锅炉配风
300MW循环流化床锅炉配风优化

3 0 M W 循 环 泺 化 库 铭 妒 占 风 优 化 0 己
何 映光
大唐 红 河发 电有 限责任 公 司 , 南 开 远 云 [ 摘 610 66 0
要] 在 对 大唐 红河发 电有 限公 司 3 0Mw 循 环 流化 床 ( F 锅 炉 特 性 分析 的 基 础 上 , 一 0 C B) 对
塞、 防结 焦 和便 于维 修等 优点 , 膛 内蒸 发受 热 面 采 用 炉
o nda y a r a he hi r i , nd t gh—pr s ur u die i ys e ha e be n o i ie Af e ptm ia i n, he r g— e s e f i z d a rs t m v e ptm z d. t r o i z to t e ul ton q lt fprm a y a r c nt o y t m nd t e v c ie o oie a e be n e ha e t om— a i ua iy o i r i o r ls s e a he s r ie l fb l r h v e n nc d, he t f bus i n i ur a ebe n m pr v d, h i sofo re p r t r ors pe h a e n e e t d s e m , s to n f n c i g i o e t e tme ve t m e a u e f u r e t d a d r h a e t a a we la h i sofno l st e tme n—s he l d u ts t own b i g g e ty r du e t e c c du e ni hu d e n r a l e c d, h ons umpto a eofs r — in r t e v iep c owe i e r a e s ts y n he r qu r me fpo rgrd f r l d—r ducn a e ofu t r beng d c e s d, a if i g t e ie nto we i o oa e i g r t ni. Ke y wor s: 0 W ni ; d 3 0M u t CFB oie ; rm a y a r c nt o ; e o da y a r a r dit i to hi —pr s b l r p i r i ; o r l s c n r i ; i s rbu i n; gh e— s r l d z d a r s t m u e fui i e i ys e
330 MW锅炉一、二次风配比分析及引风机运行优化

330 MW锅炉一、二次风配比分析及引风机运行优化摘要:定量分析330 MW亚临界火力发电机组锅炉一、二次风的配比以及冷、热一次风配比,优化引风机运行,提高锅炉燃烧效率和设备运行可靠性。
结果表明一次风和二次风的体积流量均随负荷增加而单调增大,但二次风体积流量随负荷的增加速率比一次风体积流量更大。
低负荷下,一次风占总风量的体积百分比相比设计值偏大17%,一次风量偏大,二次风不能有效包裹一次风,一、二次风配比失调。
冷一次风主要用于磨煤机密封风,主要跟磨煤机的启停有关,随负荷变化不明显。
热一次风流量和热一次风流量占一次风总风量体积百分比均随负荷增加而单调增大。
