芳纶纤维复合材料分解
芳纶复合材料

芳纶复合材料芳纶复合材料是一种具有优异性能的高分子复合材料,由芳纶纤维与树脂基体复合而成。
芳纶纤维是一种高强度、高模量、耐高温、耐化学腐蚀的合成纤维,广泛应用于航空航天、军工、汽车、船舶等领域。
芳纶复合材料以其优异的性能在各个领域得到了广泛的应用,成为了现代工程材料中的重要一员。
首先,芳纶复合材料具有优异的机械性能。
芳纶纤维本身就具有很高的强度和模量,而且在高温下仍能保持较好的性能,因此芳纶复合材料在强度、刚度和耐热性方面都表现出色。
在航空航天领域,芳纶复合材料可以用于制造飞机的结构件、发动机零部件等,能够大幅减轻飞机自重,提高飞机的载荷能力和燃油效率。
在汽车领域,芳纶复合材料可以用于制造车身结构件,提高汽车的安全性和燃油经济性。
在船舶领域,芳纶复合材料可以用于制造船体结构件,提高船舶的耐久性和航行性能。
其次,芳纶复合材料具有优异的耐腐蚀性能。
芳纶纤维具有很好的耐化学腐蚀性能,能够抵抗酸、碱、有机溶剂等腐蚀介质的侵蚀,因此芳纶复合材料在化工、海洋等领域得到了广泛的应用。
在化工领域,芳纶复合材料可以用于制造储罐、管道、泵等设备,能够保障设备长期稳定运行。
在海洋领域,芳纶复合材料可以用于制造海水处理设备、海洋平台等,能够抵抗海水的腐蚀,保障设备的使用寿命。
最后,芳纶复合材料具有优异的耐高温性能。
芳纶纤维具有很高的熔点和热变形温度,能够在高温下保持较好的性能,因此芳纶复合材料在高温领域得到了广泛的应用。
在航空航天领域,芳纶复合材料可以用于制造航天器的热屏蔽材料、发动机的隔热材料等,能够保护航天器和发动机在高温环境下的安全运行。
在电力领域,芳纶复合材料可以用于制造电力设备的绝缘材料、高温电缆等,能够保障电力设备的安全运行。
综上所述,芳纶复合材料以其优异的性能在各个领域得到了广泛的应用,对于提高产品的性能、降低产品的自重、延长产品的使用寿命都发挥着重要作用。
随着科技的不断发展,相信芳纶复合材料在未来会有更广阔的应用前景。
高性能增强材料——芳纶纤维

高性能增强材料——芳纶纤维安源摘要: 芳族聚酰胺纤维由美国杜邦公司于20世纪60年代首先开发并最早实现工业化生产。
该产品可以用做增强材料。
介绍芳族聚酰胺纤维的发展、性能、制备及其应用。
关键词:芳纶;性能;制备;应用1 概述增强材料就像树木中的纤维,混凝土中的钢筋一样,是复合材料的重要组成部分,并起到非常重要的作用。
它不仅能使材料显示出较高的抗张强度和刚度,而且能减少收缩,提高热变形温度和低温冲击强度等。
复合材料的性能在很大程度上取决于纤维的性能、含量及使用状态。
例如在纤维增强复合材料中,纤维是承受载荷的组元,纤维的力学性能决定了复合材料的性能。
芳纶是芳族聚酰胺纤维的通称,主要分为聚对苯二甲酰对苯二胺(PPTA)纤维(芳纶1414)和聚间苯二甲酰间苯二胺(PMIA)纤维(芳纶1313)。
美国杜邦公司于20世纪60年代首先开发出芳纶1313和芳纶1414 ,并最早实现工业化生产(商品名分别为Nomex和Kevlar)。
1987年推出了KevlarHT、Kevlar68和Kevlar149。
1986年荷兰阿克苏(Akzo)公司生产出Twaron纤维; 1987年日本帝人公司生产出Technora纤维。
