基于STM32的机械臂运动控制与结构设计开题报告
基于STM32的机械手臂控制系统设计

图2 . 1机械臂控制 系统结构
该系 统是通 过 计算 机 的事先 的编程 之后 ,通 过 数据 传输 下载 到 s t m3 2 当中通 过控f l i J  ̄ s t m3 2 的定 时器 产生 多路 的P WM波 。舵机 就会 依 据 给定 的P WM波 完成相 应 的运 动轨迹 或按照 预定 的计划完 成任务 。 2 . 3 机械臂 的臂部 设计 因为机 械臂 主 要是 由臂 部组 成 ,所 以在进 行 臂部 设计 时应 当 着 重 注 意 以下 几 点 : ( 1 )手臂 在机 械 臂 中起 着 重要 的作 用 :它 不光 可 以 让物 体 进行 移 动而 且 还 能进 行 一些 操 作 。 ( 2 )因 为机 械 臂 的 臂 部在 运动 中有 很大 负担 ,为 了减小 手臂 的 负担 ,需要 将手 臂 的截 面 形状 做 的更加 合理 。在 进 行 了各种截 面 对弯 曲度 的承 受力 的实验 后 发现 ,在 相 同力 的情况 下 ,工字 型 的截 面 能承受 的力 最大 ,因此 我 选择 使 用工 字 型截 面 做手 臂 的 截面 。 ( 3 )因为 机械 臂 在 直 线运 动 中可 能会 发生 突然 的方 向转 换 , 因此 ,为 了防止 机械 臂 的硬 件损 耗过 大 ,需要 采 用一 些装置 来 保护 机械 臂 。 同时要 采用 一定 形 式 的 缓冲 措 施 。 ( 4 )为 了减 少 臂 部在 运 动时 会产 生 较 大 的转 动惯 量 , 需要 将臂 部 的重量 减少 ,以免 在运 动 中产生 较 大 的误差 ,从 而影 响 机 械 臂 的整 体 运作 ,加 快机械 臂 的运行 速度 。 经过对预期任务 的特点和类型分析,该设计 需要机械臂具有较高 的 灵 活性和流畅性 ,因此在 多次 的比较和分析后 ,决定使用 多关节型机械 臂 。它不仅可 以灵活的完成预定任务 ,而且可以有更大 的运动空间 。 2 . 4 机械臂 自由度选择 通 常将机械 臂是 由几个 传动结 构组成 的就称为几 自由度 。例如人 类 的 自由度高 达2 7 个 ,而 手臂 部分 的 自由度 一般 为6 自由度 。所 以仿 照 人类 的特性 ,机械 臂 的 自由度 应 当选为6 自由度 ,这 样 既符合 了身 体力 学并且动 力传输 效率也很 高 。为 了更加流 畅的完成抓 取物体 ,并 将物体 移动到 指定 的位置 , 需要 采用6 自由度 。而 6 自由度 的机械 臂的 控制较为 繁琐,所 以工 业和生活 中机械 臂的 自由度 多少 于6 个。 2 . 5 机 械臂 控 制器类 型 控制 器 的主 要任 务就 是按 照预 先 设计 的程 序进 行相 应 的任 务 , 它是 机械 臂 中十 分重 要 的组件 。机 械臂 的控制 器就 相 当于 电脑 中 的 处理 器 ,只有 处 理器越 好 , 电脑 的运行 速度 和 处理 速度 才会 越 快 。 对 于 机械 臂来 说 也一样 ,只有 控制 器越 好 ,才 能更 加精 准快 速 的进 行控 制 。从控 制器 的数 量 和机 械臂 的控 制 方式 可分 为 以下几 种 :单
基于某STM32的机械臂运动控制分析报告设计

其中:
得到各连杆之间的变换矩阵
(2)
(3)
(4)
式中:s1,s2,s3,s4;c1,c2,cs3,c4分别表示sinθ1,sinθ2,sinθ3,sinθ4; cosθ1, cosθ2, cosθ3, cosθ4以下同。由矩阵(1)可知:连杆变换 依赖于 四个参数和 ,其中只有一个参数是变化的,对于本文所研究的机器人,显然只有 为变量,其余三个参数为常量。
图3.1 STM32
3.3
该设计的主控制模块的硬件系统包括电源电路、复位电路、系统时钟电路以及JTAG调试电路四大组成部分。
3.3.1
在硬件电路的设计中,电源模块的设计是非常重要的,如果不能妥善处理,不但会使电路不能正常工作,严重的还可能烧毁电路。因此,在设计电源时务必要注意如下几点:
(1)交流输入和直流输出尽可能保持更大的距离;
关键词:四自由度机械臂,STM32,运动模型,脉冲宽度调制
第1章
1.1
机器人运动学描述了机器人关节与组成机器人的各刚体之间的运动关系。机器人在工作时,要通过空间中一系列的点组成的三维空间点域,这一系列空间点构成了机器人的工作范围,此工作范围可通过运动学正解求得。此外,根据机器人末端执行器的位置和姿态要求,通过运动学逆解求得各个关节转角,可以实现对机器人进行运动分析、离线编程、轨迹规划等工作。
机器人控制的目的就在于它能快速确定位置,这使得机器人的运动学正逆解问题变得更为重要。只有计算与运动学正逆解问题相关的变换关系在尽可能短时间内完成,才能达到快速准确的目的。在运动学方程正解过程中,只体现在矩阵相乘关系上,相对简单。
1.2
本文所研究的机器人由四个旋转关节和四个连杆组成,故为四自由度机器人,如图1.1所示。
基于STM的机械臂运动控制分析设计

机器人测控技术大作业课程设计课程设计名称:基于STM32的机械臂运动控制分析设计专业班级:自动1302学生姓名:张鹏涛学号:指导教师:曹毅课程设计时间:2016-4-28~2016-5-16指导教师意见:成绩:签名:年月日目录摘要 (II)第一章运动模型建立................................................................................................ I II1.1引言 ............................................................................................................... I II1.2机器人运动学模型的建立 ............................................................................. I II (IV)第二章机械臂控制系统的总体方案设计 (V)2.1机械臂的机械结构设计 (V)V错误!未定义书签。
2.2机械臂关节控制的总体方案 (VI)2.2.1机械臂控制器类型的确定 (VI)2.2.2机械臂控制系统结构 (VII)2.2.3关节控制系统的控制策略 (VII)第三章机械臂控制系统硬件设计 (VII)3.1机械臂控制系统概述 (VII)3.2微处理器选型 .............................................................................................. V III3.3主控制模块设计 .......................................................................................... V III错误!未定义书签。
基于STM32的三自由度机械手臂

LOGO
基 本 结 构
STM32控制TFTLCD显示摄像 头拍摄到的图片对拍摄到的图 片进行目标提取并定位中心 用STM32的定时器三产生 PWM波对机械手臂的转角进 site here
LOGO
第一部分 用STM32控制TFTLCD显示摄像头拍摄到的图 片 STM32
Your site here
LOGO
TFT-LCD即薄膜晶体管液晶显示器
1,2.4 ’/2.8/3.5 ’3种大小的屏幕可选。 2,320 ×240 的分辨率 3,16 位真彩显示。 4,自带触摸屏,可以用来作为控制输
Your site here
LOGO
OV7670
该图像传感 器体积小、工作电压低,提供单片 器体积小、工作电压低,提供单片 VGA 摄像头和 影处理器的所有功能。通过 SCCB 总线控 ,可以 输出整帧、子采样、取窗口等方式的各种分辨率 8 位影像数据 由于OV7670的像素时钟频率很高,故不是用 单片机直接抓取的,而是用FIFO暂存数据,方便 LCD缓慢的读取
LOGO
实际拍摄并二值化效果
Your site here
LOGO
