极限承载力的计算

极限承载力的计算
极限承载力的计算

第三节 极限承载力的计算

在土力学的发展中,已经提出了许多极限荷载公式,1920年普朗特首先根据塑性平衡理论导出了介质达到极限荷载时,沿着曲面发生滑动的数学方程,并认为介质的抗剪强度性质,可以用强度指标c ,?表示,但是,他的研究结果只适用于无重量的介质的极限平衡平面课题。

随后不少学者根据他的研究结果,引用来求解地基土的极限荷载,并进一步作了不同形式的修正和补充,以便在工程中加以应用。太沙基根据普朗特相似的概念,导出了考虑地基土自重影响的极限荷载公式。但这些公式都忽略了基础底面以上覆盖土层的抗剪强度的影响,故只适用于计算浅基础的极限荷载。

梅耶霍夫进一步考虑了基础底面以上覆盖层的抗剪强度的影响,从而提出了浅基础和深基础的极限荷载公式。

一.普朗特尔极限承载力公式

普朗特尔公式是求解宽度为b 的条形基础,置于地基表面,在中心荷载P 作用下的极限荷载Pu 值。

普朗特尔的基本假设及结果,归纳为如下几点:

(1)地基土是均匀,各向同性的无重量介质,即认为土的0=γ,而只具有c ,?的材料。 (2)基础底面光滑,即基础底面与土之间无摩擦力存在,所以基底的压应力垂直于地面。 (3)当地基处于极限平衡状态时,将出现连续的滑动面,其滑动区域将由朗肯主动区I ,径向剪切区II 或过渡区和朗肯被动区III 所组成。其中滑动区I 边界BC 或AC 为直线,并与水平面成(45+?/2)角;即三角形ABC 是主动应力状态区;滑动区II 的边界CE 或

C D为对数螺旋曲线,其曲线方程为 θθtg e r r 0=,r 0为起始矢径;θ为射线r 与r 0夹角,滑

动区III 的边界E G ,DF 为直线并与水平面成(45-φ/2)角。

(4)当基础有埋置深度d 时,将基础底面以上的两侧土体用相当的均布超载d q γ=来代替。

根据上述的基本假设,采用刚体平衡方法或特征线法,可以得到地基极限承载力为:

c q u cN rdN p +=

式中:r :基础两侧土的容重

d :基础的埋置深度

q N ,c N :承载力系数,它们是土的内摩擦角?的函数,可查下表:

其中)2

45(02?

?π+

=tg e Nq tg

?ctg Nq Nc )1(-=

二、斯肯普顿地基极限承载力公式

对于矩形基础,斯肯普顿(1952年)给出的地基极限承载力公式为:

d c p b d l b u 055)1)(1(5γ+++=

c ——地基土粘聚力;

b 、l ——分别为基础的宽度和长度;

0γ——基础埋置深度d 范围内土的重度。

三.太沙基极限承载力公式

对于均匀地基上的条形基础,当受中心荷载作用时,若把土作为有重量的介质,即γ不等于零,求其极限承载力时,太沙基作了如下假设:

1.基础底面粗糙,即的与土之间有摩擦力存在

当地基达到破坏并出现连续的滑动面时,其基底下有一部分土体将随着基础一起移动而处于弹性平衡状态,该部分土体称为弹性核或叫弹性契体,如图8-9中ABC 所示。

弹性核的边界AC 或BC 为滑动面的一部分,它与水平面的夹角为?,而它的具体数值又与基底的粗糙程度有关。

2.当把基底看作是完全粗糙时,则滑动区域由径向过渡区剪切区II 和朗肯被动区III 所组成。其中滑动区域II 的边界CE 和DC 为对数螺旋曲线,其曲线方程为(r 0为起始矢径)。朗肯区域III 的边界DFA 为直线,它与水平面成(450-φ/2)角。

3.当基础有埋置深度时,则基底以上两侧的土体用相当的均布超载d q γ=来代替。根据上述假定,经推导可得地基的极限承载力

c q r u cN qN rbN p ++=

2

1

式中:N r ,N q ,N c 称为承载力系数,都是土的内摩擦角?的函数。

其中:)

2

45(cos 202)2

3

(???π+

=

-tg e

Nq

?ctg Nq Nc )1(-=

但对N r ,太沙基并未给出公式。太沙基将N r ,N q ,N c 可以查表8-4得。 几点说明:

(1)当把基础底面假定为光滑时,则基底以下的弹性核就不存在,而成为朗肯主动区I 了,而AC 面与水平面的夹角ψ=(450+φ/2)而整个滑动区域将完全与普朗特尔的情况相似,因此,由C,q 所引起的承载力系数即可直接取用普朗特尔的结果,即:

)245(02?

?π+=tg e N tg q

?ctg Nq N c )1(-=

而由土容重γ所引起的承载力系数则采用下列半经验公式来表达:

?28.1Nctg N r =

将)2

45(02?

?π+

=tg e N tg q

?ctg N

N q

c )1(-=

?28.1tg N N c r =

代入:c q r u cN qN rbN p ++=

2

1

即可得基础底面完全光滑情况下的太沙基地基极限承载力,或N q ,N c ,N r 可直接查表取得。

(2)太沙基承载力公式都是在整体剪切破坏的条件下得到的,对于局部剪切破坏时的承载力,应进行修正。

c c 32=

,32

??tg tg =

再用修正后的c ,?,就可计算局部剪切破坏时松软土的地基承载力

'''2

1

c q r u N c qN rbN p ++=

式中:c

N ',q N ',r N ':修正后的承载力系数。 (3)对于方形或圆形基础,太沙基建议用下列修正公式计算地基极限承载力:

圆形基础:c q r ur cN rdN rRN p 2.16.0++= 整体破坏

'2.1''6.0c q r ur N c rdN rRN p ++= 局部破坏

方形基础: c q r us cN rdN rbN p 3.14.0++= 整体破坏

'3.1''4.0c q r us N c rdN rbN p ++= 局部破坏

4.地基的容许承载力

将上述各公式算出的极限承载力u p ,除以安全系数K ,即得到地基的容许承载力

[]K

p p u

=

在设计时,基底压力p 应满足p ≤[p]的要求。

例题1:某办公楼采用砖混结构基础。设计基础宽度b=1.50m ,基础埋深d=1.4m ,地基为粉土,γ =18.0kN/m 3,

?=30度,c =10kPa ,地下水位深7.8m ,计算此地基的极限荷载和

地基承载。

解:(1)条形,由太沙基公式:c q r u cN qN rbN p ++=

2

1

因为0

30=?,查得,N r =19,N c =35,N q =18

代入公式u p =18.0×1.5×19÷2+10×35+18.0×1.4×18=1060.1 kPa (2)地基承载力:K

p p u

=

=1060.1/3.0=353.4 kPa 例题2:在例题1中,若地基的?为20度,其余条件不变,求u p 和p 解:(1)当0

20=φ,查曲线:Nr =4,Nc=17.5,Nq =7,

c q r u cN qN rbN p ++=

2

1

u p =18.0×1.5×4÷2+10×17.5+18.0×1.4×7=405.4kPa

(2)K

p p u

=

=405.4/3.0=135 kPa 评论:由上两例计算结果可见:基础的形式,尺寸与埋深相同,地基土的γ,c 不变,只是?由30度减小为20度,极限荷载与地基承载力均降低为原来的38%,可知:?的大小,对u p 和p 影响很大。

四、考虑其它因素影响时的极限承载力计算公式

1、汉森极限承载力公式

对于均质地基基础底面完全光滑,在中心倾斜荷载作用下,汉森建议按下式计算竖向地基极限承载力。

c c c c c q q q q r r r r r u N i

d s c i d s dN d i d s bN p ++=

γγ2

1

式中:(1)γs ,q s ,c s 为基础的形状系数,

取:c c q q r r i l b s i l b s i l

b s 2.01sin 16.04.01+=+=≥-=?或l

b

s tg l b

s l N b N s r q c q c

4

.0111-=+=+=?