引风机运行优化措施包括降低引风机动叶动作频率、减少控制油压波动和制定低负荷时单台引风机运行措施。
关键词:燃煤火力发电机组;一次风率;二次风体积流量;一、二次风配比;引风机运行优化1引言随燃煤火力发电机组设备老化,燃料品种不断更换,锅炉一、二次风配比,冷、热一次风配比往往偏离理想工况,降低了锅炉热效率[1-3]。
引风机在长时间频繁受到不均匀轴向冲击的情况下,动叶调节的滑块经常出现磨损老化和疲劳裂纹,引风机振动增大,降低了引风机使用寿命,导致锅炉燃烧系统和风烟匹配调节的难度增大[2-4]。
因此有必要分析锅炉一、二次风配比规律,优化引风机运行,提高引风机的运行稳定性和锅炉燃烧热效率。
本研究拟定量分析330 MW亚临界火力发电机组锅炉一、二次风的配比以及冷、热一次风配比,优化引风机运行,提高锅炉燃烧效率和设备运行可靠性。
本文的分析有助于了解锅炉燃烧系统的配风规律和最佳配风,优化引风机运行,保证机组安全经济运行。
2一、二次风配比以某电厂330 MW亚临界、一次再热和直接空冷的燃煤火力发电机组为例,进行分析。
运行数据取自7月1~3日三天,数据间隔为15分钟,机组负荷为167~329 MW,平均负荷253.3 MW,平均负荷率为76.76%。
图1示出一次风和二次风的体积流量均随负荷增加而单调增大。
链条炉在实际燃烧操作中的配风方法(三篇)

链条炉在实际燃烧操作中的配风方法链条炉燃烧操作原则配风方法有三种,即尽早配风法,推迟配风法和强风后吹法。
1、尽早配风法这种方法是根据燃料层对空气的消耗能力尽早配风。
在燃烧前期燃料放出大量的挥发物,此时就开始送人大量空气,并且随着燃料温度的提高和燃烧的加强,尽可能加大送风,直至燃尽。
以五个风室为例:第一风室按燃煤挥发分的高低适量送风,一般到第二风室就送人大风(全开),第三风室也如此,直至第四风室,送风稍有减少。
其后燃料层的燃烧转入燃尽阶段,空气消耗量进一步减少,送风量也随之大幅度减少,因此第五风室只需稍开或全关(供漏风供风)。
这种配风方式有如下特点:(1)尽早配风法适用于高挥发分的燃煤,前期燃煤吸收热量释放大量的挥发物,为使可燃气体(挥发物)得到充分的燃烧,需要送入大量空气,形成炉排前部燃烧强烈。
(2)由于前部燃烧强烈,前拱区容易结渣,甚至烧坏煤闸门,因此要注意控制前部送风量;同时由于前部燃烧强烈,烟气体积急剧膨胀,致使后拱内的烟气流出不畅,形成烟气在后拱出口处的闷塞。
(3)燃烧高温区在靠前部,炉排后部弱燃烧区面积较大,温度降低,难以维持焦炭燃尽,导致炉渣含碳量增加,降低了锅炉的燃烧效率。
2、推迟配风法推迟配风法仍以五个风室为例:第一风室为引燃期,不专门送风(只靠风室漏风供风);第二风室已进入燃烧旺期,但仍送小风或中风;在燃烧中期(第三、四风室)送强风;第五风室已处于炉排末段,只需很小风量,一般以保证炉排的可靠冷却为宜,因此风门全关,靠邻近风室漏风供风。
推迟配风法的特点是:(1)推迟配风法与尽早配风法的主要差别在于第二风室的配风量:推迟配风法是故意压减其送风量,而尽早配风法则是按可燃气体需要量送入大量空气。
由于故意压减其风量,前部大量释放出的可燃气体形成一个缺氧的饥饿空间,极需炉排后部的过量空气及炉膛漏风供氧燃烧,有效地降低总的过量空气系数。
(2)由于燃煤层进入后拱后才送以强风,必然在后拱出口处或炉排中部形成一个高温区。
锅炉配风方式改造后的调整

中图分 类号 :K 2 T 2
文 献标识码 : B
锅 炉 配 风 方 式 改 造 后 的 调 整
刘 亮