第二部分 用STM32产生PWM波对机械手臂转角控制
机械手臂旋转原理
T=20ms, t=0.5ms T=20ms ,t=0.5ms-2.5ms 即脉冲占空比为2.5%-12.5%对应旋转角度
0
0
-185
0
Your site here
Your site here
LOGO
对拍摄到的图片进行目标提取并定位中心
先将彩色图像变为二值图像,便于处理定位
再将图像缩小成原来的四分之一,建立一 个矩阵将这些数据储存,相当于储存了一 个二维图像矩阵
基于STM32的机械臂运动控制分析设计说明书

机器人测控技术大作业课程设计课程设计名称:基于STM32的机械臂运动控制分析设计专业班级:自动1302学生姓名:张鹏涛学号:201323020219指导教师:曹毅课程设计时间:2016-4-28~2016-5-16目录摘要 (V)第一章运动模型建立...................................................................................... V I1.1引言 ................................................................................................ V I1.2机器人运动学模型的建立.................................................................. V I1.2.1运动学正解 (VIII)第二章机械臂控制系统的总体方案设计 (X)2.1机械臂的机械结构设计 (X)2.1.1臂部结构设计原则 (X)2.1.2机械臂自由度的确定 (XI)2.2机械臂关节控制的总体方案 (XI)2.2.1机械臂控制器类型的确定 (XI)2.2.2机械臂控制系统结构 (XII)2.2.3关节控制系统的控制策略 (XIII)第三章机械臂控制系统硬件设计 (XIII)3.1机械臂控制系统概述 (XIII)3.2微处理器选型 (XIV)3.3主控制模块设计 (XV)3.3.1电源电路 (XV)3.3.2复位电路 (XVI)3.3.3时钟电路 (XVI)3.3.4 JTAG调试电路.................................................................. X VII3.4驱动模块设计................................................................................. X VII3.5电源模块设计.................................................................................. X IX 第四章机械臂控制系统软件设计................................................................... X X4.1初始化模块设计............................................................................... X X4.1.1系统时钟控制....................................................................... X X4.1.2 SysTick定时器 (XXII)4.1.3 TIM定时器 (XXIII)4.1.4通用输入输出接口GPIO (XXIV)4.1.5超声波传感器模块 (XXV)总结 (XXVI)参考文献 (XXVII)附录A ......................................................................................................... X XIX 附录B . (XXX)设计要求:设计一个两连杆机械臂,具体参数自行设计,建立其运动学模型,然后在此基础上完成该机械臂两点间的路径规划,并给出仿真结果。