(2) ic iq ir ,,为荷载倾斜系数

))450/7.0(1(0

7.015

φφ?η?

cActg p p cActg p p ir h h

+--

=+-=

0)5.01(5φ?

cActg p p iq h

+-

=

)1

1(---

=Nq iq

iq ic (3)c q r d d d ,,深度修正系数

B

D d B D d B

D tg d d c c q r 35.01,40

.01)sin 1(211

2+=+=-+==??

(4)c q r g g g ,,地面倾斜系数

7

.141)5.01(5β

β-

=-==c q r g tg g g

(5)c q r b b b ,,基底倾斜系数

7

.14/1)2exp(7.2exp(η?η?η-=-=-=c q r b tg b tg b (6)Nr ,Nc ,Nq 承载力系数,由下式表示:

?

???π228.1)1()

2

45(Nctg Nr ctg Nq Nc tg e Nq tg =-=+=上式中βη分别为地面和基底的倾角。

几点说明:

(1)应用公式时,应满足δptg CaA p h +≤,以保证基底不因水平力过大而产生水平滑动。

Ph :作用在基底上的水平分力 P :作用在基底上的垂直分力 Ca :为基底与土之间的粘滞力 δ:为基底与土之间的摩擦力 A=L ×B

(2)当基底受到偏心荷载作用时,先将其换成有效的基底面积,然后按中心荷载情况下的极限承载力公式进行计算。

若条形基础,其荷载的偏心距为e ,则用有效宽度 B’=B -2e ,来代替原来的宽度B 。 若是矩形基础,并且在两个方面均有偏心,则用有效面积A’=B’×L’来代替原来的面积A 。其中B’=B -2e B ,L’=L -2e L

(3)对于成层土所组成的地基,当各土层的强度相差不大的情况下,汉森建议按下式近似确定持力层的深度。

Z max =λB

式中:λ:为系数,根据土层平均内摩擦角和荷载的倾角β从下表查出:

B :为基础的原宽度。

λ值表:单位为(度)

持力层范围内土的容重和强度指标按层厚求其平均值:

∑∑∑∑∑∑=

=

=

hi

ihi hi cihi c hi rihi r ?? 式中r i ,C i , ψi 分别为第i 土层的容重,凝聚力和内摩擦角,hi 为第i 层的厚度。 例题:有一宽4m 的条形基础,埋置在中砂层下2米深处,其上作用中心倾斜荷载(竖直分量P =900Kn/m ,水平方向Ph =150Kn/m )中砂层的内摩擦角ψ=32度,湿容重r=18.5Kn/m 3 浮容重r’=9.5Kn/m 3,距基底2米处有一粘土层,其固结不排水剪的强度指标为C =18Kn/㎡, ψ=22度,浮容重r’=9.7Kn/m 3,设地下水位与基底齐平,试按汉森公式确定地基的极限承载力。

解:荷载的倾斜率:

tg β=Ph/P=150/900=0.17

该地基属层状地基,应先确定持力层的最大深度Zmax 值,为此固结tg β=0.17并假设土层的平均内摩擦角35~21=?之间,从表查得λ=1.2,于是公式Zmax =λB 可得 Zmax =1.2×4=4.8m ,

求持力层内土层的平均指标:

2

12

21132122113

21221126

8

.228.222232/5.108

.228

.21820/6.98.228

.27.925.9'+?+?=

++=

=+?+?=++=

=+?+?=++=h h h h m Kn h h h c h c c m Kn h h h r h r r ???

可见求得的?在假设范围内,查表可得: Nr =9.53,Nq =11.90,Nc =22.3

求荷载倾斜系数:

64

.0190.1167

.0167.0)11(67

.0)5.01(57

.0)7.01(55≈---=---==+-==+-

=Nq i i i cBctg p p i cBctg p p i q q c h

q h

r ?? 求深度修正系数:

2.14

.01158.1)sin 1(211

2=+==-+==B

D

d B

D

tg d d c q r ?? 地面倾斜系数:a=0,

所以

1

147

11

)5.01(5=-==-==a

g tga g g c q r

同理基底倾斜系数:

1

11)7.2exp(0

===-==c q r b b tg b ?ηηΘ

基础的形状系数:1

===c q r s s s L B

ππΘ

所以地基的极限承载力:

2

/05.60375.1580.3403.1042.164.03.225.10158.167.09.1125.18157.0453.96.92

1

'2

1

m Kn cNcicdc rDNqiqdq BNrirdr r p u =++=???+????+?????=

++= 2、偏心与水平荷载下地基稳定性的圆弧滑动分析法(略)

持久状况承载能力极限状态计算

持久状况承载能力极限状态计算 在承载能力极限状态下,预应力混凝土梁沿正截面和斜截面都有可能破坏,下面验算这两类截面的承载力。 ① 2.4.1 正截面抗弯承载力计算 荷载基本组合表达式按《桥规》式(4.1.6-1) )(1111 00k Q Q k G n i Gi sd M M M γγγγ+=∑= 现以边梁弯矩最大的跨中截面为例进行正截面承载力计算。 1)求受压区高度x 先按第一类T 形截面梁,略去构造钢筋的影响,由式x b f A f A f f cd p pd S sd ' =+计算受压区高度x : mm h mm b f A f A f x f f cd S sd p pd 1803.802100 4.221900 33025021260''=<=??+?= += 受压区全部位于翼缘板内,说明确实是第一类T 形截面梁。 2)正截面承载力计算 跨中截面的预应力钢筋和非预应力钢筋的布置见图2-12和图2-17,预应力钢筋和非预应力钢筋的合力作用点到截面底边的距离(a )为 mm A f A f a A f a A f a s sd p pd s s sd p p pd 1601900 3302502126060 190033018025021260=?+???+??= ++= 所以mm a h h 184016020000=-=-= 按《公预规》式(5.2.2-3),钢筋采用钢绞线,混凝土标准强度为C50,查《公预规》表5.2.1得相对界限受压区高度4.0=b ξ。 mm h x b 73618404.00=?=≤ξ 从表2-10序号⑦知,边梁跨中截面弯矩组合设计值m kN M d ?=01.6612,由式子: )2/(0'0x h x b f M f cd d +≤γ )2/3.801840(3.8021004.22)2/(0'-???=+=x h x b f M f cd u )01.66120.1(595.67980m kN M m kN d ??=≥?=γ 可见边梁弯矩最大的跨中截面正截面承载力满足要求。以下为各个截面的验算,见表

