等.如下图,在△ABC 和△A ′B ′C ′中,∵⎩⎪⎨⎪⎧AB =A ′B ′,BC =B ′C ′,AC =A ′C ′,∴△ABC ≌△A ′B ′C ′(SSS).警误区 书写判定两个三角形全等的条件 在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量.如上图,等号左边表示△ABC 的量,等号右边表示△A ′B ′C ′的量.符号“∵”表示“因为”,“∴”表示“所以”,在以后的推理中,这样书写简捷、方便.要注意它们的区别.(3)作一个角等于已知角. 已知:∠AOB .求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB .作法:如上图所示,①以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ; ②画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′; ③以点C ′为圆心,CD 长为半径画弧,与上一步中所画的弧交于点D ′; ④过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB . 【例1】 如图所示,已知AB =DC ,AC =DB ,求证:△ABC ≌△DCB .分析:已知两边对应相等,由图形可知BC 为两个三角形的公共边,所以△ABC ≌△DCB (SSS).证明:在△ABC 和△DCB 中,∵⎩⎪⎨⎪⎧AB =DC ,BC =CB (公共边),AC =DB ,∴△ABC ≌△DCB (SSS).2.三角形全等的判定方法二:边角边(SAS)(1)边角边:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).(2)书写格式:如下图,在△ABC 和△A ′B ′C ′中,∴⎩⎪⎨⎪⎧AB =A ′B ′,∠A =∠A ′,AC =A ′C ′,∴△ABC ≌△A ′B ′C ′(SAS).警误区 不能用“SSA ”判定三角形全等有两边及其一边的对角对应相等的两个三角形不一定全等,即不能用“SSA ”作为三角形全等的判定.如图,在△ABC 和△ABD 中,AB=AB ,AC=AD 两条边对应相等,并且边AC ,AD 所对的角∠B=∠B ,很显然,△ABC 和△ABD 不全等.(3)注意:①在“边角边”这个判定方法中,包含了边和角两种元素,且角是两边的夹角,而不是其中一边的对角.②为了避免“SAS ”与“SSA ”(两边不夹角)混淆,在应用该方法时,要观察图形确定三个条件,按“边→角→边”的顺序排列,并按此顺序书写.【例2】 如图,两个透明三角形纸片叠放到桌面上,已知∠ACE =∠FCB ,AC =EC ,BC =FC ,则△ABC 与△EFC 全等吗?请说明理由.解:△ABC ≌△EFC .理由:∵∠ACE =∠FCB ,∴∠ACE +∠ECB =∠FCB +∠ECB , 即∠ACB =∠ECF .在△ABC 和△EFC 中, ∵⎩⎪⎨⎪⎧AC =EC ,∠ACB =∠ECF ,BC =FC ,∴△ABC ≌△EFC (SAS).3.三角形全等的判定方法三、四:角边角(ASA)及角角边(AAS) (1)角边角:①内容:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).②书写格式:如图,在△ABC 和△A ′B ′C ′中,∵⎩⎪⎨⎪⎧∠A =∠A ′,AB =A ′B ′,∠B =∠B ′,∴△ABC ≌△A ′B ′C ′(ASA).(2)角角边:①内容:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”).②书写格式:如下图,在△ABC 和△A ′B ′C ′中,∵⎩⎪⎨⎪⎧∠A =∠A ′,∠B =∠B ′,BC =B ′C ′,∴△ABC ≌△A ′B ′C ′(AAS).