而中国于1972年开始进行芳纶的研制工作,并于1981年通过芳纶14的践定,1985年又通过芳纶1414的鉴定,它们分别相当于美国杜邦公司的Kevlar29和Kevlar49。
2 全球芳纶纤维的发展概况全球芳纶纤维产能主要集中在日本、美国和欧洲,生产芳纶纤维的公司也较为集中,目前全球从事芳纶纤维生产的厂家主要有5个:美国杜邦公司(Kevlar)、日本帝人公司(Twaron、Technora)、俄罗斯卡明斯克化纤股份公司(SVM、Apmoc、Rusar)和特威尔化纤股份公司(SVM、Apmoc)、韩国科隆公司(Kolon),其他国家或公司仅有少量生产。
2009年,全球芳纶纤维生产能力约9.51万t/a,其中对位芳纶纤维产能约6.61万t/a,杜邦和帝人二家公司产能合计6.15万t/a,占对位芳纶纤维产能的93%;间位芳纶纤维的产能约为2.9万t/a,主要的生产公司仍为杜邦公司,产能为全球总产能的75%以上。
我国芳纶纤维的生产、应用状况及存在的问题

我国芳纶纤维的生产、应用状况及存在的问题摘要:芳纶纤维是一种高强度、高模量,并具有良好的热稳定性的增强型和功能型纤维材料,多以复合材料的形式应用。
文章阐述了目前我国芳纶纤维生产发展状况,介绍了芳纶纤维在军工、航空和汽车等领域的应用状况,讨论了我国芳纶纤维存在的一些主要问题。
关键词:芳纶纤维,生产,应用芳纶纤维是一种分子构型沿轴向伸展、分子排列整齐、高结晶度、高取向度的材料,具有相对密度小、耐疲劳、耐剪切等一系列优异性能。
它具有的很高伸直平行度和取向度的分子结构决定了芳纶纤维具有高强度和高模量,并具有良好的热稳定性。
芳香族聚酰胺分为邻位、间位、对位。
邻位类无商业化价值,间位、对位的芳香族聚酰胺已商品化生产。
间位类通常指芳纶1313,其以耐热性、难燃性和耐药品性优异为特征;对位类通常指芳纶1414,其以高强力、高弹性模量和耐热性为特征。
我国于20世纪80年代初研制的两种纤维产品分别是芳纶1414[聚对苯二甲酰对苯二胺(PPTA)]纤维和芳纶14[聚对苯甲酰胺]纤维,统称为芳纶纤维,其中以PPTA应用最为广泛。
杜邦和恩卡公司分别把PPTA注册为Kevlar和Twaron商品名[1]。
1.芳纶纤维生产发展现状1.1芳纶纤维的基本概况我国芳纶纤维的研制开发起步较晚,从20世纪80年代起,国内先后有多家企业、高校和研究所对芳纶国产化进行了深入研究,主要有晨光化工研究院、东华大学、上海合成纤维研究所、沈阳红星、广东彩艳、烟台氨纶、河南神马、航天科工六院等进行了研究开发。
目前,我国间位芳纶已攻破技术难关,产品性能稳定,基本上实现了产业化生产,国产产品在国内占有一定的市场份额,并且还有部分产品出口到国际市场。
但我国对位芳纶纤维发展较慢,一些科研院所和企业建设了中试装置,但产量较小,产品质量与国外产品也有一定差距。
对位芳纶的产能主要集中在日本、美国和欧洲。
1998年,荷兰AKZO-Nobel 公司的功能纤维部与荷兰Acordis公司合并重组,成为后者的纤维商务部。
芳纶纤维复合材料

芳纶纤维复合材料
芳纶纤维是一种材料,具有高抗撕裂性、强度及不可损伤性,它在航空航天、汽车和建筑工程等领域有着广泛的应用,可以为材料行业带来巨大的经济效益。