地基承载力计算计算书

地基承载力计算计算书 项目名称_____________构件编号_____________日期_____________ 设计者_____________ 校对者_____________ 一、设计资料 1.基础信息 基础长:l=4000mm 基础宽:b=4000mm 修正用基础埋深:d=1.50m 基础底标高:dbg=-2.00m 2.荷载信息 竖向荷载:F k=1000.00kN 绕X轴弯矩:M x=0.00kN·m 绕Y轴弯矩:M y=0.00kN·m b = 4 0 l=4000 x Y 3.计算参数 天然地面标高:bg=0.00m 地下水位标高:wbg=-4.00m 宽度修正系数:wxz=1 是否进行地震修正:是 单位面积基础覆土重:rh=2.00kPa 计算方法:GB50007-2002--综合法 地下水标高-4.00 基底标高-2.00地面标高0.00 5 5 5 5 5 4.土层信息: 土层参数表格

二、计算结果 1.基础底板反力计算 基础自重和基础上的土重为: G k = A×p =16.0×2.0= 32.0kN 基础底面平均压力为: 1.1当轴心荷载作用时,根据5. 2.2-1 : P k = F k+G k A= 1000.00+32.00 16.00= 64.50 kPa 1.2当竖向力N和Mx同时作用时:x方向的偏心距为: e = M k F k+ G k= 0.00 1000.00 +32.00= 0.00m x方向的基础底面抵抗矩为: W = lb2 6= 4.00×4.00 2 6= 10.67m 3 x方向的基底压力,根据5.2.2-2、5.2.2-3为: P kmax = F k+G k A+ M k W= 64.50 + 0.00 10.67= 64.50 kPa P kmin = F k+G k A- M k W= 64.50 - 0.00 10.67= 64.50 kPa 1.3当竖向力N和My同时作用时:y方向的偏心距为: e = M k F k+ G k= 0.00 1000.00 +32.00= 0.00m y方向的基础底面抵抗矩为: W = bl2 6= 4.00×4.00 2 6= 10.67m 3 y方向的基底压力,根据5.2.2-2、5.2.2-3为: P kmax = F k+G k A+ M k W= 64.50 + 0.00 10.67= 64.50 kPa P kmin = F k+G k A- M k W= 64.50 - 0.00 10.67= 64.50 kPa 2.修正后的地基承载力特征值计算 基底标高以上天然土层的加权平均重度,地下水位下取浮重度 γm = ∑γi h i ∑h i = 2.0×18.0 2.0= 18.00 基底以下土层的重度为 γ = 18.00 b = 4.00 f a = f ak + ηbγ (b-3) + ηdγm (d-0.5) = 150.00+1.00×18.00×(4.00-3)+1.00×18.00×(1.50-0.5)

桩基承载力计算公式(老规范)

一、嵌岩桩单桩轴向受压容许承载力计算公式 采用嵌岩的钻(挖)孔桩基础,基础入持力层1~3倍桩径,但不宜小于1.00m,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.4条推荐的公式计算。 公式为:[P]=(c1A+c2Uh)Ra 公式中,[P]—单桩轴向受压容许承载力(KN); Ra—天然湿度的岩石单轴极限抗压强度(KPa),按表4.2 查取,粉砂质泥岩:Ra =14460KPa;砂岩:Ra =21200KPa h—桩嵌入持力层深度(m); U—桩嵌入持力层的横截面周长(m); A—桩底横截面面积(m2); c1、c2—根据清孔情况、岩石破碎程度等因素而定的系数。挖孔桩取c1=0.5,c2=0.04;钻孔桩取c1=0.4,c2=0.03。 二、钻(挖)孔桩单桩轴向受压容许承载力计算公式 采用钻(挖)孔桩基础,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.2条推荐的公式计算。 公式为:[]()R p A Ul Pσ τ+ = 2 1 公式中,[P] —单桩轴向受压容许承载力(KN); U —桩的周长(m); l—桩在局部冲刷线以下的有效长度(m); A —桩底横截面面积(m2),用设计直径(取1.2m)计算;

p τ— 桩壁土的平均极限摩阻力(kPa),可按下式计算: ∑==n i i i p l l 11ττ n — 土层的层数; i l — 承台底面或局部冲刷线以下个土层的厚度(m); i τ— 与i l 对应各土层与桩壁的极限摩阻力(kPa),按表 3.1查取; R σ— 桩尖处土的极限承载力(kPa),可按下式计算: {[]()}322200-+=h k m R γσλσ []0σ— 桩尖处土的容许承载力(kPa),按表3.1查取; h — 桩尖的埋置深度(m); 2k — 地面土容许承载力随深度的修正系数,据规范表 2.1.4取为0.0; 2γ— 桩尖以上土的容重(kN/m 3); λ— 修正系数,据规范表4.3.2-2,取为0.65; 0m — 清底系数,据规范表4.3.2-3,钻孔灌注桩取为 0.80,人工挖孔桩取为1.00。

20m箱梁换算截面几何特性计算及承载能力极限状态计算

换算截面几何特性计算 前面计算已知边主梁跨中截面的几何特性。毛截面面积62 1.0410mm A =?。 毛截面重心轴到1/2板高的距离:681551130mm d =-=(向上),毛截面对其中 心轴的惯性矩:114 1.3410mm I =?。 1 换算截面面积 0(1)(1) E p P E s s A A A A αα=+-+- 5 2 4 1.9510 5.65;3700mm 3.4510p Ep p s E A E α?====? 524 2105.8;3617m m 3.4510c E s s s E A E α?====? 621.0410mm A =? 代入得: 620 1.0410(5.651)3700(5.81)36171077821.9(mm ) A =?+-?+-?= 2 换算截面重心的位置 所有钢筋换算截面距毛截面重心的距离为: 01(1)(681100)(1)(68150)Ep p Es s S A A αα=-?-+-?- (5.651)3700581(5.81)3617631=-??+-?? 320951274.6(mm )= 0101020951274.6 19.44mm(1077821.9 S d A = ==向下) 则换算截面重心至箱梁截面下缘的距离为: 0155113019.44661.56mm l y =+-= 则换算截面重心至箱梁截面上缘的距离为: 0155113019.44440.44mm u y =-+= 换算截面重心至预应力钢筋重心的距离为:

01661.56100561.56mm p e =-= 换算截面重心至普通钢筋重心的距离为: 01661.5650611.56mm s e =-= 3换算截面惯性矩 222 0010101(1)(1)Ep p Es s s I I Ad Ape A e αα=++-+- 1162221.3410 1.041019.44(5.651)3700561.56(5.81)3617611.56=?+??+-??+-?? 1141.459610(mm )=? 4换算截面的弹性抵抗矩 下缘: 11 63 00101 1.459610220.6310mm 661.56l l I w y ?===? 上缘: 1163 00101 1.459610331.39610mm 440.44l u I w y ?===?