机械手臂开题报告

机械手臂开题报告1. 引言随着工业自动化的发展,机械手臂在生产领域中扮演着非常重要的角色。
机械手臂可以完成重复性的、繁琐的、危险的工作,大大提高了工作效率和生产质量。
因此,对于机械手臂的研究和应用具有重要的意义。
本文将对机械手臂的基本原理、结构和控制方法进行详细介绍,并提出一个基于视觉感知的机械手臂的应用方向。
2. 机械手臂的基本原理和结构机械手臂是一种类似于人的手臂的装置,可以在三维空间内完成各种动作。
机械手臂通常由多个关节和连杆组成。
关节是机械手臂的运动部件,可以通过电机驱动实现转动,而连杆则连接各个关节。
机械手臂通过控制不同关节的转动实现复杂的工作任务。
机械手臂的控制系统通常通过传感器获取当前位置和姿态信息,然后根据设定的轨迹和工作需求,计算出各个关节应该转动的角度,并通过电机驱动实现相应的转动。
现代机械手臂通常采用数字控制系统,可以进行精确的控制和动态的轨迹规划。
3. 机械手臂的控制方法机械手臂的控制方法可以分为几种不同的方式,包括位置控制、力控制和视觉控制。
3.1 位置控制位置控制是机械手臂最基本的控制方式之一。
通过控制各个关节的位置,实现机械手臂在空间中的精确定位。
位置控制方法通常采用位置传感器来获取关节的实时位置信息,并通过反馈控制算法调整电机的转动角度,使得机械手臂能够准确地到达指定的位置。
3.2 力控制力控制是一种通过感知外部力来调整机械手臂的控制方式。
力控制方法通常采用力传感器来感知机械手臂与环境之间的接触力,并根据设定的力规划来控制机械手臂的运动。
力控制可以使得机械手臂对环境的变化更加敏感,并能够在接触时保持一定的力度。
3.3 视觉控制视觉控制是一种通过摄像头等视觉传感器获取环境信息,并根据图像处理算法进行机械手臂控制的方式。
视觉控制可以使得机械手臂更加灵活地应对不同的工作环境和工件,实现更加高级的任务。
基于视觉控制的机械手臂可以通过图像处理算法实现目标检测、特征提取和路径规划等功能,从而实现更加复杂的工作任务。
基于STM32的四自由度机械手臂设计

由于OV7670的像素时钟频率很高,故不是用单片机直接抓取的,而是 用FIFO暂存数据,以节省CPU资源。
2. 硬件搭建
关于机械手及舵机
舵机采用较为廉价的MG995,机 械结构由购买的散件组装而成。 最初采用6自由度结构,但在后 期调试过程中改为4自由度,将一个 舵机改用力矩更大、精度更高的数 字舵机。
S3
Value = servo_6[0][0]*s1/sum+servo_6[0][1]*s2/sum +servo_6[1][0]*s3/sum+servo_6[1][1]*s4/sum C(y)(x) = C(1,1) 映射关系如下 [0][0] = [y-1][x-1] [1][0] = [y][x-1] [0][1] = [y-1][x] [1][1] = [y][x]
关于16个标准区域的各舵机参数测量
void Change_Angle(u8 num_Sm,u16 value);
void Add_Angle(u8 num_Sm);
void Dec_Angle(u8 num_Sm); void Read_Angle(u8 num_Sm);
通过上位机想单片机发送以上四个函数, 人工引导机械手抓取各区域正中间的物体, 然后读取各舵机参数并建立数组
当四邻域中心确定时,四邻域在“表中的位置”就 可确定
3. 算法简介
(a,b)
S1
S2
四邻域中心点的确定方法
借鉴十进制中“四舍五入”的思想,根据目标中心坐标P(m,n) C(x,y) 通过“12舍13入”的方法计算C(x,y)
y = (m+12)/25;
a = m-12; l1 = x*25-1-b+1 l3 = y*25-1-a+1 S1
基于STM32的无线同步机械臂的设计

Vo1 . 28. No. 4 Ju 1 . 。 201 5
基于 S T M3 2的无线 同步机械臂 的设计
杜 金 浩 ,张 兴 瑞 ,赵 亚 凤
( 东 北林 业 大学 机 电工 程 学 院 ,黑 龙 江 哈 尔 滨 1 5 0 0 4 0 )