( 华电贵 州清镇发电有限公 司 , 州 清镇 5 1 1 ) 贵 5 4 8
摘 要: 论述 电站锅炉燃烧器均等配风与分级配风的布置特 点, 分析 2 0 W 电站锅 炉将 均等配风方改为分级 配风 0M
[] 三 风 次 口 二风 次 I ●一 风 l 次 口 二风 次 I 一风 次 口 二风 次
l
l
广]
三次风
口 口 一 一
二风 次 二风 次 一风 次 一风 次
l 二次风
I 二次风
个一次风喷 口之间均等布置两个二次风喷 口, 或者 每个一 次风 喷 口的背火 侧 均等 布 置二 次 风 喷 口 ( 如 图1 所示 ) 。一 、 二次 风 喷 口相 互 紧靠 , 喷 口边 缘 其
sa e tg d— ar i 0 j n 2 0MW o rsa in b ie .t n y t o v h r b e n t e o e ain. p we tt olr o f d a wa o s le t e p o l ms i p r to o i h Ke r : rd srb to d b r r y wo ds a iti u in mo e; u ne i
后存在的 f ̄ , 出在运行 中解决问题 的方法 。 * 提 - l
关键词 : 配风 方 式 ; 烧 器 燃
T ea j sme t f rt ei r v me t fards iuin mo efrb i r h du t n t a e h mp o e n i i r t d o e o tb o o l
配风方式及贴壁风对锅炉贴壁气氛影响规律研究

配风方式及贴壁风对锅炉贴壁气氛影响规律研究摘要:贴壁风是一种解决水冷壁高温腐蚀行之有效的方法,它在水冷壁表面形成一层空气膜,破坏了形成高温腐蚀所必须具备的还原性气氛。
另外贴壁风来源于二次风,相对于炉膛内的高温烟气来说属于冷风,能够降低水冷壁附近的温度,有利于防止高温腐蚀。
贴壁风技术以其简单可靠的优点在工程实际中受到广泛应用。
关键词:配风方式;贴壁风;锅炉贴壁气氛影响规律目前,防治锅炉水冷壁高温腐蚀的技术路线主要有水冷壁喷涂、燃烧优化调整和安装贴壁风。
水冷壁喷涂是一种被动防护措施,不能从根本上消除腐蚀根源,且需要定期更换。
燃烧优化调整在一定程度上可以缓解水冷壁高温腐蚀,但是其缓解作用在很大程度上受炉膛出口NOx排放限值的限制。
贴壁风技术是通过向高温腐蚀区域定向补风,降低水冷壁贴壁烟气中腐蚀性气体的浓度,阻止高温腐蚀的发生,成为目前治理水冷壁高温腐蚀的主流技术。
一、锅炉概况某锅炉为亚临界、自然循环、一次中间再热、摆动燃烧器调温、平衡通风、固态排渣、露天布置、全钢构架、全悬吊结构、Π型布置汽包锅炉。
燃烧器采用双尺度低氮燃烧器,满足低NOx 的要求。
锅炉CD 和EE 层的所有二次风喷口两侧均各安装一个贴壁风喷口。
由于锅炉安装了两层燃烧器喷口,从而确立一种相对合理的贴壁风配风方案。
二、配风方式及贴壁风对锅炉贴壁气氛影响规律1.数学模型。
锅炉炉膛内的煤粉燃烧过程由多个子过程互相耦合而成,主要包含:湍流过程,颗粒相的输运,煤粉颗粒的热解和燃烧,气相反应物参与的均相燃烧反应,辐射和对流传热过程,氮氧化物等生成和还原过程等。