承载力计算方法

承载力计算方法 1.计算公式 V A q Q n ?+?=1γ 其中, Q —— 极限承载力; 1γ—— 桩靴排开土的水下溶重; V —— 桩靴体积; A —— 桩靴面积; 2. 桩端阻力 n q —— 确定方法如下: 2.1 对于粘性土(不排水土) u c n S N q ?= 其中, c N ——承载力系数 9)2 .01(6≤+=B D N c 最大值不能超过9 D ——桩靴入泥深度; B ——与桩靴面积相当的圆的直径; u S ——不排水剪切强度。 2.2 对于砂性土(排水颗粒土) )1(3.002-+??=q r n N p N B q γ 其中, 2γ——桩靴底面下0.5B 处土壤水下溶重; B ——与桩靴面积相当的圆的直径; 0P ——桩靴底面处压强;

q N ——承载力系数 )2 45(tan 2 tan φ φ π+ =e N q r N ——承载力系数 φt a n )1(2+=q r N N 其中, φ——内摩擦角。 3 算例: 桩靴底面积70m 2 桩靴型深:2m 桩靴入泥土深度:10m 桩靴体积:105m 3 算例1:(粘性土质 表1) V A q Q n ?+?=1γ q n =N C ×S u Nc=6(1+0.2D/B) D=10m B=2*sqr(A/3.14)=2*sqr(70/3.14)=9.443m Nc=14.54>9 , 所以取9 Nc =9 Su=9kPa q n =9*9000=81000 pa r 1=9kN/m 3 V=105m 3 Q=81000*70+9000*105=6615kN=675t

承载能力极限状态计算

一,为什么进行承载能力极限状态计算?? 答:承载能力极限状态是已经破坏不能使用的状态。正常使用极限状态是还可以勉强使用,承载能力极限状态是根据应力达到破坏强度,为了使建筑避免出现这种状态从而进行计算,使建筑数值高于极限承载能力状态的数值。 二,承载能力极限状态计算要计算那些方面?? 答:1作用效应组合计算;2正截面承载力的计算;3斜截面承载力计算;4扭曲截面承载力计算;5受冲击切承载力计算;6局部受压承载力计算。 三,1作用效应组合计算所用到的公式及其作用: 其效应组合表达式为: ) (2 111 00∑∑==++=n j QjK Qj C K Q Q m i GiK Gi ud S S S S γψγγγγ 跨中截面设计弯矩 M d =γG M 恒+γq M 汽+γq M 人 支点截面设计剪力 V d =γG V 恒+γG1V 汽+γG2V 人 2正截面承载力的计算所用到的公式及其作用:

(1)T形截面受弯构件位于受压区的翼缘计算宽度,应按下列三者中最小值取用。 翼缘板的平均厚度h′f =(100+130)/2=115mm ①对于简支梁为计算跨径的1/3。 b′f=L/3=19500/3=6500mm ②相邻两梁轴线间的距离。 b′f = S=1600mm ③b+2b h+12h′f,此处b为梁的腹板宽,b h为承托长度,h′f为不计承托的翼缘厚度。 b′f=b+12h′f=180+12×115=1560mm (2)判断T形截面的类型 设a s=120mm,h0=h-a s=1300-120=1180mm;

mm N M mm N h h h b f d f f f cd -?=>-?=- ??='- ''60601022501000.2779) 2 115 1180(11515608.13)2(γ 故属于第一类T 形截面。 (3)求受拉钢筋的面积A s mm h mm x x x x h x b f M f f cd d 11517.92:) 2 1180(15608.13102250) 2(:600='<=-?=?-'=解得根据方程γ 2 708728017 .9215608.13mm f x b f A sd f cd s =??= '= 满足多层钢筋骨架的叠高一般不宜超过0.15h~0.20h 的要求。 梁底混凝土净保护层取32mm ,侧混凝土净保护层取32mm ,两片焊接平面骨架间距为: ?? ?=>>=?-?-mm d mm mm 4025.1404.448.352322180 §2.2正截面抗弯承载力复核 ⑴跨中截面含筋率验算 mm a s 60.1137238) 4.188.35432(804)8.35232(6434=+?++?+= h 0=h -a s =1300-113.60=1186.40mm ???=>>=>=?== %19.0/45.0%2.0%39.340.11861807238 min 0sd td s f f bh A ρρ ⑵判断T 形截面的类型 N A f N h b f s sd f f cd 331064.202628072381072.247511515608.13?=?=>?=??=''

地基承载力计算

地基bai承载力=8*N-20(N为锤击数) 地基基础允许承载力是指在保证地基稳定的条件下,房屋和构筑物 的沉降量不超过容许值的地基承载力。中国制定的“工业与民用建 筑地基基础设计规范”(TJ7-74)中规定,在基础宽度小于3米,埋深0.5—1.0米的条件下,粘性土主要根据孔隙比(e)、天然含 水量(Wo)、相对含水量(Wb)考虑。砂根据饱和度(Sr)和紧密度(D)决定,也可按标准贯入试验及钻探试验锤击数确定地基 承载力。当基础宽度大于3米,埋深大于1米时,必须按下式校正:P=[σ]+ k1r0(b-3)+k2r(h-1)。式中P为计算承载力(吨/平 方米),[σ]为按表查得的承载力(吨/平方米),r0及r为地基土 持力层的天然容重(地下水位以下取水下容重,吨/立方米),k1 及k2为安全系数,取2—3。 密实法 用密实法处理地基又可分为:①碾压夯实法:对含水量在一定 范围内的土层进行碾压或夯实。此法影响深度约为200毫米,仅适于平整基槽或填土分层夯实。②重锤夯实法:利用起重机械提起重锤,反复夯打(图a),其有效加固深度可达1.2米。此法适用于处理粘性土、砂土、杂填土、湿陷性黄土地基和对大面积填土的压实以及杂 填土地基的处理。③机械碾压法:用平碾、羊足碾、压路机、推土 机及其他压实机械压实松散土层(图b)。碾压效果取决于被压土层的含水量和压实机械的能量。对于杂填土地基常用 8~12吨的平碾或13~16吨的羊足碾,逐层填土,逐层碾压。④振动压实法:在地基表面施加振动力,以振实浅层松散土(图c)。振动压实效果取决于 振动力、被振的成分和振动时间等因素。用此法处理以砂土、炉渣、碎石等无粘性土为主的填土地基,效果良好。⑤强夯法:利用重量 为8~40吨的重锤从6~40米的高处自由落下,对地基进行强力夯实的处理方法。经过强夯的地基承载能力可提高3~4倍,以至6倍,