芳纶纤维以其独特的性能、超强的耐热性和抗冲击性得到了高度的重视,是生产高科技、精密制品的理想材料。
复合材料是将芳纶纤维和其他材料(如陶瓷、金属和塑料)结合起来,以达到优异的性能、抗污染和抗腐蚀的要求,以及更高的应用价值和技术效率的要求。
芳纶纤维复合材料由芳纶树脂和芳纶纤维构成,可以分为平板复合材料和折叠复合材料两种。
平板复合材料是在压力下将芳纶纤维层压入芳纶树脂层,其强度是经过热处理后的芳纶纤维和芳纶树脂的结合。
折叠复合材料则是将芳纶纤维片和芳纶树脂片叠层,然后经过搓、拉、压力热塑的工艺加工而成,具有优越的抗拉强度和较高的抗弯强度及弹性模量。
芳纶纤维复合材料讲解

芳纶纤维复合材料讲解
介绍芳纶纤维复合材料
一、芳纶纤维复合材料的定义
二、芳纶纤维复合材料的性能
可靠性是评价一种复合材料必须考虑的性能指标,它表示材料在给定条件下能持续承受外力的能力。
芳纶纤维复合材料具有很高的可靠性。
因为芳纶纤维有卓越的力学强度和热安定性,耐磨性,及其它特性,其可靠性极其稳定。
三、芳纶纤维复合材料的制造工艺
1、芳纶纤维复合材料的制造工艺主要包括添加矽酸钠的制备,增加温度,制备复合纤维,纺纱,成型,热压等。
2、添加矽酸钠的制备:矽酸钠是芳纶纤维重要的改性剂,它不仅有助于芳纶纤维的增韧,而且能够增强芳纶纤维的抗拉强度,增加抗折折断强度。
3、增加温度:温度是改变芳纶纤维性质的重要参数,增加温度可以改善复合材料的延展性,增加复合材料的拉伸强度,抗折断强度等。
芳纶复合材料的结构

芳纶复合材料的结构
芳纶复合材料是由芳香族聚酰胺纤维和一种或多种材料复合而成的材料。
其结构特点主要包括以下几个方面:
1.芳香族聚酰胺纤维:芳纶纤维是一种由芳香基团和酰胺基团组成的线性聚合物,具有优异的力学性能、稳定的化学结构、理想的机械性质,如超高强度、高模量、耐高温、耐酸碱、质量轻和耐磨损等。
2.复合结构:芳纶复合材料通常由芳纶纤维和一种或多种其他材料组成,这些材料可以是金属、陶瓷、橡胶、树脂等。
这种复合结构可以充分发挥不同材料的优点,使得整个复合材料具有优异的综合性能。
3.增强相:在芳纶复合材料中,芳纶纤维通常作为增强相,通过与基体的结合,提供复合材料的主要承载能力和优良的力学性能。
4.界面相:为了提高芳纶复合材料的性能,通常需要在芳纶纤维和基体之间建立一个良好的界面。
这种界面可以通过各种界面处理技术来实现,如表面涂层、化学处理等。
5.基体相:基体相是复合材料中的另一个重要组成部分,它主要起到粘结纤维和传递载荷的作用。
根据所使用的基体材料不同,芳纶复合材料的性能和应用领域也会有所不同。
总之,芳纶复合材料的结构特点在于其由多种材料组成,并具有良好的界面相和各向同性的力学性能。
这种材料可以广泛应用于航空航天、军事、汽车、体育等领域,作为结构材料或功能材料使用。
芳纶纤维的分子式

芳纶纤维的分子式一、芳纶纤维简介芳纶纤维是一种聚合物纤维,它具有极高的强度、耐热性和耐化学腐蚀性。
它是由芳香环和酰亚胺基团组成的。
芳纶纤维的分子式是(C14H10N2O2)n,其中n代表重复单元的数量。
二、芳纶纤维的分子式解析分子式 (C14H10N2O2)n 可以分解为四个组成部分,分别是C14H10、N2、O2和n。
下面将对这四个部分进行解析。