(3)“角边角”与“角角边”的关系:由三角形的内角和定理知,只要两个三角形的两个角对应相等,则其第三个角也对应相等,所以两角及一边对应相等的两个三角形一定全等.无论这一边是“对边”还是“夹边”,只要对应相等即可判定两个三角形全等.(4)注意:①在运用“ASA ”时,要从图形上确定是按“角→边→角”的顺序排列条件; ②在运用“AAS ”时,要从图形上确定是按“角→角→边”的顺序排列条件. 警误区 不能用“AAA ”判定三角形全等有三个角对应相等的两个三角形不一定全等,即不能用“AAA ”作为三角形全等的判定.如下图,在△ABC 和△A ′B ′C ′中,∠A =∠A ′,∠B =∠B ′,∠C =∠C ′,很显然,△ABC 和△A ′B ′C ′不全等.【例3】 (一题多证)已知,如图,D 是△ABC 的边AB 上一点,AB ∥FC ,DF 交AC 于点E ,DE =EF .求证:AE =CE .证法一:∵AB ∥FC , ∴∠ADE =∠F .在△ADE 和△CFE 中, ∵⎩⎪⎨⎪⎧∠ADE =∠F ,DE =FE ,∠AED =∠CEF ,∴△ADE ≌△CFE (ASA).∴AE =CE . 证法二:∵AB ∥FC ,∴∠A =∠ECF ,∠ADE =∠F .在△ADE 和△CFE 中,∵⎩⎪⎨⎪⎧∠A =∠ECF ,∠ADE =∠F ,DE =FE ,∴△ADE ≌△CFE (AAS).∴AE =CE .4.直角三角形全等的判定方法:斜边、直角边(HL)(1)内容:斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).(2)书写格式:如下图,在Rt △ABC 和Rt △A ′B ′C ′中, ∵⎩⎪⎨⎪⎧AB =A ′B ′,BC =B ′C ′, ∴Rt △ABC ≌Rt △A ′B ′C ′(HL).警误区 “HL ”适用的前提条件 (1)“HL ”只适合直角三角形全等的判定,不适合...一般三角形全等的判定;(2)直角三角形全等的判定既可以用“SSS ”“SAS ”“ASA ”和“AAS ”,又可以用“HL ”.【例4】 如图,AD ⊥CD ,AB ⊥CB ,垂足分别是D ,B ,且AD =AB ,求证:AC 平分∠DCB .证明:∵AD ⊥CD ,AB ⊥CB , ∴∠D 与∠B 都是直角. 在Rt △ADC 和Rt △ABC 中, ∵⎩⎪⎨⎪⎧AD =AB ,AC =AC , ∴Rt △ADC ≌Rt △ABC (HL).∴∠ACD =∠ACB ,即AC 平分∠DCB .5.判定两个三角形全等的常用思路判定两个三角形全等的方法有:“SSS ”“SAS ”“ASA ”“AAS ”“HL ”这五种,其中“HL ”只适合于直角三角形.在具体运用过程中,要认真分析已知条件,挖掘题中隐含条件,有目的地选择三角形全等的条件,一般可按下面的思路进行:(1)已知两边⎩⎪⎨⎪⎧找第三边→SSS ,找夹角→SAS ,找直角→HL.(2)已知一边一角⎩⎪⎨⎪⎧边为角的对边→找任一角→AAS ,边为角的邻边⎩⎪⎨⎪⎧ 找角的另一邻边→SAS ,找边邻着的另一角→ASA ,找边的对角→AAS.(3)已知两角 ⎩⎪⎨⎪⎧找夹边→ASA ,找任一边→AAS. 6.全等三角形判定和性质的综合运用全等三角形的性质是对应角相等、对应边相等,全等三角形的判定是“SAS ”“ASA ”“AAS ”“SSS ”“HL ”.在说明线段相等或角相等时,常常需要综合运用全等三角形的性质和判定.说明两条线段或两个角相等时,可考虑两条线段或两个角所在的两个三角形是否全等,若由已知条件不能直接说明这两个三角形全等时,可以由已知条件先推出其他的三角形全等,再由全等三角形的性质得到一些线段或角相等,为说明前面的三角形全等提供条件.【例5】 如图,已知∠E =∠F =90°,∠1=∠2,AC =AB ,求证:△AEB ≌△AFC.分析:已知∠E =∠F =90°,AC =AB ,即已知一边及一角,并且这边是角的对边,根据判定两个三角形全等的常用思路再找另一角即可,由∠1=∠2,可得∠EAB =∠FAC ,再根据全等的判定方法AAS 可证△AEB ≌△AFC .