地基容许承载力与承载力特征值

地基容许承载力的确定方法 地基的容许承载力是单位面积上容许的最大压力。容许承载的基本要素是:地基土性质;地基土生成条件;建筑物的结构特征。极限承载力是能承受的最大荷载。将极限承载力除以一定的安全系数,才能作为地基的容许承载力。 浆砌片石挡墙地基承载力达不到设计要求时,将基础改为砼基础是为了增加挡墙的整体性.这也只能是相差不大时才行.一般来说要深挖直至达到要求.如果深挖不行只有扩大基础,降低压强.或者改为其它方案 从现场施工的角度来讲地基,地基可分为天然地基、人工地基。地基就是基础下 地基;而在地质状况不佳的条件下,如坡地、沙地或淤泥地质,或虽然土层质地较好,但上部荷载过大时,为使地基具有足够的承载能力,则要采用人工加固地基,即人工地基 地基容许承载力与承载力特征值 所有建筑物和土工建筑物地基基础设计时,均应满足地基承载力和变形的要求,对经常受水平荷载作用的高层建筑高耸结构、高路堤和挡土墙以及建造在斜坡上或边坡附近的建筑物,尚应验算地基稳定性。通常地基计算时,首先应限制基底压力小于等于地基容许承载力或地基承载力特征值( 设计值) ,以便确定基础的埋置深度和底面尺寸,然后验算地基变形,必要时验算地基稳定性。 地基容许承载力是指地基稳定有足够安全度的承载能力,也即地基极限承载力除以一安全系数,此即定值法确定的地基承载力;同时必须验算地基变形不超过允许变形值。地基承载力特征值是指地基稳定有保证可靠度的承载能力,它作为随机变量是以概率理论为基础的,分项系数表达的极限状态设计法确定的地基承载力;同时也要验算地基变形不超过允许变形值。因此,地基容许承载力或地基承载力特征值的定义是在保证地基稳定的条件下,使建筑物基础沉降的计算值不超过允许值的地基承载力。 地基容许承载力:定值设计方法 承载力特征值:极限状态设计法 按定值设计方法计算时,基底压力P不得超过修正后的地基容许承载力.

地基承载力计算公式

地基承载力计算公式-CAL-FENGHAI.-(YICAI)-Company One1

地基承载力计算公式 地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项: 1. 反映粘聚力c的作用; 2. 反映基础宽度b的作用; 3. 反映基础埋深d的作 用。 在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。 下面介绍三种典型的承载力公式。 a.太沙基公式 式中: P u——极限承载力,K a c ——土的粘聚力,KP a γ——土的重度,KN/m,注意地下水位下用浮重度; b,d——分别为基底宽及埋深,m; N c ,N q ,N r——承载力系数,可由图中实线查取。 图 2

对于松砂和软土,太沙基建议调整抗剪强度指标,采用 c′=1/3c , 此时,承载力公式为: 式中N c′,N q′,N r′——局部剪切破坏时的承载力系数,可由图中虚线查得。 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表c,N q,N r值 N c N q N r N c N q N r 024 226 428 630 832 1034 1236 1438 1640 1842 2044 3

2246 S c,S q,S r——基础形状系数,可查表 表基础形状系数S c,S q,S r值 基础形状S c S q S r 条形 圆形和方形1+N q/N c1+tanφ 矩形(长为L,宽为b)1+b/L×N q/N c1+b/LtanφL d c,d q,d r——基础埋深系数,可查表 表埋深系数d c,d q,d r d/b 埋深系数 d c d q d r ≤ 〉 i c,i q,i r——荷载倾斜系数,可查表 i c i q i r 注: H,V——倾斜荷载的水平分力,垂直分力,KN ; F——基础有效面积,F=b'L'm; 当偏心荷载的偏心矩为e c和e b,则有效基底长度, L'=L-2e c;有效基底宽度:b'=b-2e b。 c.我国地基规范提供的承载力公式 当荷载偏心矩e≤时,可用下列公式: 4

极限状态承载力计算

极限状态承载力计算 1)和载效应组合计算 承载能力极限状态组合(基本组合): 00(1.2 1.4) 1.0(1.210.35 1.413.20)30.90()d Gk Qk M M M kN m γγ=+=-??+?=-? 00(1.2 1.4) 1.0(1.215.20 1.438.83)72.60()d Gk Qk V M M kN γγ=+=??+?= 作用短期效应组合(不计冲击力): 0.710.350.713.2019.59()sd Gk Qk M M M kN m =+=+?=? 作用长期效应组合(不计冲击力): 0.710.350.513.2016.95()ld Gk Qk M M M kN m =+=+?=? 承载能力极限状态组合(偶然组合,不同时组合汽车竖向力): 10.3588.5898.93()d Gk ck M M M kN m =+=+=? 2)正截面抗弯承载力 ①基本组合 对于矩形截面其正截面抗弯承载能力应符合《公预规》式(5.2.1-1)规定: 00()2 ud cd x M f bx h γ≤- sd s cd f A f bx = 受压区高度应符合0b x h ξ≤,查看《公预规》表5.2.1得0.56b ξ=。设0223h mm =可得到: 020*******.90 =0.2230.22322.41000 6.27()121.5ud cd b M x h h f b mm h mm γξ=-- ?-- ?=<= 2s 1000 6.2722.4 502()280 A mm ??= = 其中1000b mm =,0217h mm =,33s a mm =,22.4cd f MPa =,280cd f MPa =。 实际每延米板配10束2根12φ,则222262502s A mm mm =>,满足要求。 ②偶然组合 对于矩形截面其正截面抗弯承载能力应符合《公预规》式(5.2.1-1)规定:

地基承载力计算

地基承载力=8*N-20(N为锤击数) 地基的承载力是随负载增加而地基单位面积的承载力。常用单位KPa是评估基础稳定性的综合术语。应该指出的是,基础承载力是基础设计的一个实用术语,它有助于评估基础的强度和稳定性,而不是土壤的基础特性指标。土的抗剪强度理论是研究和确定地基承载力的理论基础。 在荷载作用下,地基要产生变形。随着荷载的增大,地基变形逐渐增大,初始阶段地基土中应力处在弹性平衡状态,具有安全承载能力。当荷载增大到地基中开始出现某点或小区域内各点在其某一方向平面上的剪应力达到土的抗剪强度时,该点或小区域内各点就发生剪切破坏而处在极限平衡状态,土中应力将发生重分布。这种小范围的剪切破坏区,称为塑性区(plastic zone)。地基小范围的极限平衡状态大都可以恢复到弹性平衡状态,地基尚能趋于稳定,仍具有安全的承载能力。但此时地基变形稍大,必须验算变形的计算值不允许超过允许值。当荷载继续增大,地基出现较大范围的塑性区时,将显示地基承载力不足而失去稳定。此时地基达到极限承载力。 确定方法: (1)原位试验法(in-situ testing method):是一种通过现场直接试验确定承载力的方法。包括(静)载荷试验、静力触探试验、标准贯入试验、旁压试验等,其中以载荷试验法为最可靠的基本的原位测试法。 (2)理论公式法(theoretical equation method):是根据土

的抗剪强度指标计算的理论公式确定承载力的方法。 (3)规范表格法(code table method):是根据室内试验指标、现场测试指标或野外鉴别指标,通过查规范所列表格得到承载力的方法。规范不同(包括不同部门、不同行业、不同地区的规范),其承载力不会完全相同,应用时需注意各自的使用条件。 (4)当地经验法(local empirical method):是一种基于地区的使用经验,进行类比判断确定承载力的方法,它是一种宏观辅助方法。