1. C14H10C14H10代表芳纶纤维分子中含有14个碳原子和10个氢原子。
C14H10是一个芳香环,由苯环和取代基组成。
苯环是由6个碳原子和 6 个氢原子构成的环状结构。
芳纶纤维中的苯环通过共价键连接在一起,形成一个长链。
2. N2N2代表芳纶纤维分子中含有2个氮原子。
氮原子是芳纶纤维中的酰亚胺基团的组成部分。
酰亚胺基团是由一个碳原子、两个氮原子和一个氧原子构成的。
3. O2O2代表芳纶纤维分子中含有2个氧原子。
氧原子与碳原子和氮原子形成键连接,稳定纤维结构。
4. nn代表芳纶纤维分子中重复单元的数量。
芳纶纤维通过聚合反应形成高分子链,重复单元不断重复连接形成长链结构。
重复单元的数量n决定了芳纶纤维的长度。
三、芳纶纤维的结构与性质芳纶纤维的分子式确定了其特殊的结构和优秀的性质。
芳纶纤维中的芳香环使其具有较高的强度和刚性,适用于许多高强度应用。
酰亚胺基团的存在使芳纶纤维具有良好的耐热性和耐化学腐蚀性。
芳纶纤维的结构和性质主要有以下几个方面:1. 高强度和刚性芳纶纤维由于芳香环的存在,具有较高的强度和刚性。
其强度比钢高5倍,模量比钢高2倍,是一种理想的高强度纤维材料。
芳纶纤维在应用中被广泛用于制造高强度的复合材料,如航空航天领域的复合材料结构件。
2. 耐热性芳纶纤维在高温下仍能保持良好的性能。
其可以在500℃的温度下长时间使用而不熔化,不发生脆性断裂。
这使得芳纶纤维广泛应用于高温环境中,如航空发动机部件、阻燃服装等领域。
3. 耐化学腐蚀性芳纶纤维对酸、碱和有机溶剂等化学物质具有良好的耐腐蚀性。
非热压罐成型法制备杂环芳纶纤维增强环氧复合材料

摘要采用非热压罐成型(OOA)法制备得到了杂环芳纶纤维增强环氧树脂复合材料,并研究了复合材料树脂的质量分数、样品的切割方式和厚度等参数对杂环芳纶纤维增强环氧树脂复合材料的压缩强度和层间剪切强度的影响。
选取80℃为OOA环氧树脂复合材料树脂浸润温度,并结合树脂的固化特性分析,OOA环氧复合材料的固化工艺为80℃/0.5h+130℃/3h。
通过研究不同参制样数对复合材料力学性能的影响从研究结果中发现,结果发现在树脂质量分数为43%、机械切割制备样品、样品厚度较厚时,复合材料的压缩强度和层间剪切强度更高;同时,这样的制样条件也能更好反映杂环芳纶复合材料的性能。
含杂环的芳香族聚酰胺纤维(杂环芳纶,芳纶III)是一种主链由芳环和杂环组成的高聚物纤维,其除了具有优异的物理力学性能、热氧稳定性、阻燃性及优良的电绝缘性能外,其耐高温性能甚是优良,在200℃左右的高温条件下能长期保持较好的力学性能,在高达300℃的条件下依然保持38%或以上强度,比纯芳纶(无杂环,芳纶II)如Kevlar,Twaron具有更加突出的耐热性和更高的力学性能。
先进树脂基复合材料具有高比强度、高比模量、耐高温、耐腐蚀、耐疲劳、阻尼减震性好、性能可设计等优势,已经成为航空航天结构用的重要材料。
目前航空航天用高性能树脂基复合材料成型主要使用热压罐工艺。
而新兴的非热压罐成型(OOA)工艺是一种低成本复合材料制造技术。
发展树脂基复合材料的非热压罐固化技术,可以大大降低主要由热压罐成型工艺采用的高耗能设备、高性能工艺辅材及昂贵的成型模具等带来的高费用,而且OOA预浸料成型工艺不受热压罐限制,可以用于制备大结构件。