本文针对四角切圆锅炉的具体特点,确定了模拟该煤粉锅炉燃烧过程的三维数学模型:采用方法描述炉内气相湍流流动,湍流模型选择了带旋流修正的模型;由于煤粉颗粒占气相的体积分数小于10%,因此选用离散相模型来描述颗粒相的运动;煤粉在流动的同时还伴随着挥发份析出和燃烧过程,因此采用双平行竞争反应模型模拟煤粉挥发份的析出,应用动力/扩散控制燃烧模型模拟焦炭燃烧,基于混合分数-概率密度函数模型模拟气相湍流燃烧;气相与固相之问的耦合计算采用计算单元内颗粒源项算法;选用辐射模型来模拟炉内辐射换热过程。
锅炉的配风方式

锅炉的燃烧配风方式必须在实践中才能找到最适合本台锅炉的,以下总结一部分基本原则性的配风方式,具体情况在此条件下分别结合采用,但风门开度的大小,风压控制的多少,都因设备,因人的习惯而不尽相同。
A.均等配风。
二次风的开度一致。
适用于燃烧稳定时的大负荷,多为挥发分较高的烟煤。
优点:炉内的热负荷分布均匀。
B.束腰配风。
将中部的二次风适当的关小。
适用于燃烧不稳定或小负荷,多为低挥发分的无烟煤。
优点:提高局部断面热负荷,有利于燃烧稳定。
C.鼓腰配风。
将中部的二次风适当的开大。
适用于炉膛温度过高或结焦。
优点:切割分离燃烧中心,降低炉内温度。
D.倒塔配风。
是下小上大的配风方式。
优点:对于提高燃烧稳定性是有好处的,燃尽性也好。
缺点:是由于上部切圆增气的旋转动量增大热偏差也会增大。
锅炉“风煤配比”

锅炉“风煤配比”一次风保证床温调整床压及保证锅炉正常流化,二次风把氧量调好,保证物料掺混均衡温度场,你觉得锅炉运行就是加煤减煤这么简单吗?还是你觉得操作锅炉几天你就很了解运行调整那些事?拿着从师傅那里学来的一知半解理论就可以纸上谈兵吗?操作锅炉也许很容易,但是想要学好真的好难!风煤配比,调整起来是比较麻烦的,但是和风风配比比起来也就不算什么了!风煤配比,当床温稳定的时候且能保证正常流化一次风一般情况下是不会去调整的。
煤量和风量主要是看过热器后氧量,欲知详情请关注微信公众号锅炉圈!(出口氧量维持在3%~5%之间这是最好的,根据煤量的增减适量调整二次风量。
)风风配比调整起来相当麻烦,(一二次风配比、上下二次风配比、前后二次风配比),一二次风配比好办,在保证最低流化风量的前提下根据床温的变化情况可以适量增加或减少一次风量,改变幅度不是很大。
而上下二次风主要是提供分层燃烧的风量,你可以观察一下你们厂锅炉上下二次风口的位置你就会发现这样的布置方式是很有道理的,如果增加上二次风量你可以提高炉膛中部温度,增加下二次风可以增加炉膛下部的燃烧,提高炉膛下部的温度,上二次风的风口位置在返料口上方2米左右,提高上二次风可以增加炉膛中部的燃烧提高炉膛中部的温度是增加锅炉负荷的一种方法。
前后二次风的配比按道理来讲应该是一样的,可是根据实际情况以及给煤口的位置,相对于布置给煤口的前墙的上二次风要多一些,具体要根据炉子的实际情况及运行情况调整!1、循环流化床锅炉中,一次风机的作途主要是送出的风进入一次风室,通过布风装置(风帽)进入炉膛,使炉膛内的床料流化。
一次流化风是炉内热量的主要传递和携带介质。
一次风速的大小决定着床料的流化情况和炉内床温的调节情况。
一次风还是点火风机和播煤风机的风源,因此一次风的用量在循环流化床锅炉中是最大的,占总用量的60%以上。
2、循环流化床锅炉的二次风机主要用途补充炉内燃烧的氧气和加强物料的掺混(部分是控制炉内燃烧温度,主要是二次风分级不同,作用也不尽相同)。
生物质锅炉二次风配风系统的制作方法

生物质锅炉二次风配风系统的制作方法生物质锅炉二次风配风系统是指在生物质锅炉燃烧过程中,通过合理调整二次风和配风比例,以达到最佳的燃烧效果和热能利用效率。
下面将介绍生物质锅炉二次风配风系统的制作方法。