证明:∵∠1=∠2,∴∠1+∠BAC =∠2+∠BAC , 即∠EAB =∠FAC .在△AEB 和△AFC 中,∵⎩⎪⎨⎪⎧∠E =∠F ,∠EAB =∠FAC ,AB =AC ,∴△AEB ≌△AFC (AAS).【例6】 如图1,已知AB ∥CD ,OA =OD ,AE =DF ,求证:EB ∥CF.图1证明:如图2,∵AB ∥CD ,∴∠4=∠3. 在△OAB 和△ODC 中,∵⎩⎪⎨⎪⎧∠4=∠3,OA =OD ,∠2=∠1,图2∴△OAB ≌△ODC (ASA).∴OB =OC . 又∵AE =DF ,OA =OD ,∴OA +AE =OD +DF ,即OE =OF . 在△BOE 和△COF 中,∵⎩⎪⎨⎪⎧OB =OC ,∠2=∠1,OE =OF ,∴△BOE ≌△COF (SAS). ∴∠E =∠F .∴EB ∥CF .7.全等三角形判定中的探究性问题动态探究型问题一般是指几何图形的运动,包括点动(点在线上运动)、线动(线的平移、对称、旋转)、面动〔平面几何图形的平移、对称(翻折)、旋转〕.这类问题具有灵活性、多变性,常融入三角形,综合运用三角形全等知识.但万物皆有源,几何以点为源泉,无数个点可以形成各种图形,所以图形的运动其实是无数个点的运动.点动带动图形动,图形动引起点的位置发生变化,相辅相成,变化无穷,但万变不离其宗,解决问题要抓住一些关键点即可.对于运动变化过程中的探索性问题的求解,应动中取静,先取某一特定时刻物体的状况进行探究,获得结论,再由特殊推知其一般结论,并运用几何知识(全等三角形的判定)加以证明.【例7】 (科学探究题)如图,在△ABC 中,AB =AC =10 cm ,BC =8 cm ,点D 为AB 的中点.如果点P 在线段BC 上以3 cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.(1)若点Q 的运动速度与点P 的运动速度相等,经过1 s 后,△BPD 与△CQP 是否全等,请说明理由;(2)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?解:(1)∵t =1 s ,∴BP =CQ =3×1=3(cm). ∵AB =10 cm ,点D 为AB 的中点,∴BD =5 cm. 又∵PC =BC -BP ,BC =8 cm , ∴PC =8-3=5(cm). ∴PC =BD .又∵AB =AC ,∴∠B =∠C . ∴△BPD ≌△CQP .(2)∵v P ≠v Q ,∴BP ≠CQ .又∵△BP D 与△CQP 全等,∠B =∠C , 则BP =PC =4 cm ,CQ =BD =5 cm ,∴点P ,点Q 运动的时间t =BP 3=43(s).∴v Q=CQt=543=154(cm/s).。

(名师整理)部编人教版数学八年级上册第12章第2节《三角形全等的判定》精品课件


1.如图,去修补一块玻璃,问带哪一 块玻璃去可以使得新玻璃与原来的完 全一样?
分析:带Ⅲ去,可以根据SAS得 到与原三角形全等的一个三角形.
Ⅰ Ⅱ

知识应用
2.已知:AD=CD,BD平分∠ADC .
求证:(1)∠A=∠C;
(2)AB=BC.
B
分析:可先证△ABD≌△CBD(SAS)
再根据全等三角形的性质证角或线段相等.
【解析】数量关系:AA′=BB ′,理由如下:
∵O是AB ′,A′B的中点,∴OA=OB ′,OA′=OB.
又∵∠A′OA=∠BOB ′,∴在△A′OA和△BOB ′中,
OA OB , AOABOB
OA OB,
∴△A′OA≌△BOB ′(SAS).
(1)
E (2)△ADC≌△CBA 根据“SAS”
(1)△ABC≌△EFD 根据“SAS”
3.如图,点A,E,B,D在同一条直线上,AE=DB,AC=DF, AC∥DF.请探索BC与EF有怎样的位置关系?并说明理由.