极限承载力的计算

第三节 极限承载力的计算 在土力学的发展中,已经提出了许多极限荷载公式,1920年普朗特首先根据塑性平衡理论导出了介质达到极限荷载时,沿着曲面发生滑动的数学方程,并认为介质的抗剪强度性质,可以用强度指标c ,?表示,但是,他的研究结果只适用于无重量的介质的极限平衡平面课题。 随后不少学者根据他的研究结果,引用来求解地基土的极限荷载,并进一步作了不同形式的修正和补充,以便在工程中加以应用。太沙基根据普朗特相似的概念,导出了考虑地基土自重影响的极限荷载公式。但这些公式都忽略了基础底面以上覆盖土层的抗剪强度的影响,故只适用于计算浅基础的极限荷载。 梅耶霍夫进一步考虑了基础底面以上覆盖层的抗剪强度的影响,从而提出了浅基础和深基础的极限荷载公式。 一.普朗特尔极限承载力公式 普朗特尔公式是求解宽度为b 的条形基础,置于地基表面,在中心荷载P 作用下的极限荷载Pu 值。 普朗特尔的基本假设及结果,归纳为如下几点: (1)地基土是均匀,各向同性的无重量介质,即认为土的0=γ,而只具有c ,?的材料。 (2)基础底面光滑,即基础底面与土之间无摩擦力存在,所以基底的压应力垂直于地面。 (3)当地基处于极限平衡状态时,将出现连续的滑动面,其滑动区域将由朗肯主动区I ,径向剪切区II 或过渡区和朗肯被动区III 所组成。其中滑动区I 边界BC 或AC 为直线,并与水平面成(45+?/2)角;即三角形ABC 是主动应力状态区;滑动区II 的边界CE 或 C D为对数螺旋曲线,其曲线方程为 θθtg e r r 0=,r 0为起始矢径;θ为射线r 与r 0夹角,滑 动区III 的边界E G ,DF 为直线并与水平面成(45-φ/2)角。 (4)当基础有埋置深度d 时,将基础底面以上的两侧土体用相当的均布超载d q γ=来代替。 根据上述的基本假设,采用刚体平衡方法或特征线法,可以得到地基极限承载力为: c q u cN rdN p += 式中:r :基础两侧土的容重

6容许应力法和承载能力极限状态法在钢结构设计中的区别

容许应力法和概率(极限状态)设计法 在钢结构设计中的应用 中铁五局集团公司经营开发部肖炳忠 内容提要 本文简要介绍了容许应力法、破坏阶段法、极限状态法、概率(极限状态)设计法四个结构设计理论,并且列出了我们经常用的容许应力法和概率(极限状态)设计法的实用表达式和参数选用,通过对上述两种方法参数的比较,总结出我们在工程施工中临时结构设计的实用办法和注意事项,以期望提高广大现场施工技术人员的设计水平的目的。 1、前言 我们在钢结构设计中经常用到容许应力法和概率(极限状态)设计法,有些没有经验的技术人员在设计计算中经常将二者混淆,因此有必要将两种设计计算方法进行介绍和比较,供广大技术人员参考。 2、四种结构设计理论简述 、容许应力法 容许应力法将材料视为理想弹性体,用线弹性理论方法,算出结构在标准荷载下的应力,要求任一点的应力,不超过材料的容许应力。材料的容许应力,是由材料的屈服强度,或极限强度除以安全系数而得。 容许应力法的特点是: 简洁实用,K值逐步减小; 对具有塑性性质的材料,无法考虑其塑性阶段继续承载的能力,设计偏于保守; 用K使构件强度有一定的安全储备,但K的取值是经验性的,且对不同材料,K值大并不一定说明安全度就高; 单一K可能还包含了对其它因素(如荷载)的考虑,但其形式不便于对不同的情况分别处理(如恒载、活载)。 、破坏阶段法 设计原则是:结构构件达到破坏阶段时的设计承载力不低于标准荷载产生的构件内力乘以安全系数K。 破坏阶段法的特点是: 以截面内力(而不是应力)为考察对象,考虑了材料的塑性性质及其极限强度; 内力计算多数仍采用线弹性方法,少数采用弹性方法; 仍采用单一的、经验的安全系数。 、极限状态法 极限状态法中将单一的安全系数转化成多个(一般为3个)系数,分别用于考虑荷载、荷载组合和材料等的不定性影响,还在设计参数的取值上引入概率和统计数学的方法(半概率方法)。 极限状态法的特点是: 在可靠度问题的处理上有质的变化。这表现在用多系数取代单一系数,从而避免了单一系数笼统含混的缺点。 继承了容许应力法和破坏阶段法的优点; 在结构分析方面,承载能力状态以塑性理论为基础;正常使用状态以弹性理论为基础; 对于结构可靠度的定义和计算方法还没法给予明确回答。 、概率(极限状态)设计法

地基承载力(轻、重型计算公式)

小桥涵地基承载力检测 《公路桥涵施工技术规范》JTJ041-2000(P28)“小桥涵的地基检验可采用直观法或触探方法,必要时可进行土质试验”。就我国在建高速公路桥涵地基承载力而言,设计单位在施工图中多给出了地基承载力要求,如圆管涵基底承载力要求100kpa、箱涵250 kpa等等。因此承建单位一般采用(动力)触探法对基底进行检验。 触探法可分为静力触探试验、动力触探试验及标准贯入试验,那么它们分别是怎样定义的?适用范围又是什么呢?我想我们检测人 员是应该搞清楚的。 1、静力触探试验:指通过一定的机械装置,将某种规格的金属触探头用静力压入土层中,同时用传感器或直接量测仪表测试土层对触探头的贯入阻力,以此来判断、分析确定地基土的物理力学性质。静力触探试验适用于粘性土,粉土和砂土,主要用于划分土层,估算地基土的物理力学指标参数,评定地基土的承载力,估算单桩承载力及判定砂土地基的液化等级等。(多为设计单位采用)。 2、动力触探试验:指利用锤击功能,将一定规格的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。动力触探试验适用于强风化、全风化的硬质岩石,各种软质岩及各类土;动力触探分为轻型、重型及超重型三类。目前承建单位一般选用轻型和重型。

①轻型触探仪适用于砂土、粉土及粘性土地基检测,(一般要求土中不含碎、卵石),轻型触探仪设备轻便,操作简单,省人省力,记录每打入30cm的锤击次数,代用公式为R=(0.8×N-2)×9.8(R-地基容许承载力Kpa , N-轻型触探锤击数)。 ②重型触探仪:适用于各类土,是目前承建单位应用最广泛的一种地基承载力测试方法,该法是采用质量为63.5kg的穿心锤,以76cm 的落距,将触探头打入土中,记录打入10cm的锤击数,代用公式为y=35.96x+23.8( y-地基容许承载力Kpa , x-重型触探锤击数)。 3、标准贯入试验:标准贯入试验是动力触探类型之一,其利用质量为63.5 kg的穿心锤,以76cm的恒定高度上自由落下,将一定规格的触探头打入土中15cm,然后开始记录锤击数目,接着将标准贯入器再打入土中30 cm,用此30 cm的锤击数(N)作为标准贯入试验指标,标准贯入试验是国内广泛应用的一种现场原位测试手段,它不仅可用于砂土的测试,也可用于粘性土的测试。锤击数(N)的结果不仅可用于判断砂土的密实度,粘性土的稠度,地基土的容许承载力,砂土的振动液化,桩基承载力,同时也是地基处理效果的一种重要方法。(多为测试中心及设计单位采用)。