因此,非热压罐固化技术是降低树脂基复合材料制件成本的一个重要发展方向。
笔者通过OOA方法制备得到了杂环芳纶纤维增强环氧树脂复合材料,并研究不同参数对杂环芳纶纤维复合材料力学性能的影响,分析并确定更为适合杂环芳纶纤维复合材料的制样方案。
01实验部分1.1 主要原材料杂环芳纶纤维:线密度:200tex;环氧树脂:E-51,市售;潜伏型双氰胺固化剂:100s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用于高性能复合材料的芳纶纤 维的主要品种
美国杜邦公司生产: ◆聚对苯二甲酰对苯二胺(PPTA)纤维 ◆聚对苯甲酰胺(PBA)纤维 日本帝人公司生产: ◆对位芳酰胺共聚纤维(Technora) 俄罗斯生产: ◆聚对芳酰胺苯并咪唑纤维(CBM) ◆APMOC纤维
杜邦公司PPTA纤维的主要牌号
◆虽然芳纶Ⅰ比芳纶Ⅱ的拉伸强度低约20%,但拉伸模量却高
出50%以上,相当于Kevlar-49的水平。 ◆芳纶Ⅰ的起始分解温度(474℃)比Kevlar-49的(520℃) 低,但分解终点温度相近。 ◆芳纶Ⅰ在高温下的强度保持率和热老化性能优于Kevlar49。
(2)PPTA的结构
PPTA化学结构的特点是: ◇由苯环和酰胺基按一定规律有序排列构成。酰胺基的 位置接在苯环的对位上。
◇在芳纶中,分子内的骨架原子通过强共价键结合; 高聚物分Байду номын сангаас间是酰胺基,由于酰胺基是极性基团, 其上的氢能够与另一个链段上酰胺基团中可供电子 的羰基(-CO-)结合成氢键,构成梯形聚合物,这种 聚合物具有良好的规整性,因此具有高度的结晶性。 ◇芳纶沿分子链方向(平行于纤维轴向)为强共价键; 垂直于纤维轴向的分子间以氢键相连,因而纤维显 现各向异性(在轴向,和E高;在横向,和E均较 低)。 ◇苯环呈大共轭键(键),它难于旋转,所以,大 分子链具有线性刚性伸直链(棒状)构型,从而赋 予Kevlar纤维高强度、高模量和耐热性。
芳纶在军事工业中的应用
应用于战略导弹: 20世纪70年代初期,用缠绕法制造了Kevlar-49增强环 氧树脂复合材料如下结构件: ◇ 美国核潜艇“三叉戟”C4潜地导弹的固体火箭发动机壳体; ◇美国战略型号MX陆基机动洲际导弹的三级发动机和新型潜地 “三叉戟Ⅱ”D5导弹的第三级发动机; ◇前苏联SS-24、SS-25铁路和公路机动洲际导弹各级固体发动 机; ◇法国的M4导弹的402K的壳体。 应用于战术导弹: ◇采用芳纶/环氧复合材料制作“潘兴”的航天顶级发动机、卫 星变轨固体发动机的壳体。 应用于耐热隔热功能材料: ◇芳纶短切纤维或浆粕增强的三元乙丙(EPDM)橡胶基复合材料 的软片或带材用于最新的各种发动机的内绝热层。
延伸率 ( %)
5.5~6.5 1.5~2.0 3.5~5.5 2.5~3.5
(3)芳纶的性能
物理性能 ⊙密度小,为1.44g/cm3 ⊙比强度高(高于碳纤维和硼纤维) ⊙比模量虽然较高,但低于碳纤维和硼纤维; ⊙韧性好、抗冲击性好、加工性好; ⊙压缩强度不高(为拉伸强度的1/5); ⊙剪切强度不高(为拉伸强度的1/17); ⊙ Kevlar-149的弹性模量高于Kevlar-49; ⊙ Kevlar-149的高温强度保留率最高。