F
AE
BD
C
【解析】∵AC∥DF,
∴∠A=∠D(两直线平行,内错角相等). 又∵ AE=DB ∴ AE+BE=DB+BE,即AB=DE. 在△BCA和△EFD中,
判断 三角 形全 等的 条件
三边ห้องสมุดไป่ตู้应相等
(SSS)
一锐角和它的邻边对应相等 (ASA)
一锐角和它的对边对应相等 (AAS)
两直角边对应相等
(SAS)
斜边和一条直角边对应相等 (HL)
国虽大,好战必亡;天下 虽安,忘战必危.
——《司马法》
2. 在射线A′M上截取A′B′=AB; 3. 在射线A′N上截取A′C′=AC; 4. 连接B′C′; ∴△A′B′C′就是所求的三角形.

八年级数学上册 12.2 三角形全等的判定课件 (新版)新人教版


7.如图所示,要测量河两岸相对的A,B两点间的距离,可以 在AB的垂线BF上取两点C,D,使CD=BC,再确定出BF的 垂线DE,使点A,C,E在一条直线上,这时测得的ED的长就 是AB的长,请说明理由.
解:∵AB⊥BD,ED⊥BD,
∴∠ABC=∠EDC=90°. 又∵∠ACB=∠ECD,BC=DC,
证明:∵AB∥CD,∴∠BAC=∠ECD.
在△ABC和△CED中,
AB CE,
B
A
C
ECD,
A C C D,
∴△ABC≌△CED(SAS),∴BC=ED.
考查角度2 综合应用多种判定证明两个三角形全等
例2 如图所示,已知AB=AC,∠B=∠C,BD=CE,BE交CD于点O,连接
AO.求证∠BAO=∠CAO.
【规律方法】 全等三角形的性质和判定的综合应用可以判断 直线的位置关系,也可以证明线段或角相等等问题.
4.如图所示,在△ABC中,BD,CE分别是AC,AB边上的高,BQ=AC,点 F在CE的延长线上,CF=AB,求证AF⊥AQ.
证明:∵BD,CE分别是AC,AB边上的高,
∴∠ADB=90°,∠AEC=90°,
八年级数学·上
新课标 [人]
第十二章 全等三角形 12.2 三角形全等的判定
证明两个三角形全等 考查角度1 利用一种判定证明两个三角形全等 例1 如图所示,在△ABC和△ABD中, AC与BD相交于点E,
AD=BC,∠DAB=∠CBA.求证AC=BD.
〔解析〕要证AC=BD,需要证这两条线段所在的 三角形全等,这两个三角形有一条公共边,再加已 知条件,用边角边定理来证这两个三角形全等.
(2)方案②也是可行的,理由如下:
ABC EDC 90,

八年级数学上册《12.2三角形全等的判定》三角形全等的条件要点全析 (新版)新人教版

三角形全等的条件·要点全析1.探索三角形全等的条件 三角形有三条边,三个内角共六个基本元素,全等三角形的六个元素都分别对应相等.反过来,如果两个三角形的三组边对应相等并且三组角也对应相等.那么它们必定可以重合,根据定义,它们一定全等. 但是,判定两个三角形全等真的需要六个条件吗?探索发现:两个三角形满足一个条件(一条边或一个内角相等)或两个条件都不能确定它们是否全等,而满足三个适当的条件就可以判定两三角形全等.2.三角形全等的条件一:“SSS ”或“边边边”(1)SSS :三边对应相等的两个三角形全等,简写成“边边边”或“SSS ”. (2)书写格式:如图13-2-1.在△ABC 和△A ′B ′C ′中,①⎪⎩⎪⎨⎧'''''',=,=,=C B BC C A AC B A AB ②∴ △ABC ≌△A ′B ′C ′(SSS ).③(3)书写格式的步骤分三步:第一步:指出在哪两个三角形中.如上边的①,在△ABC 和△A ′B ′C ′中. 第二步:按条件中的边角顺序列出三个条件.如上边的②. 第三步;写出结论,如上边的③,△ABC ≌△A ′B ′C ′(SSS ). 【说明】①第一步中,两个三角形之间的“和”不能写成“≌”,也不能取消.②第二步中,大括号内的三个条件的书写是有顺序的,必须与判定条件一致,并且注意边、角字母的对应.