地基承载力计算公式

地基承载力计算公式的说明:f=fk+ηbγ(b-3)+ηdγο(d-0.5) fk——垫层底面处软弱土层的承载力标准值(kN/m2) ηb、ηd——分别为基础宽度和埋深的承载力修正系数 b--基础宽度(m) d——基础埋置深度(m) γ--基底下底重度(kN/m3) γ0——基底上底平均重度(kN/m3) 地基的处理方法 利用软弱土层作为持力层时,可按下列规定执行:1)淤泥和淤泥质土,宜利用其上覆较好土层作为持力层,当上覆土层较薄,应采取避免施工时对淤泥和淤泥质土扰动的措施;2)冲填土、建筑垃圾和性能稳定的工业废料,当均匀性和密实度较好时,均可利用作为持力层;3)对于有机质含量较多的生活垃圾和对基础有侵蚀性的工业废料等杂填土,未经处理不宜作为持力层。局部软弱土层以及暗塘、暗沟等,可采用基础梁、换土、桩基或其他方法处理。在选择地基处理方法时,应综合考虑场地工程地质和水文地质条件、建筑物对地基要求、建筑结构类型和基础型式、周围环境条件、材料供应情况、施工条件等因素,经过技术经济指标比较分析后择优采用。 地基处理设计时,应考虑上部结构,基础和地基的共同作用,必要时应采取有效措施,加强上部结构的刚度和强度,以增加建筑物对地基不均匀变形的适应能力。对已选定的地基处理方法,宜按建筑物地基基础设计等级,选择代表性场地进行相应的现场试验,并进行必要的测试,以检验设计参数和加固效果,同时为施工质量检验提供相关依据。 经处理后的地基,当按地基承载力确定基础底面积及埋深而需要对地基承载力特征值进行修正时,基础宽度的地基承载力修正系数取零,基础埋深的地基承载力修正系数取1.0;在受力范围内仍存在软弱下卧层时,应验算软弱下卧层的地基承载力。对受较大水平荷载或建造在斜坡上的建筑物或构筑物,以及钢油罐、堆料场等,地基处理后应进行地基稳定性计算。结构工程师需根据有关规范分别提供用于地基承载力验算和地基变形验算的荷载值;根据建筑物荷载差异大小、建筑物之间的联系方法、施工顺序等,按有关规范和地区经验对地基变形允许值合理提出设计要求。地基处理后,建筑物的地基变形应满足现行有关规范的要求,并在施工期间进行沉降观测,必要时尚应在使用期间继续观测,用以评价地基加固效果和作为使用维护依据。复合地基设计应满足建筑物承载力和变形要求。地基土为欠固结土、膨胀土、湿陷性黄土、可液化土等特殊土时,设计要综合考虑土体的特殊性质,选用适当的增强体和施工工艺。复合地基承载力特征值应通过现场复合地基载荷试验确定,或采用增强体的载荷试验结果和其周边土的承载力特征值结合经验确定。 常用的地基处理方法有:换填垫层法、强夯法、砂石桩法、振冲法、水泥土搅拌法、高压喷射注浆法、预压法、夯实水泥土桩法、水泥粉煤灰碎石桩法、石灰桩法、灰土挤密桩法和土挤密桩法、柱锤冲扩桩法、单液硅化法和碱液法等。 1、换填垫层法适用于浅层软弱地基及不均匀地基的处理。其主要作用是提高地基承载力,减少沉降量,加速软弱土层的排水固结,防止冻胀和消除膨胀土的胀缩。

FEA-03技术资料-极限承载力计算说明

midas FEA Technique Data Series 技术资料–极限承载力计算说明 [图1][图2] [图3] [图4] 1. 结构设计理论发展简介 钢筋混凝土结构设计理论的发展先后经历了容许应力理论、破损阶段理论和极限状态理论。极限状态设计理论所依据的是极限强度理论,其基本原则是求出截面破坏时的极限承载力,然后控制截面在使用荷载作用下的内力不大于破坏时的极限承载力除以某种安全系数。随着可靠度理论的发展,安全系数的取值已经从传统的定值设计法发展到今天的半概率设计法,又在向近似概率设计法发展,使结构设计的极限状态理论向更完善、更科学的方向发展。但是,只有结构的极限承载力得以准确评估后,结构安全系数更为精确、科学的取值才会有意义,结构安全度才能得到充分保证。因此,钢筋混凝土结构极限承载力的计算是十分重要的一项工作,它的准确取值对结构设计的经济性、安全性和可靠性都有十分重大的意义。 2. 求解极限承载力的方法 使用有限元软件,我们可以采用载荷增量加载或是位移增量加载的模式来求解结构的极限承载力,并以有限元计算不收敛作为达到极限破坏状态的判断标准。于是影响程序收敛的所有因素都会关系到极限承载力的判断,比如网格划分,本构模型,迭代方法,收敛准则等。如果这些因素把握的不好,有限元模拟出来的极限承载力可能就不准。 进行极限承载力计算时,我们往往设置一个比较大的荷载,控制较小的增量加载,在计算发散之前所能达到的最大增量步的荷载就代表结构的极限承载能力。如果画出载荷-位移曲线,这一步就是载荷位移曲线即将下弯的最高点。无论使用什么有限元软件,求解极限承载力的方式都是这样的,不同的只是每个有限元程序中的本构模型,钢筋模拟方式,迭代和收敛方法的控制等。在此对论文[1]中的一个试验模型进行有限元模拟计算其极限承载力,并和试验数据对比。试验所用模型梁为矩形截面梁,采用两点对称加载方式。梁的具体尺寸和配筋如图1所示。混凝土材料常数:混凝土抗压强度为20 M Pa,弹性模量为2.5×10 MP a;钢筋强度为310 MP a,弹性模量为2.0×10 MP a。梁所配钢筋为Φ16,试验与FEA计算得到的该梁的极限承载力对比如下表,两者十分接近。FEA中的有限元模型如图2所示,钢筋采用植入式钢筋的形式模拟,得到的跨中荷载挠度曲线如图3所示,最后荷载步的裂缝应变分布如图4所示。 试验值 FEA模拟值极限承载力(kN) 110 104 由于极限承载力计算不再仅仅限于材料的弹性状态,材料的非线性特性需要在本构中定义,尤其是对于抗拉强度很小的混凝土材料,在裂纹产生之后裂纹对材料本构的影响需要在本构模型中体现出来,比如说材料的拉伸软化曲线,剪力传递系数等。FEA中提供了总应变裂缝模型可以定义裂纹对材料本