首先,制作生物质锅炉二次风配风系统,需要设计和安装相应的风机设备。
首先,根据锅炉容量和实际需要,确定所需的风机类型和数量。
常用的风机类型包括离心风机、轴流风机和混合流风机等,根据实际情况选择相应类型的风机。
其次,进行风机系统的布局设计。
根据锅炉的布局和燃烧室结构,确定二次风和配风的送风口位置,并设计合理的管道布局,确保二次风和配风的送风均匀和稳定。
在设计过程中,应充分考虑管道阻力、管道长度、弯头和分支等因素对风量的影响,通过合理选择管道直径和布局,减小风阻,提高送风效果。
接下来,制作和安装风管。
根据设计要求,在风机系统的进口和出口处安装适当尺寸的风管,并按照设计要求进行连接。
风管材料常见的有镀锌板、不锈钢板、塑料板等多种材料,可根据实际情况选择合适的材料。
在安装过程中,应注意风管与风机、锅炉和烟囱之间的连接,确保密封性和稳固性。
然后,进行风量调试和调整。
在安装和调试过程中,应通过合适的仪器和设备,如流量计和压力表等,对风量和风压进行测试和监测。
通过逐步调整风机转速和二次风、配风开度,找到最佳的二次风和配风比例,以达到锅炉燃烧稳定和热能利用效率最高的状态。
最后,进行系统的维护和管理。
生物质锅炉二次风配风系统的性能和效果与系统的维护和管理密不可分。
定期进行系统的清洗、检查和维修,保持风机设备和风管的良好状态,以确保系统始终处于正常运行和高效工作的状态。
总结起来,生物质锅炉二次风配风系统的制作方法包括设计和安装风机设备、进行风机系统的布局设计、制作和安装风管、进行风量调试和调整,以及进行系统的维护和管理。
通过合理的设计和制作,可以提高生物质锅炉的燃烧效果和热能利用效率,达到节能减排的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锅炉原理摘录的(具体风门开度需要实际燃烧调整试验及经验总结):
一、二次风率、风速及风温在锅炉燃烧设备和煤质一定的条件下,一次风与二次风的调节就成为决定着火和燃尽过程的关键。
一次风与二次风的工作参数用风量、风速和风温来表示。
(1)一次风量(率)一次风量主要取决于煤质条件。
当锅炉燃用的煤质确定时,一次风量对煤粉气流着火速度和着火稳定性的影响是主要的。
一次风量愈大,煤粉气流加热至着火所需的热量就越多,即着火热愈多。
这时,着火速度就愈慢,因而,距离燃烧器出口的着火位置延长,使火焰在炉内的总行程缩短,即燃料在炉内的有效燃烧时间减少,导致燃烧不完全。
显然,这时炉膛出口烟温也会升高,不但可能使炉膛出口的受热面结渣,还会引起过热器或再热器超温等一系列问题,严重影响锅炉安全经济运行。
对于不同的燃料,由于它们的着火特性的差别较大,所需的一次风量也就不同。
应在保证煤粉管道不沉积煤粉的前提下,尽可能减小一次风量。
对一次风量的要求是,满足煤粉中挥发分着火燃烧所需的氧量,满足输送煤粉的需要。
如果同时满足这两个条件有矛盾,则应首先考虑输送煤粉的需要。
例如,对于贫煤和无烟煤,因挥发分含量很低,如按挥发分含量来决定一次风量,则不能满足输送煤粉的要求,为了保证输送煤粉,必须增大一次风量。
但因此却增加了着火的困难,这又要求加强快速与稳定着火的措施,即提高一次风温度,或采用其它稳燃措施。
一次风量通常用一次风量占总风量的比值表示,称为一次风率。
一次风率的推荐值列于下表:
煤种无烟煤贫煤烟煤烟煤褐煤Vdaf 20%~30% >30%
乏气送粉20~25% 25~30% 25~35% 20~45%