一般前一个三角形的边、角写在等号的左边,另一个三角形的对应边、角写在右边. ③写结论时,注意对应顶点写在对应位置上,并在后面的括号内注明判定条件的简写,如“SSS ”或“边边边”.例如:如图13-2-2.已知AB =AC ,D 为BC 中点.试说明∠B =∠C 是否成立,为什么?解:∠B =∠C 成立.∵ D 为BC 中点, ∴ BD =CD .在△ABD 和△ACD 中,⎪⎩⎪⎨⎧(公共边),=(已证),=(已知),=AD AD CD BD AC AB ∴ △ABD ≌△ACD (SSS ).∴ ∠B =∠C (全等三角形的对应角相等).【说明】①在本例中使用了证明的格式.②在本例中的最后两步中有两个“∴”符号,前一个“∴”,是由前面大括号内的三个条件得出的.后一个“∴”,是将前一个“∴”当成了“∵”,然后推出后一个“∴”,这里省略了一步:∵△ABD ≌△ACD .因此,今后在书写中要注意. 3.三角形全等的条件二:“边角边”或“SAS ”(1)SAS :有两边和它们的夹角对应相等的两个三角形全等,简记为“SAS ”. (2)表达格式为在△ABC 和△DEF 中(图13-2-3)⎪⎩⎪⎨⎧∠∠,=,=,=EF BC DEF ABC DE AB∴ △ABC ≌△DEF (SAS ).例如:如图13-2-4中,AD 、BC 相交于点O .OA =OD ,OB =OC ,那么AB =DC 是否成立.解:∵ AD 、BC 相交于点O , ∴ ∠AOB =∠DOC (对顶角相等). 在△AOB 和△DOC 中,⎪⎩⎪⎨⎧∠∠(已知)=(已证),=(已知),=OC OB DOC AOB OD OA ∴ △AOB ≌△DOC (SAS ).∴ AB =DC【说明】本题中,书写三条件时,应该按边、角、边的顺序,将两边的夹角放在中间,用括号括起来;或者写成一行,也按边、角、边的顺序,将两边的夹角放在中间,再推出两个三角形全等.4.三角形全等的条件三:“角边角”或“ASA ”(1)两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA ”. (2)表达格式:如图13-2-5,在△ABC 和△DEF 中,⎪⎩⎪⎨⎧∠∠∠∠,=,=,=DEF B DE AB D A ∴ △ABC ≌△DEF (AAS ).5.三角形全等的条件四:“角角边”或“AAS ”(1)有两角和一边对应相等的两个三角形全等,简写成“角角边”或“AAS ”. (2)表达格式,如图13-2-5,在△ABC 和△DEF 中,⎪⎩⎪⎨⎧∠∠∠∠,=,=,=EF BC D A DEF B ∴ △ABC ≌△DEF (AAS ).例如:如图13-2-6中,AB ∥CD ,AE ∥DF ,AB =CD .求证:AE =DF .证明:∵ AB ∥CD , ∴ ∠ABC =∠DCB .∵ AE ∥DF ,∴ ∠AEB =∠DFC . 在△ABE 和△DCF 中,⎪⎩⎪⎨⎧∠∠∠∠,=,=(已证),=DF AE DFC AEB DCF ABC ∴ △ABE ≌△DCF (AAS ).∴ AE =DF .6.直角三角形全等的条件:“斜边、直角边”或“HL ”(1)HL :斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL ”.(2)表达格式:如图13-2-7,在△ABC 中,AD ⊥BC 于D ,AB =AC 在Rt △ABD 和Rt △ACD 中,⎩⎨⎧,=,=AD AD AC AB∴ Rt △ABD ≌Rt △ACD (HL )(3)直角三角形是三角形中的一种特殊情况,因此,它也可以用一般三角形全等的条件.如两条直角边对应相等,可用“SAS ”,一边一锐角对应相等可用“ASA ”或“AAS ”.它的特殊条件就是“斜边、直角边”. 7.“角角角”与“边边角”在三角形全等的条件中,上面已说过的有:三边的SSS ,两边一角的SAS 和一边两角的ASA ,AAS ,那么“AAA ”和“SSA ”能否成为三角形全等的条件呢?