复数的运算公式
复数概念及公式总结

复数概念及公式总结复数是数学中一个重要的概念,它在代数、解析几何、微积分等多个数学分支中都有着重要的应用。
本文将对复数的概念及相关公式进行总结,希望能够帮助读者更好地理解和运用复数。
一、复数的概念。
复数是由实数和虚数组成的数,一般表示为a+bi,其中a为实部,b为虚部,i 为虚数单位,满足i²=-1。
复数可以用平面直角坐标系中的点来表示,实部对应x 轴,虚部对应y轴。
复数的模长是指复数到原点的距离,记作|a+bi|=√(a²+b²)。
复数的共轭是指虚部取负,即a-bi。
二、复数的运算。
1. 加减法,实部和虚部分别相加减。
(a+bi) + (c+di) = (a+c) + (b+d)i。
(a+bi) (c+di) = (a-c) + (b-d)i。
2. 乘法,先用分配律展开,然后利用i²=-1化简。
(a+bi) (c+di) = (ac-bd) + (ad+bc)i。
3. 除法,将分子有理化,然后利用共轭的性质进行化简。
(a+bi) / (c+di) = (ac+bd)/(c²+d²) + (bc-ad)/(c²+d²)i。
三、复数的指数形式。
复数可以用指数形式表示,即a+bi = r(cosθ + isinθ),其中r为模长,θ为幅角。
根据欧拉公式,e^(iθ) = cosθ + isinθ,所以复数也可以表示为a+bi = re^(i θ)。
四、复数的常见公式。
1. 欧拉公式,e^(iπ)+1=0,这是数学中最著名的等式之一,将自然对数的底e、圆周率π、虚数单位i、单位复数1组合在一起。
2. 范-诺伊曼级数,1+2+3+4+...=-1/12,这是一个看似荒谬但又被证明正确的等式,它涉及了复数的无穷级数求和。
3. 费马大定理,xⁿ+yⁿ=zⁿ在n大于2时无整数解,这是数论中著名的定理,它与复数的幂运算有着密切的联系。
复数的运算公式除法

复数的运算公式除法
复数的除法运算公式如下:
设有两个复数z1和z2,其中z2不为零,则它们的商为:
z1 / z2 = (a1 + b1i) / (a2 + b2i)
其中a1、b1、a2、b2均为实数,i为虚数单位。
为了将分母变为实数,我们可以将分子和分母同时乘以分母的共轭复数,即:z1 / z2 = (a1 + b1i) / (a2 + b2i) * (a2 - b2i) / (a2 - b2i)
化简后得:
z1 / z2 = [(a1a2 + b1b2) + (b1a2 - a1b2)i] / (a2²+ b2²)
其中,a1a2 + b1b2和b1a2 - a1b2分别为实部和虚部。
这个公式可以用来计算复数的商,也可以用来判断两个复数是否相等。
如果两个复数相等,则它们的实部和虚部都相等。
需要注意的是,当分母为零时,除法运算无法进行。
因此,在进行复数的除法运算时,需要先判断分母是否为零。
复数的运算

复数的运算加法法则复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的和是(a+bi)+(c+di)=(a+c)+(b+d)i。
两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
复数的加法满足交换律和结合律,即对任意复数z1,z2,z3,有:z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。
减法法则复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的差是(a+bi)-(c+di)=(a-c)+(b-d)i。
两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。
乘除法乘法法则规定复数的乘法按照以下的法则进行:设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其实就是把两个复数相乘,类似两个多项式相乘,展开得: ac+adi+bci+bdi2,因为i2=-1,所以结果是(ac-bd)+(bc+ad)i 。
两个复数的积仍然是一个复数。
在极坐标下,复数可用模长r与幅角θ表示为(r,θ)。
对于复数a+bi,r=√(a²+b²),θ=arctan(b/a)。
此时,复数相乘表现为幅角相加,模长相乘。
除法法则复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di 的商。
运算方法:可以把除法换算成乘法做,在分子分母同时乘上分母的共轭。
所谓共轭你可以理解为加减号的变换,互为共轭的两个复数相乘是个实常数。
除法运算规则:①设复数a+bi(a,b∈R),除以c+di(c,d∈R),其商为x+yi(x,y∈R),即(a+bi)÷(c+di)=x+yi∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i∴(cx-dy)+(dx+cy)i=a+bi由复数相等定义可知cx-dy=a dx+cy=b解这个方程组,得x=(ac+bd)/(c2+d2) y=(bc-ad)/(c2+d2)于是有:(a+bi)/(c+di)=(ac+bd)/(c2+d2) +((bc-ad)/(c2+d2))i②利用共轭复数将分母实数化得(见图1):点评:①是常规方法;②是利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数c+di与复数c-di,相当于我们初中学习的的对偶式,它们之积为1是有理数,而(c+di)·(c-di)=c2+d2是正实数.所以可以分母实数化。
复数的乘法