摘
要 :针 对 社 会 对 残 疾 人 问 题 和 高 危 领 域 作 业 工 人 的 关 注 , 设 计 出一 款 可 移 动 型 四 自 由 度 无 线 同 步 机 械 手 臂 该 装 置 以 S T M3 2为 控 制 器 ,将 人 类 灵 巧 的 手 臂 行 为 检 测 量 化 为 一 组 可 以 处 理 的 数 据 并 通 过 无 线 发 送 到 执 行 端 ,模 仿 人 类 手 臂 动 作 。使 人 们 不 需 要 移 ห้องสมุดไป่ตู้ 就 可 以 根 据 自 己 当 时 的 想 法 进
Ke y wor ds :s y nc hr o iz n a io t n; s i mu l a t e; f o u r —Do F me c ha n i c a l a r l n; S TM 3 2
行远 程 操作 和取 物 。 由于 此机械 手 臂 的 同步性 ,可移 动性 ,使 得 残 疾人 在取 物 时 更加 灵 活 方便 , 高危 作 业时操 作更 加精 准安 全 ,比起 普 通机械 手臂 ,用处 更加 广泛 。 关键 词 :同步 :仿 生 :四 自由度机 械 手臂 ;S T M3 2
Ab s t r a c t : Con c e n r f o r s o c i l a i s s ue s or f d i s a b l e d pe op l e a n d a t —r i s k a r e a s o f e x p o s e d wo r ke s。d r e s i g ne d a f o ur — DO F,mo va b l e a nd s y nc h r o—
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于STM32的机械臂运动控制与结构设计开题报告班级(学号):机械1104(2011010093)姓名:文伟松指导教师:王科社选题背景机器人技术是一种新兴技术,它涉及多种学科,综合了计算机、机械学、信号处理和传感技术、控制论、仿生学和人工智能等多学科。
机器人按照用途可分为工业机器人、服务机器人和特种机器人,其中工业机器人是目前应用最多、技术上发展最成熟的一种机器人。
随着我国经济的快速发展和科学技术的突飞猛进,使得机器人在货物搬运与物流、喷涂、焊接、测量等行业有着相当广泛的应用。
码垛机器人是实现物流和包装自动化的关键装备,可以实现高速、自动、连续、准确的码垛操任务。
人工码垛是强度大、重复性高的劳动,特别是高粉尘、有毒、有害等物料,基本不适合人工码垛,因此有必要研发一种码垛机器人,减低生产过程中对工人身心伤害。
进入 20 世纪 80 年代,随着计算机技术、控制技术以及自动化技术的发展和成熟,工业发达国家如日本、美国、瑞典、意大利、德国等都在相应的研制出了自己的码垛机器人。
如德国的 KUKA 系列,日本的 FANUC 系列,瑞典的 ABB 系列等。
国外发达国家研制的码垛机器人多为四轴空间的关节机器人,一般由机械本体、拉制器和末端执行机构组成,其中机械本都是有底座,腰部连杆,大小臂连杆和末端执行器(腕部)构成。
如图 1.1。
德国KUKA 瑞典ABB机器人日本不二(FUJI)日本OKURA图1.1 发达国家研制的主要工业机器人基于串联式码垛机器人,本文设计一种类似结构的机械臂。
针对毕业论文题目“基于STM32的机械臂运动控制与结构设计”,首先对国内外高校,研究院,企业等对码垛机器人研究及其发展状况进行调研;其次对设计的机械臂作运动学分析以及控制系统设计等。
1.1.1主要研究内容本文针对串联关节型码垛机器人,设计了一种新型4DOF机械臂;此机械臂主要连杆机构与串联关节型码垛机器人类似;在不大幅度增加系统转动惯量前提下,增加一个自由度实现末端执行器翻转,改进末端视觉传感器测量角度和带宽。
首先充分调研国内外各种码垛机器人发展状况并分析;通过Solidworks建立三维模型并对末端轨迹和各运动参数进行虚拟仿真,获取机械臂工作空间大小。