芳纶纤维复合材料
芳纶是由芳香族聚酰胺树脂纺成的纤维。 凡聚合物大分子的主链由芳香环和酰胺键构成,且其中至少有85%的酰胺 基直接键合在芳香环上,每个重复单元的酰胺基中的氮原子和羰基直接与 芳香环中的碳原子相连接并置换其中一个氢原子的聚合物,称为芳香族聚 酰胺树脂。 国外称为芳酰胺纤维,我国定名为芳纶
在复合材料中应用最普遍的是PPTA纤维,Du pont公 司PPTA纤维的主要牌号有: ◆第一代(RI型):Kevlar-29、Kevlar-49 ◆第二代(Hx系列):Ha(高粘接型)、Ht(Kevlar-129、 高强型)、He(Kevlar-100、原液着色型)、Hp (Kevlar-68、高性能中模型)、Hm(Kevlar-149、高 模型)、He(Kevlar-119、高伸长型)。
芳纶的化学性能
⊙热稳定、耐火、不溶、自熄性材料。真空中长期使 用温度为160℃,-60℃也不脆; ⊙ Tg =(250~400)℃; ⊙热膨胀系数低(300℃以下,纵向为负值); ⊙具有良好的耐化学介质性(但不耐强酸、强碱); ⊙耐疲劳、耐磨、电气绝缘、透电磁波。 ⊙对紫外线敏感。
芳纶的不足
⊙耐光性差,暴露于可见光和紫外线时会产生光致 降解(即力学性能下降和褪色)。用高吸收率材 料对Kevlar纤维增强聚合物基复合材料作表面涂 层,可以减缓其光致降解; ⊙溶解性差; ⊙抗压强度低; ⊙吸湿性强,吸湿后纤维性能变化大,因此应密封 保存,在制备复合材料前应增加烘干工序。
芳纶的缺陷
◇沿纵向排列的杂质 Na2SO4; ◇孔洞; ◇表皮轴向裂纹(长 20~24nm、宽6~11nm)。
碳纤维(a)、芳纶纤维(b)和玻 璃纤维(c)的断口比较
(a)
(b)
(c)
(4)芳纶复合材料的应用
芳纶复合材料被誉为全球材料皇冠上的钻石, 位列三大高性能材料之一。其产业化进程对我国国 防建设、主导型工业项目(如大型飞机、高速列车、 造船、电力、电子信息、建材等)具有至关重要的 影响。在军工领域、芳纶复合材料大量应用于飞机、 舰船、潜艇、坦克、导弹、雷达的高性能结构件和 特种电子设备。在民用领域,主要用于航天、航空、 高速列车及汽车的高性能结构件、轨道交通、核电、 水电和电网工程中大型电机、变压器高端绝缘材料, 建筑用高性能隔热阻燃材料,高端电路板和印刷、 医用材料等。
我国芳纶纤维的主要牌号
◆我国于20世纪70年代跟踪研制,于80年代初期试生产出聚 对苯甲酰胺(PBA)纤维,定名为芳纶Ⅰ(芳纶14) ; ◆又于80年代中期试生产出PPTA纤维,定名为芳纶Ⅱ(芳纶 1414),可批量生产。
(1)聚对苯甲酰胺(PBA)纤维
原料:对氨基甲苯甲酰氯盐或亚硫酸胺苯甲酰氯 PBA纤维工艺过程: ▼在有机极性溶剂中,经低温缩聚得到PBA树脂。 ▼溶液纺丝(或制成粉末,再在溶剂中配成向列型液晶再纺 丝)。
芳纶Ⅰ与芳纶Ⅱ力学性能的比较
纤维名称
芳纶Ⅰ 原丝 热丝处理 芳纶Ⅱ 原丝 热丝处理
密度 (g/cm3)
1.42 1.46 1.44 1.45
拉伸强度 (cN/dt)
8.8~10.1 16.0~17.7 19.5~21.2 19.5~21.2
初始模量 (cN/dt)
340~400 903~1062 354~400 624~703