有两种方法考虑: 法一:直接代入计算. 2 法二:由 x 1 2i 得 x 2 x 5 0
整体代入妙!
那么复数的除法又应怎样进行呢? 注意到,实数的除法运算是乘法的逆运算,类 比思考,我们可定义复数的除法:
定义: 把满足(c+di)(x+yi) =a+bi (c+di≠0) 的 复 数 x+yi 叫做复数 a+bi 除以复数 c+di 的商, 其中a,b,c,d,x,y都是实数,
i
a,b. 2i 3 3i 3 i ( 3 i )(2 i ) 6 2i 3i 1 解: z 1 i. 2 i 2 i ( 2 i )(2 i ) 5 所以(1-i)2+a(1-i)+b=1+i,即-2i+a-ai+b=1+i,从而有: (a+b)+(-a-2)i=1+i. ab1 a 3 . a 2 1 b 4
复数的乘法满足交换律, 结合律以及 分配律, 即有 : z1 z 2 z 2 z1 (z1 z 2 ) z 3 z1 (z 2 z 3 ) z1 (z 2 z 3 ) z1 z 2 z1 z 3
例1、 计算:
• (1) (1+2i)(3+4i)(-2+i) • (2) (1+i)2 • (3) (a+bi)(a-bi)
由刚
a bi (a bi )(c di ) (a bi ) (c di ) c di (c di )(c di ) ac bd (bc ad )i ac bd bc ad 2 2 i 2 2 2 2 c d c d c d
复数及其运算

复数及其运算复数是数学中的一个重要概念,它在代数和几何中都扮演着重要的角色。
本文将对复数的定义、运算法则以及复数的性质做出详细的解释和说明。
一、复数的定义复数由实部和虚部组成,可以用a+bi的形式表示,其中a是实部,b是虚部,i是虚数单位,满足i²=-1。
实部和虚部都可以是实数。
二、复数的运算法则1. 加法法则:复数的加法满足交换律和结合律,即(a+bi)+(c+di)=(a+c)+(b+d)i。
2. 减法法则:复数的减法满足减法的定义,即(a+bi)-(c+di)=(a-c)+(b-d)i。
3. 乘法法则:复数的乘法按照分配律和乘法公式进行,即(a+bi)(c+di)=(ac-bd)+(ad+bc)i。
4. 除法法则:复数的除法要利用到共轭复数的概念,即(a+bi)/(c+di)=(ac+bd)/(c²+d²)+((bc-ad)/(c²+d²))i。
三、复数的性质1. 共轭复数:一个复数的共轭复数是指虚部符号变反,即(a+bi)的共轭复数为(a-bi)。
2. 模:复数的模是指其到原点的距离,在复平面中可以用勾股定理得到。
对于复数a+bi,其模为根号下(a²+b²)。
3. 平方根:复数的平方根可以通过求解二次方程来得到。
对于复数a+bi,其平方根为±根号下[(根号下(a²+b²)+a)/2]+[(根号下(a²+b²)-a)/2]i。
4. 范数:复数的范数是指其模的平方,也就是模的平方根。
对于复数a+bi,其范数为a²+b²。
综上所述,复数是由实部和虚部组成的数,并且复数的运算遵循特定的法则。
复数的共轭、模、平方根和范数等概念对于理解和应用复数有着重要的作用。
在代数和几何的研究中,复数的运算与复平面的结构密切相关,大大拓展了数学的领域。
通过学习复数及其运算法则,可以帮助我们更好地理解和解决涉及到复数的问题,如解方程、计算向量等。
复数的运算

(a bi) (c di) (a c) (b d )i
(a c) (b d )
复数乘法:按二项式相乘法则进行, 把i2换成-1,然后把实部和虚部分别 合并.
Z1〃Z2=(a+bi)〃(c+di) =ac+adi+bci+bdi2 =(ac-bd)+(ad+bc)i
复数的运算
复数的几种表示方法:
代数表示: Z=a+bi(a,b∈R) 几何表示:复平面上的点Z(a,bx
o z 即表示z=a + bi
定义
设z1=a+bi,z2=c+di,加法规则
z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i 两个复数的和仍然是复数,实部与实部 相加,虚部与虚部相加. 例题
1.(5 + 4 i)- (3 + 2 i)= (5-3)+(4-2)i =2+2i
2. (5 – 6 i) + (-2 - i) - (3 + 4 i) =(5-2-3) +(- 6-1-4 ) i =-11i
几何意义
两个复数相减法,即为 它们对应的向量相减.
oz1 oz2 z2 z1
复数乘方:用二项式定理展开计算.
复数除法:分子、分母同乘以分母的 共轭虚数,根据z〃z =|z|2,使分母 实数化。
z1 a bi (a bi )(c di ) z2 c di (c di )(c di ) ac bd bc ad 2 i 2 2 2 c d c d
1.已知f ( z) 1 z, z1 2 3i, z2 5 i, 求f ( z1 z2 )
复数的运算