热风送粉15~20% 20~25% 20~25% 25~40% 40~45%
(2)一次风速在燃烧器结构和燃用煤种一定时,确定了一次风量就等于确定了一次风速。
一次风速不但决定着火燃烧的稳定性,而且还影响着一次风气流的刚度。
一次风速过高,会推迟着火,引起燃烧不稳定,甚至灭火。
任何一种燃料着火后,当氧浓度和温度一定时,具有一定的火焰传播速度。
当一次风速过高,大于火焰传播速度时,就会吹灭火焰或者引起“脱火”。
即便能着火,也可能产生其它问题。
因为较粗的煤粉惯性大,容易穿过剧烈燃烧区而落下,形成不完全燃烧。
有时甚至使煤粉气流直冲对面的炉墙,引起结渣。
一次风速过低,对稳定燃烧和防止结渣也是不利的。
原因在于:1)煤粉气流刚性减弱,易弯曲变形,偏斜贴墙,切圆组织不好,扰动不强烈,燃烧缓慢;2)煤粉气流的卷吸能力减弱,加热速度缓慢,着火延迟;3)气流速度小于火焰传播速度时,可能发生“回火”现象,或因着火位置距离喷口太近,将喷口烧坏;4)易发生空气、煤粉分层,甚至引起煤粉沉积、堵管现象;5)引起一次风管内煤粉浓度分布不均,从而导致一次风射出喷口时,在喷口附近出现煤粉浓度分布不均的现象,这对燃烧
也是十分不利的。
四角布置燃烧器配风风速的推荐值列于下表:
煤种无烟煤贫煤烟煤褐煤
一次风速m/s 20~25 20~30 25~35 25~40
二次风速m/s 40~55 45~55 40~60 40~60
三次风速m/s 50~60 55~60 35~45 35~45
(3)一次风温一次风温对煤粉气流的着火、燃烧速度影响较大。
提高一次风温,可降低着火热,使着火位置提前。
运行实践表明,提高一次风温还能在低负荷时稳定燃烧。
有的试验发现,当煤粉气流的初温从20℃提高到300℃时,着火热可降低60%左右。
提高一次风气流的温度对煤粉着火十分有利。
因此,提高热风温度是提高煤粉着火速度和着火稳定性的必要措施之一。
根据煤质挥发分含量的大小,一次风温既应满足使煤粉尽快着火,稳定燃烧的要求,又应保证煤粉输送系统工作的安全性。
一次风温超过煤粉输送的安全规定时,就可能发生爆炸或自燃。
当然,一次风温太低对锅炉运行也不利,除了推迟着火,燃烧不稳定和燃烧效率降低之外,还会导致炉膛出口烟温升高,引起过热器超温或汽温升高。
(4)二次风量(率)及二次风速煤粉气流着火后,二次风的投入方式对着火稳定性和燃尽过程起着重要作用。
对于大容量锅炉尤其要注意二次风穿透火焰的能力。
当燃用的煤质一定时,一次风量就被确定了,这时二次风量随之确定。
对于已经运行的锅炉,由于燃烧器喷口结构未变,故二次风速只随二次风量变化。
二次风是在煤粉气流着火后混入的。
由于高温火焰的粘度很大,二次风必须以很高的速度才能穿透火焰,以增强空气与焦碳粒子表面的接触和混合,故通常二次风速比一次风速提高一倍以上。
配风方式不仅影响燃烧稳定性和燃烧效率,还关系到结渣、火焰中心高度的变化、炉膛出口烟温的控制,从而,进一步影响过热汽温与再热汽温。
(5)二次风温从燃烧角度看,二次风温愈高,愈能强化燃烧,并能在低负荷运行时增强着火的稳定性。
但是二次风温的提高受到空气预热器传热面积的限制,传热面积愈大,金属耗量就愈多,不但增加投资,而且将使预热器结构庞大,不便布置。
热风温度的推荐值列于下表:
燃料无烟煤贫煤褐煤烟煤
热风温度(℃)380~430 330~380 350~380 280~350
3、三次风、周界风、夹心风(1)三次风在中储式制粉系统中,细粉分离器将煤粉和输送煤粉的空气分离后,形成乏气。