通过MATLAB精确计算机械臂末端工作空间。
第二通过D-H 法对机械臂建立码垛机器人连杆坐标系,基坐标和末端坐标之间的变换矩阵,获取机械臂运动学正解和运动学反解。
对机械臂关键零件做力学校核。
第三设计加工基于PVC材料的小型机械臂,并装配。
第四设计基于ARM Contex3内核的STM32处理器的机械臂控制系统,实现输入机械臂末端执行器空间坐标和速度,机械臂定位到预期点。
最后通过MDK5编写程序并通过JLINK调试机械臂;提出机械臂末端误差消除方法,并考虑分析小型机械臂在教具和科技展览利用前景。
1.1.2 课题研究意义本文中设计的新型机械臂可用于教学教具用,训练学生对基本机械结构的认识;新型机械臂相对于普通码垛机器人来说具有惯量小,视觉传感器传感范围大等特点;此新型机械臂可用于小型机器人作执行机构,具有较好运用前景;同时本文对此新型机械臂运动学分析和动力学分析做了研究,对此新型机械臂进一步研究具有重要意义。
1.2码垛机器人分类现今码垛机器人按驱动结构不同分有串联式,并联式和混联式。
1.2.1并联式码垛机器人并联码採机器人生产厂商有瑞典ABB公司和FANUC公司。
并联机器人具有以下特点:无累计误差,精度较高;运动部分重量轻,速度高,动态响应好,驱动装置可置于固定平台上;结构紧凑,承载能力大;并联机构的各向同性优异。
同时,由于并联机器人工作空间较小,承载能力弱,在现实的自动化生产线重载环境下,适用性和灵活性不高,因此在食品行业和快速分拣、蹄选行业等轻载环境下,并联机器人突显出它的优势,在高速重载行业,主要是混联码设机器人和串联关节式码躲机器人。
图 1.2 混联式码垛机器人和串联关节式码垛机器人1.2.2串联关节式和混联式码垛机器人欧洲和美国主要以关节式串联码操机器人为主。
并联式码垛机器人具有控制简单系统惯量小等特点。
图1.2为混联码探机器人与关节式串联码操机器人,两者的区别在于混联码设机器人四个关节中,两个关节为移动关节,其余为旋转关节,后者的四个关节皆为旋转关节。
两者都经过两个四连杆机构传动,使末端的腕部关节旋转轴线始终与地面垂直。
串联关节式码操机器人的结构如图1.3;混联式机器人如下图1.4。
图 1.3 关节式码操机器人的结构图1.4 混联式机器人结构串联关节式码垛机器人和混联机器人主要区别在于混联码操机器人和关节式串联机器人的第一关节与第四关节同为旋转关节。
而混联码操机器人的第二关节和第三关节为移动关节,第二关节为水平移动,第三关节为垂直移动,两关节部分各有驱动系统,每个电机控制同步带轮的旋转驱动滚珠丝杠,从而带动其滑块的运动,可以实现大臂上下运动,小臂前后运动。
这样结构的优点是可以满足驱动大惯性力矩负载和快速运动精确定位的要求。
目前国际四大机器人生产商ABB、FUNUC、KUKA和YASKAWA在4轴搬运机器人研发方面,均采用四轴旋转的关节式结构,与两个旋转和两个移动关节的混联码操机器人比较,具有如下优势:1)结构紧凑,外形美观,为目前四轴搬运码操机器人的主流发展方向;2)维护方便,故障率低,与滚珠丝杠、精密行星减速机的传动方式相比,RV减速机传动简单,易于维护,使用寿命长,前者在润滑与密封方面较后者复杂。
3)成本基本持平,两者使用相同数量的伺服电机和减速机,混联码操机器还另外需要滚珠丝杠和导轨。
4)关节式码操机器人的旋转关节方式定位精度高于混联码圾机器人的直线关节方式的定位精度。
5)在机械结构设计方面,混联码操机器人的结构较关节式码操机器人更为复杂,需要解决伺服电机、同步带传动、滚珠丝杠和导轨的布置问题。
6)混联码操机器人虽然也有行程放大的机构,但由于外观尺寸的限制,滚珠丝杠和导轨的长度受限,运动空间小于关节式码探机器人。
1.3 国内外码垛机器人研究现状1.3.1国外码垛机器人发展现状工业机器人技术在国外起步较早,第一次将机器人技术应用于码操作业的是在20世纪70年代,由日本提出的。
目前,世界各发达国家的机器人公司针对各种载荷、运行空间和运行环境,不断推出高性能、高可靠性、高速、高精度的码探机器人。
码圾机器人市场主要分为欧系和日系。
欧系码操机器人以ABB和KUKA为代表,日系码操机器人以FANUC和YASKAWA 为代表。