记为 (a bi) (c di)或 a bi . c di
即 a bi x yi ,那么 x ? , y ?
解:原式= a2 (bi)2 = a2 b2 一步到位!
注意 a+bi 与 a-bi 两复数的特点.
定义:实部相等,虚部互为相反数的两个复数叫做互为共轭复数.
复数 z=a+bi 的共轭复数记作 z, 即 z a bi
思考:设z=a+bi (a,b∈R ),那么z z ? z z ?
另外不难证明: z1 z2 z1 z2 , z1 z2 z1 z2
即:两个复数相加(减)就是 实部与实部,虚部与虚部分别相加(减).
注:⑴复数的减法是加法的逆运算; ⑵易知复数的加法满足交换律、结合律,
即对任何 z1,z2,z3∈C, 有 z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).
⑶复数的加减法可类比多项式的加减法进行.
(a+bi )±(c+di) = (a±c) + (b±d)i
22
8
x 7.在复数集C内,你能将 2 y2分解因式吗?
(x+yi)(x-yi)
练习8:下列命题中正确的是 (1)如果Z1 Z2是实数,则 Z1、Z2互为共轭复数 (2)纯虚数Z的共轭复数是 Z。
(3)两个纯虚数的差还是纯 虚数 (2)
(4)两个虚数的差还是虚数 。
复数的基本运算及几何意义

复数的基本运算及几何意义复数是由实部和虚部构成的数,可以用公式表示为 z = a + bi,其中a 是实部,b 是虚部,i 是虚数单位。
一、复数的四则运算1. 复数的加法:将实部和虚部分别相加即可。
例如:(2 + 3i) + (4 + 5i) = 6 + 8i2. 复数的减法:将实部和虚部分别相减即可。
例如:(2 + 3i) - (4 + 5i) = -2 - 2i3. 复数的乘法:根据分配律展开运算,注意 i 的平方为 -1。
例如:(2 + 3i) * (4 + 5i) = 8 + 22i - 15 = -7 + 22i4. 复数的除法:将分子乘以分母共轭复数,并进行合并化简。
例如:(2 + 3i) / (4 + 5i) = (2 + 3i) * (4 - 5i) / (4^2 + 5^2) = (8 + 7i) / 41二、复数在平面几何中的意义在平面直角坐标系中,复数可以看作是复平面上的点,实部对应横轴,虚部对应纵轴。
1. 复数的模:复数 z 的模表示为 |z|,是复平面上由原点到对应点的距离。
例如:z = 3 + 4i,则|z| = √(3^2 + 4^2) = 52. 复数的辐角:复数 z 的辐角表示为 arg(z),是复平面上由正实轴到对应位置向量的角度。
例如:z = 2 + 2i,则arg(z) = π/43. 欧拉公式:欧拉公式表示为e^(iθ) = cos(θ) + isin(θ),其中 e 是自然对数的底,i 是虚数单位,θ 是角度。
该公式将三角函数与指数函数联系了起来,是复数运算中的重要工具。
4. 复数的乘法及除法的几何意义:复数的乘法相当于平移、旋转和伸缩,在复平面上实现了几何变换。
复数的除法相当于平移、旋转和收缩,在复平面上实现了逆向几何变换。
综上所述,复数的基本运算包括加法、减法、乘法和除法,可以使用公式进行计算。
在平面几何中,复数可以表示为复平面上的点,模表示距离,辐角表示角度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数的运算公式
复数的四则运算公式:
加减法运算:(a+bi)±(c+di)=(a±c)+(b±d)i
乘法运算:(a+bi)(c+di)=(ac-bd)+(bc+ad)i
除法运算:(c+di)(x+yi)=(a+bi)
了解复数的运算公式之前,应该先明白复数的定义,在定义的基础上理解、运用复数的运算公式。
一、复数的定义
复数是形如a+bi的数。
式中a,b为实数,i是一个满足i=-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。
在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为
虚数单位。
当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。
由上可知,复数集包含了实数集,因而是实数集的扩张。
复数常用形式z=a+bi
叫做代数式。
二、复数的四则运算公式
加减法运算设z1=a+bi,z2=c+di是任意两个复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和:
(a+bi)±(c+di)=(a±c)+(b±d)i。
乘法运算设z1=a+bi,z2=c+di是任意两个复数,则:
(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其实就是把两个复数相乘,类似两个多项式相乘,结果中i=-1,把实部与虚部分别合并。
两个复数的积仍然是一个复数。
除法运算复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。
运算方法:可以把除法换算成乘法做,将分子分母同时乘上分母的共轭复数,再用乘法运算。
例:求(a+bi)/(c+di)
我们设结果为x+yi
只需解方程(a+bi)=(c+di)(x+yi)即可
也就是方程组cx-dy=a cy+dx=b
解得x=(ac+ba)/(c+d) y=(bc-ad)/(c+d)
三、小结
总的来说,复数的基本运算很简单,把它当做是关于i的多项式进行计算即可。
记得i=-1。