乏气中带有10%的细煤粉。
这部分乏气一般送入炉膛燃烧,形成三次风。
三次风的特点是温度低,水分大,煤粉细。
运行经验证明,三次风对燃烧有明显的不利影响。
在大容量锅炉上,三次风的投入对过热汽温、再热汽温的影响很大。
三次风对燃烧及汽温调节的不利影响是:1)使火焰温度降低,燃烧不稳定。
2)火焰拖长,炉膛出口烟温升高,使过热
汽温与再热汽温偏高,汽温调节幅度增大。
同时增大过热器热偏差。
3)三次风高速射入,使火焰残余旋转增大,同时飞灰可燃物增加;4)三次风量较大时,风速也增大,易扰乱炉正常的空气流动,引起火焰贴墙结渣。
为了减轻三次风对燃烧的不利影响,在大容量锅炉上可将三次风分为两段,即上三次风和下三次风。
三次风的分级送入和合理布置,不仅能减轻上述的不利影响,还能把制粉系统乏气中的煤粉烧掉,并加强燃烧后期可燃物与空气的混合,促进燃烧。
为了保证三次风穿透火焰,三次风速通常达50~60米/秒。
三次风温一般低于100℃。
煤中水分较大时,只有60℃。
三次风量约占总风量的10~18%,有时可达30%。
三次风量的大小取决于一次风量。
根据煤质的挥发分含量,着火的难易程度,水分含量等,一次风量首先以满足干燥原煤、输送煤粉的要求为原则。
进入磨煤机前的一次风流量和温度可以调整,目的是控制磨煤机内的温度,提高磨煤效率,控制磨煤出力。
(2)周界风在一次风喷口外缘,有时布置有周界风。
周界风的作用是:1)冷却一次风喷口,防止喷口烧坏或变形;2)少量热空气与煤粉火焰及时混合。
由于直流煤粉火焰的着火首先从外边缘开始,火焰外围易出现缺氧现象,这时周界风就起着补氧作用。
周界风量较小时,有利于稳定着火;周界风量太大时,相当于二次风过早混入一次风,因而对着火不利;3)周界风的速度比煤粉气流的速度要高,能增加一次风气流的刚度,防止气流偏斜;并能托住煤粉,防止煤粉从主气流中分离出来而引起不完全燃烧;4)高速周界风有利于卷吸高温烟气,促进着火,并加速一、二次风的混合过程。
但周界风量过大或风速过小时,在煤粉气流与高温烟气之间形成“屏蔽”,反而阻碍加热煤粉气流。
故当燃用的煤质变差时,应减少周界风量。
周界风的风量一般为二次风量的10%或略多一些,风速为30~45米/秒,风层厚度为15~25mm。
(3)夹心风为了避免周界风防碍一次风直接卷吸高温烟气的不利影响,又出现了夹心风。
所谓夹心风就是在一次风喷口中间竖直地布置一个二次风喷口。
夹心风的作用是:1)补充火焰中心的氧气,同时也降低了着火区的温度,而对一次风射流外缘的烟气卷吸作用没有明显的影响;2)高速的夹心风提高了一次风射流的刚度,能防止气流偏斜,而且增强了煤粉气流内部的扰动,这对加速外缘火焰向中心的传播是有利的;3)夹心风速度较大时,一次风射流扩展角减小,煤粉气流扩散减弱,这对于减轻和避免煤粉气流贴壁,防止结渣有一定作用;4)可作为变煤种、变负荷时燃烧调整的手段之一。
如前所述,周界风或夹心风主要是用来解决煤粉气流高度集中时着火初期的供氧问题。
数量约占二次风量的10%~15%。
实际运行中,由于漏风,周界风或夹心风的风率可达20%以上。
在燃用无烟煤、贫煤或劣质煤时,周界风或夹心风的速度比较高,约为50~60米/秒;在燃用烟煤时,周界风的速度约为30~40米/秒,主要是为了冷却一次风喷口。
燃烧褐煤的燃烧器一次风喷口上一般布置有十字风,其作用类似于夹心风。
实践表明,周界风和夹心风使用不当时,
对煤粉着火产生不利影响。