ABB公司是全球领先的工业机器人供应商,在码操作业方面,有着全套先进的机器人解决方案。
1974年,ABB设计研发了全世界第一台全电控式、微处理器控制的工业机器人IRB6。
随着技术积累,最近ABB公司研制了全球速度最快的紧凑型四轴码操机器人ABB-IRB460。
在工作节拍方面,每小时最快可以达到2190次,工作空间的直径达到2400mm,在运行速度方面,较相同类型的机器人提升了 15%左右,在占地面积方面,只是同类机器人的4/5,在工厂狭小空间内的高速作业,ABB-IRB460将更加适用。
针对不同行业的需求,ABB开发了特殊规格的机器人,IRB360是实现高精度拾放料作业的并联机器人,范围可达1600mm。
该机器人高速柔性化,按照卫生标准设计,并集成视觉软件。
作为全球最大机器人生产商之一的德国KUKA机器人公司,涵盖了所有应用场合和负荷等级的机器人类型,其中Titan是目前市场上最强悍的工业机器人,主要应用于包装及蹄选,承载能力可以达到1300kg,最大作用范围3202mm,重复定位精度也能达到±0.2mm。
凭借矫健的身姿,获得了全球公认的红点设计奖。
日本安川公司于1977年研制出第一台全电动工业机器人,至今在全球已生产13万多台机器人。
安川机器人的MP系列是专门应用于码垛作业的,MPL160码垛机器人的负载能力达到了 160kg,重复定位精度达到±0.5mrn。
而MOTOMAN-UP350D机器人最大负载可达500kg,机器人最大臂展为2500mm,重复定位精度也能达到±0.5mm。
安川机器人不间断监视高密度安装的机械臂之间的距离,在机械臂快要发生碰撞时,将会自动停止,并且可用低速测试运行,确认再生动作的轨迹,这样就可以同时确认工件与工具的干涉,在短时间内做出最合适和最短距离的示教。
日本FANUC的LTD成立于1972年,主要产品为工厂自动化设备及工业机器人,年产机器人25000台,全球共有八十多家分公司和子公司。
FANUC机器人拥有200种以上机器人系列,负重能力由3kg-1200kg,运动范围从接近人手臂的Baby Robot (R=600mm), 一直到类似大吊车的M-2000iA系列。
FANUC公司是世界上唯一提供集成视觉系统的厂商,视觉软件集成在机器人控制器中,实现可靠性高的视觉功能。
该公司的码垛专用机器人M-410iB,最大可搬运重量700kg,作业半径为3143mm,工作循环周期达到1500回/小时。
内部封入了食品生产对应的润滑脂,并且强化了防诱性的包装食品排放搬运专用型,以及将第四轴的速度提高到12.57rad/s的高速机械手腕型,同时可以选配视觉系统。
1.3.2国内码垛机器人发展现状我国工业机器人技术研究与应用开始于上世纪70年代,自主研发的码操机器人主要结构形式有直角坐标式和关节式。
近几年,在码圾机器人方面,出现了一批具有较强研发实力的科研院所和专家企业。
上海交通大学与上海沃迪科技有限公司研发了 TPR系列码操机器人,如图1.5。
TPR系列机器人与日本FUJI码操机器人结构相似,具有独特的线性四连杆机构利用工控机、运动控制卡、PLC和HMI实现机器人的控制,并且可以通过HMI人机交互,核心算法由工控机完成,控制软件在Visual Studio平台上编写,实现码操机器人生产能力达到1600包/小时。
图 1.5 TPR系列码垛机器人安川首钢机器人公司是专业从事于工业机器人以及自动化生产线设计与制造的合资公司,主要引进円本安川机器人公司的技术。
生产的"SG-MOTOMAN“系列工业机器人,在控制器中采用了 ARM功能,首次实现了实时动力学控制技术。
2005年在引进MOTOMAN-HP机器人的基础上,将该机器人本体轻型化,减弱了机器人启动和停止时瞬间的颤动,缩短了运行周期。
运用高精度轨迹控制算法缩短了对指令响应的滞后时间,使得轨迹重复精度提高50%,MOTOMAN-HP 系列机器人的负载能力可达165kg,重复定位精度能达到t=0.2mm 。
沈阳新松机器人自动化公司是我国工业机器人的产业化基地,我国第一台工业机器人样机,就是在该公司研发与制造成功的。