(1)有三个角对应相等的两个三角形不一定全等,如图13-2-8,DE ∥BC ,则∠ADE =∠B ,∠AED =∠C ,∠A =∠A ,△ADE 与△ABC 有三角对应相等,但它们没有重合,所以不全等.(2)如图13-2-9,在△ABC与△ABD中,AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD 不完全重合,故不全等.也就是有两边和其中一边的对角对应相等的两个三角形不一定全等.8.证明的意义和步骤(1)证明的意义证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程,简单地说,证明就是推理过程.(2)证明的步骤证明一个命题为正确的时候,其步骤如下:①弄清命题的条件和结论,画出图形.②根据条件,结合图形,写出已知.③根据结论,结合图形、写出求证.④写出证明过程.证明一个命题不正确的时候,只需举出一个反例即可.例如:若a2=b2,则a=b.这是一个错误命题,证明如下.证明:∵(-5)2=52=25,而-5≠5.∴若a2=b2,则a=b,是一个错误命题.9.证明题目时常用的三种方法在探索三角形全等的过程中,经常要遇到条件不足或结论不易寻找等问题,如何分析条件与结论之间的关系,常用的分析方法有以下三种:(1)综合法就是从题目的已知条件入手,根据已学过的定义、定理、性质、公理等,逐步推出要判断的结论,有时也叫“由因导果法”.例如:如图13-2-10,在△ABC中,D是BC的中点,DE∥AB,DF∥AC,分别交AC、AB 于点E、F.求证:BF=DE.分析:从已知条件到推出结论,其探索过程如下⇒⎪⎭⎪⎬⎫∠∠⇒⇒∠∠⇒C BDF AC DF CD BD BC D CDE B AB DE =∥=的中心是=∥△BFD ≌△DEC (ASA ) ⇒BF =DE (目标).以上这种由因导果的方法就是综合法. (2)分析法就是从要判断的结论出发,根据已学的定义、定理、公理、性质等,倒过来寻找能使结论成立的条件,这样一步步地递求,一直追溯到结论成立的条件与已知条件相吻合为止,有时也叫“执果索因法”.如上题,用分析法的探索过程如下:BF =DE ⇒△BFD ≌△DEC ⇒⎪⎩⎪⎨⎧⇒⇒∠∠⇒⇒⇒⇒∠∠已知∥=已知中点是=已知∥=AC DF C BDF BC D CD BD AB DE CDE B(3)分析—综合法 在实际的思考过程中,往往需要使用这两种方法,先从结论出发,想一想需要什么条件,层层逆推,当思维遇到障碍时,再从条件出发,顺推几步,看可以得出什么结论,从而两边凑,直至沟通“已知”和“结论”的两个方面. 即:已知 中间条件 结论综合法 分析法例如:如图13-2-11,在△ABC 中,AB =AC ,D 是BC 的中点,E 是AD 上任一点,连接EB 、EC ,求证:EB =EC .分析:本题比较复杂,可用上述的三个方法均可,现在以分析一综合法为例,说明分析过程.先用综合:由因导果.⇒⎪⎭⎪⎬⎫⇒CD BD D ADAD AC AB =为中心==△ABD ≌△ACD ⇒⎩⎨⎧∠∠∠∠.=,=CDA BDA CAD BAD再用分析:执果索因.EB=EC⇒△ABE≌△ACE⇒⎪⎩⎪⎨⎧⇒∠∠⇒已知==已知=AEAECAEBAEACAB⇒△ABD≌△ACD.证明:∵D是BC的中心,∴BD=CD.在△ABD和△ACD中⎪⎩⎪⎨⎧(公共边),=(已证),=(已知),=ADADCDBDACAB∴△ABD≌△ACD(SSS).∴∠BAD=∠CAD.在△ABE和△ACE中⎪⎩⎪⎨⎧∠∠(公共边)=(已证),=(已知),=AEAECAEBAEACAB∴△ABE≌△ACE(SAS).∴BE=CE(全等三角形的对应边相等).【说明】①本题证明过程中,后一次三角形全等,也可选△BDE≌△CDE,方法同上.②本题两次用到全等三角形,在分析中应找准三角形,理清思路.10.判定两个三角形全等方法的选择在学过本节内容之后,经常会遇到判定两条线段相等,两个角相等的问题,而要判断它们相等,就要考虑选择三角形全等.