地基承载力规范及方法

1简介 地基承载力:地基满足变形和强度的条件下,单位面积所受力的最大荷载。 2概述 地基承载力(subgrade bearing capacity)是指地基承担荷载的能力。 在荷载作用下,地基要产生变形。随着荷载的增大,地基变形逐渐增大,初始阶段地基土中应力处在弹性平衡状态,具有安全承载能力。当荷载增大到地基中开始出现某点或小区域内各点在其某一方向平面上的剪应力达到土的抗剪强度时,该点或小区域内各点就发生剪切破坏而处在极限平衡状态,土中应力将发生重分布。这种小范围的剪切破坏区,称为塑性区(plastic zone)。地基小范围的极限平衡状态大都可以恢复到弹性平衡状态,地基尚能趋于稳定,仍具有安全的承载能力。但此时地基变形稍大,必须验算变形的计算值不允许超过允许值。当荷载继续增大,地基出现较大范围的塑性区时,将显示地基承载力不足而失去稳定。此时地基达到极限承载力。 3确定方法 (1)原位试验法(in-situ testing method):是一种通过现场直接试验确定承载力的方法。包括(静)载荷试验、静力触探试验、标准贯入试验、旁压试验等,其中以载荷试验法为最可靠的基本的原位测试法。 (2)理论公式法(theoretical equation method):是根据土的抗剪强度指标计算的理论公式确定承载力的方法。 (3)规范表格法(code table method):是根据室内试验指标、现场测试指标或野外鉴别指标,通过查规范所列表格得到承载力的方法。规范不同(包括不同部门、不同行业、不同地区的规范),其承载力不会完全相同,应用时需注意各自的使用条件。 (4)当地经验法(local empirical method):是一种基于地区的使用经验,进行类比判断确定承载力的方法,它是一种宏观辅助方法。 4注意问题 定义 (1)地基承载力:地基所能承受荷载的能力。 (2)地基容许承载力:保证满足地基稳定性的要求与地基变形不超过允许值,地基单位面积上所能承受的荷载。

二建考试必备-建筑结构与建筑设备 (14)承载能力极限状态计算

第三节 承载能力极限状态计算 承受荷载产生的弯矩和剪力的构件,称为受弯构件(如梁、板)。它在弯矩作用下可能会发生正截面受弯破坏;同时在弯矩和剪力的共同作用下又可能会发生斜截面受剪破坏。 承受荷载产生的轴力、弯矩和剪力的构件,称为受压构件(即柱)。当然它也存在着正截面受弯破坏和斜截面受剪破坏的可能。 一、正截面承截能力计算 (一)破坏形态 ( 1 )受弯构件(梁),因其配筋率ρ的不同,可能出现适筋梁破坏,超筋梁破坏和少筋梁破坏等三种。它们的破坏特征为; 1 )适筋梁破坏(配筋量适中)——受拉区钢筋先达屈服强度,然后受压区边缘纤维混凝土的压应变达到其极限压应变。εcu 值而破坏。该破坏属延性破坏。 2 )超筋梁破坏(配筋量过多) ——当受拉压钢筋还未达屈服强度,而受压区边缘纤维混凝土就因已达εcu 值而破坏。该破坏属脆性破坏。 3 )少筋梁破坏(配筋量过少)——当梁一开裂,受拉钢筋立即达屈服强度,梁被拉为两部分而断裂破坏。它的极限弯矩与开裂弯矩几乎相等,该破坏也属脆性破坏。 ( 2 )偏压构件(柱)的破坏形态有:大偏心受压破坏和小偏心受压破坏等两种。它们的破坏特征为: 1 )大偏心受压破坏 ——远离轴向力 N 一侧的受拉钢筋先达屈服强度,然后另一侧截面外边缘纤维混凝土的压应变达εcu 而破坏。(' 2s x a 时,该侧的受压钢筋也达受压屈服强度)。该破坏属延性破坏。 2 )小偏心受压破坏——靠近轴向力 N 一侧的外边缘纤维混凝土压应变先达到εcu ,同时这一侧的受压钢筋也达受压屈服强度;而远离轴向力 N 一侧的钢筋,无论是受拉还是受压,均未屈服而破坏。该破坏属脆性破坏。 (二)计算基本假定 ( 1 )截面应变保持平面; ( 2 )不考虑混凝土的抗拉强度; ( 3 )混凝土受压的应力与应变关系曲线,如图 4 一 3 所示:

承载能力极限状态包括结构构件或连接因强度超过而破坏结构

一级建造师建筑实务学习资料 承载能力极限状态:包括①结构构件或连接因强度超过而破坏。②结构或其一部分作为刚体而失去平衡(如倾覆、滑移)③在反复荷载下构件或连接发生疲劳破坏。 正常使用的极限状态:包括①构件在正常使用条件下产生过度变形,导致影响正常使用或建筑外观。②构件过早产生裂缝或裂缝发展过宽。③动力荷载下结构或构件产生过大振幅等。 预应力混凝土构件的混凝土最低强度等级不应低于C40。 细长压杆的临界力公式柱的一端固定一端自由时,L0=2L,L为杆件的实际长度;两端固定时,L0=0.5L;一端固定一端铰支时,L0=0.7L;两端铰支时,L0=L.均布荷载作用下悬臂梁的最大变形公式(),矩形截面梁的惯性矩 要求设计使用年限为50年的钢筋混凝土及预应力混凝土结构,其纵向受力钢筋的混凝土保护层厚度不应小于钢筋的公称直径,一般为15~40mm(保护层最小厚度:一类环境,板墙壳≤C20的20mm,≥C25的15mm;梁≤C20的30mm,≥C25的25mm;柱均为30mm) 一类环境设计年限50年的结构混凝土:最小保护层厚度,最大水灰比0.65,最小水泥用量225kg/m3,最低混凝土强度等级C20,最大氯离子含量点水泥用量1.0%,最大碱含量(kb/m3)(不限制) M抗≥(1.2~1.5)M倾 现行抗震设计规范适用于抗震设防烈火度为6、7、8、9度地区。三个水准“小震不坏,中震可修,大震不倒”。抗震设计根据功能重要性分为甲,乙,丙,丁四类。大量的建筑物属于丙类。 多层砌体房屋的抗震构造措施:①设置钢筋混凝土构造柱;②设置钢筋混凝土圈梁与构造柱连接起来,增强房屋的整体性;③墙体有可靠的连接,楼板和梁应有足够的搭接长度和可靠连接④加强楼梯间的整体性 框架结构的抗震构造措施:框架结构震害的严重部位多发生在框架梁柱节点和填充墙处;一般柱震害重于梁,柱顶震害重于柱底,角柱震害重于内柱,短柱震害重于一般柱。框架设计成延性框架,遵守强柱、强节点、强锚固,避免短柱、加强角柱,框架沿高度不宜突变,避免出现薄弱层,控制最小配筋率,限制配筋最小直径等原则。构造上采取受力筋锚固适当加长,节点处箍筋适当加密等措施。 导热系数小于0.25W/(m.K)的材料称为绝热材料 防水隔离层:楼板四周除门洞外,混凝土翻边高度不应小于120mm。防水隔离层不得做在与墙交接处,应翻边高度不宜小于150mm。孔洞四周和平台临空边缘,翻边高度不宜小于100mm。 楼梯平台上部及下部过道处的净高不应小于2米,梯段净高不应小于2.2米.楼梯踏步

相关文档
最新文档