如何选择三角形呢?可考虑以下四个方面:(1)可以从判断的结论(线段或角)出发,寻找这些结论在哪两个可能的全等三角形中,就试着判定两个三角形全等.(2)可以从题目的已知条件出发,看已知条件能确定哪两个三角形全等就判定它们全等.(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后判定它们全等.(4)如果以上方法都行不通,可考虑添加辅助线的办法,构造三角形全等.例如:如图13-2-12,已知AB=AC,BD=CD,试判断∠B与∠C的关系,并说明理由.分析:要判断∠B与∠C的关系,先看∠B与∠C是否在两个全等三角形中,而此题没有两个全等三角形,只有一个四边形,目前由已知条件四边形ABDC,要创造三角形,可以连接AD或BC,那么连接谁更合适呢?若连接AD,则∠B、∠C分在左、右两个三角形中,若全等,则∠B=∠C,事实上,∠B =∠C,若连接BC,则∠B、∠C分在上、下两个三角形中,根据目前所学知识还不能确定∠B=∠C因此,连接AD较为合适.解:∠B=∠C连接AD,在△ABD和△ACD中,AB=AC,BD=CD,AD=AD(公共边),∴△ABD≌△ACD(SSS).∴∠B=∠C12.探索三角形全等时常作的辅助线在利用三角形全等进行解题时,有时题目所给条件不足或不明显,还需从题目本身或图形中挖掘它的隐含条件,还有的需加上一些辅助线,为解题铺路搭桥,起到很好的辅助作用,这些辅助线常见的有以下几种:(1)连接图形中的已知点,构造全等形.例如:如图13-2-13,已知AC、BD相交于O点,且AB=CD,AC=BD,判断∠A与∠D 的关系,并说明理由.解:∠A=∠D.连接BC,在△ABC与△DCB中,AB=DC,AC=DB,BC=CB,则△ABC≌△DCB(SSS).因此∠A=∠D.(2)取线段中点构造全等三角形.例如:如图13-2-14,已知在梯形ABCD中,AB=DC,∠A=∠D,试判断∠ABC与∠DCB 的关系,并说明理由.解:∠ABC =∠DCB .取AD 的中点N ,取月C 的中点M .连接MN 、BN 、CN ,则AN =DN ,BM =CM ,在△ABN 和△DCN 中,⇒⎪⎭⎪⎬⎫∠∠DCAB D A DN AN ===△ABN ≌△DCN , 则∠ABN =∠DCN ,NB =NC (全等三角形的对应角、对应边相等). 在△BMN 和△CMN 中,⇒⎪⎭⎪⎬⎫MN MN CM BM CN BN ===△BMN ≌△CMN , 则∠MBN =∠MCN (全等三角形的对应角相等). 那么∠ABN +∠MBN =∠DCN +∠MCN . 即∠ABC =∠DCB .【说明】在本题中,辅助线起到了很好的桥梁作用,为解题创造了条件. (3)有角平分线时,常在角两边截相等的线段,创造全等三角形.如图13-2-15,OC 平分∠AOB ,在OC 上任取一点P ,在OA 、OB 上截取OM =ON ,连接PM 、PN ,那么,PM =PN .事实上,在△MOP 和△NOP 中, OM =ON ,∠MOP =∠NOP ,OP =OP , 则△MOP ≌△NOP (SSS ). 因此有PM =PN .(4)三角形中有中线时,常延长加倍中线,构造全等三角形. 如图13-2-16,在△ABC 中,AD 为BC 边上的中线,若延长AD 至E ,使AD =DE ,连接B E ,在△ACD 和△EBD 中,BD =CD ,∠1=∠2,AD =ED ,则△ACD ≌△EBD ,因此BE =AC13.利用全等三角形解决实际问题的步骤全等三角形在日常生活、科技生产中有很多的用途,在用它解决实际问题时可分以下几个步骤:(1)先明确实际问题与哪些知识有关,确定用哪些知识来解决.(2)根据实际问题画出图形.(3)结合图形写出已知和结论.(4)分析已知,找出解决问题的途径.(5)写出解决问题的过程(或探索过程).例如:如图13-2-17,要测河两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D使CD=BC,再定出BF的垂线DE,使E、C、A三点在一条直线上,这时测得DE 的长就是AB的长.你能用数学原理说明吗?分析:这是一个实际应用题,应先把其转化为数学问题,然后再解答.解:已知:AB⊥BF,DE⊥BF,A、C、E三点在一条直线上,BC=DC.判断AB与DE是否相等?在△ABC和△DEC中,由于AB⊥BF,DE⊥BF,则∠ABC=∠EDC=90°,又A、C、E三点在一条直线上,则∠ACB=∠ECD(对顶角).又BC=CD,则ABC≌△EDC(ASA),因此AB=DE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时5 三角形全等的条件
学习要求
能熟练运用三角形全等的判定方法进行推理并解决某些问题.
课堂学习检测
一、填空题
1.两个三角形全等的判定依据除定义外,还有①_____;②_____;③_____;④_____;⑤_____. 2.如图6-1,要判定ΔABC ≌ΔADE ,除去公共角∠A 外,在下列横线上写出还需要的两个条件,并在括号内写出由这些条件直接判定两个三角形全等的依据. (1)∠B =∠D ,AB =AD ( ); (2)_____,_____( ); (3)_____,_____( ); (4)_____,_____( ); (5)_____,_____( ); (6)_____,_____( ); (7)_____,_____( ).
图6-1
3.如图6-2,已知AB ⊥CF ,DE ⊥CF ,垂足分别为B ,E ,AB =DE .请添加一个适当条件,使ΔABC ≌ΔDEF ,并说明理由
添加条件:_________________________________________________________________, 理由是:___________________________________________________________________.
图6-2
4.在ΔABC 和ΔDEF 中,若∠B =∠E =90°,∠A =34°,∠D =56°,AC =DF ,贝ΔABC 和ΔDEF 是否全等?答:______,理由是______. 二、选择题
5.下列命题中正确的有 ( )个
①三个内角对应相等的两个三角形全等; ②三条边对应相等的两个三角形全等;
③有两角和一边分别相等的两个三角形全等; ④等底等高的两个三角形全等. A .1 B .2 C .3 D .4
6.如图6-3,AB =CD ,AD =CB ,AC 、BD 交于O ,图中有 ( )对全等三角形. A .2 B .3 C .4 D .
5
图6-3
7.如图6-4,若AB =CD ,DE =AF ,CF =BE ,∠AFB =80°,∠D =60°,则∠B 的度数是 ( )
A .80°
B .60°
C .40°
D .20°
8.如图6-5,△ABC 中,若∠B =∠C ,BD =CE ,CD =BF ,则∠EDF = ( )
A .90°-∠A
B .A ∠-
21
90o
C .180°-2∠A
D .A ∠-2
145o
图6-4 图6-5 图6-6
9.下列各组条件中,可保证△ABC 与△A 'B 'C '全等的是 ( )
A .∠A =∠A ',∠
B =∠B ',∠
C =∠C ' B .AB =A 'B ',AC =A 'C ',∠B =∠B ' C .AB =C 'B ',∠A =∠B ',∠C =∠C '
D .CB =A 'B ',AC =A 'C ',BA =B 'C ' 10.如图6-6,已知MB =ND ,∠MBA =∠NDC ,下列条件不能判定△ABM ≌△CDN 的是 ( )
A .∠M =∠N
B .AB =CD
C .AM =CN
D .AM ∥CN
综合、运用、诊断
11.已知:如图6-7,AD =AE ,AB =AC ,∠DAE =∠BAC . 求证:BD =CE .。

相关文档
最新文档