水蒸汽蒸发过程UDF程序段注释

水蒸汽蒸发过程UDF程序段注释
水蒸汽蒸发过程UDF程序段注释

Fluent 蒸发相变模拟 UDF

经过几天的不懈折腾,终于找到一个较为完成的用于fluent蒸发相变模拟的udf的一个程序。而且注释相对完整。#include "udf.h" //包括常规宏

#include "sg_mphase.h" // 包括体积分数宏CVOF(C,T)

#define T_SAT 373 //定义蒸发温度100℃

#define LAT_HT 1.e3 //定义蒸发潜热J/Kg

DEFINE_SOURCE(liq_src, cell, pri_th, dS, eqn) //液相质量源项UDF

{

Thread *mix_th, *sec_th; //定义计算区线指针

real m_dot_l; //定义液相质量转移 kg/(m2.s)

mix_th = THREAD_SUPER_THREAD(pri_th); //指向混合区的主相即液相的指针

sec_th = THREAD_SUB_THREAD(mix_th, 1); //指向单相控制区的气相的指针,气相为第二相

if(C_T(cell, mix_th)>=T_SAT) //如果液相单元的温度高于蒸发温度,液相向气相的质量质量转移

{

m_dot_l = -0.1*C_VOF(cell, pri_th)*C_R(cell, pri_th)* fabs(C_T(cell, mix_th) - T_SAT)/T_SAT;

dS[eqn] = -0.1*C_R(cell, pri_th)*fabs(C_T(cell, mix_th) - T_SAT)/T_SAT; //定义源项对质量转移偏导

}

else

{

m_dot_l = 0.1*C_VOF(cell, sec_th)*C_R(cell, sec_th)* fabs(T_SAT-C_T(cell,mix_th))/T_SAT; //如果指向混合区液相的单元温度小于蒸发温度,气相向液相的质量转移,液相得

dS[eqn] = 0.;//由于是气相向液相转移,所以液相的质量源项对质量转移的偏导为零

}

return m_dot_l;

}

DEFINE_SOURCE(vap_src, cell, sec_th, dS, eqn) //气相质量源项UDF

{

Thread * mix_th, *pri_th;

real m_dot_v;

mix_th = THREAD_SUPER_THREAD(sec_th); //指向混合区的第二相即气相的指针

pri_th = THREAD_SUB_THREAD(mix_th, 0); 指向单相控制区的液相的指针,液相为主相

if(C_T(cell, mix_th)>=T_SAT) //如果混合区单元的温度高于蒸发温度,液相向气相的质量质量转移

{

m_dot_v = 0.1*C_VOF(cell, pri_th)*C_R(cell, pri_th)*fabs(C_T(cell, mix_th) - T_SAT)/T_SAT;

dS[eqn] = 0.;‘由于是液相向气相转移,所以气相的质量源项对来自液相的质量转移的偏导为零

}

else

{

m_dot_v = -0.1*C_VOF(cell, sec_th)*C_R(cell, sec_th)* fabs(T_SAT-C_T(cell,mix_th))/T_SAT;

//如果指向混合区的单元温度小于蒸发温度,气相向液相的质量转移,气相失

dS[eqn] = -0.1*C_R(cell, sec_th)* fabs(C_T(cell, mix_th) - T_SAT)/T_SAT;

//由于是气相向液相转移,所以气相的质量源项对自身的质量转移的偏导不为零

}

return m_dot_v;

}

DEFINE_SOURCE(enrg_src, cell, mix_th, dS, eqn) //混合模型能量源项UDF

{

Thread *pri_th, *sec_th;

real m_dot;

pri_th = THREAD_SUB_THREAD(mix_th, 0);//指向混合区的液相的指针

sec_th = THREAD_SUB_THREAD(mix_th, 1); //指向混合区的气相的指针

if(C_T(cell, mix_th)>=T_SAT) //如果混合区的单元温度高于蒸发温度。质量转移由液相向气相转移,吸热,质量转移量前有负号{

m_dot = -0.1*C_VOF(cell, pri_th)*C_R(cell, pri_th)*fabs(C_T(cell, mix_th) - T_SAT)/T_SAT; dS[eqn] = -0.1*C_VOF(cell, pri_th)*C_R(cell, pri_th)/T_SAT;

}

else

{ //相反,气相向液相转移则放热

m_dot = 0.1*C_VOF(cell, sec_th)*C_R(cell, sec_th)*fabs(T_SAT-C_T(cell,mix_th))/T_SAT; dS[eqn] = 0.1*C_VOF(cell, sec_th)*C_R(cell, sec_th)/T_SAT;}

return LAT_HT*m_dot; //气化潜热与质量转移率相乘得能量源项W/m3

}

最终成果如下:

单效蒸发及计算汇总

单效蒸发及计 算 一.物料衡算 二.能量衡算 1.可忽略溶液稀释热的情况 三.传热设备的计算 1.传热的平均温度差 四.蒸发强度与加热蒸汽的经济性 1.蒸发器的生产能力和蒸发强度 一.物料衡算(material balance) 2.溶液稀释热不可忽略的情况 2.蒸发器的传热 系数 2.加热蒸汽的经 济性 对图片5-13 所示的单效蒸发器进行溶质的质量衡算,可得 由上式可得水的蒸发量及完成液的浓度分 别为 (5- 1) (5- 2) 3.传热面积计算 式中

F———原料液量,kg/h ; W———水的蒸发量,kg/h ; L———完成液量,kg/h ; x0———料液中溶质的浓度,质量分率; x1———完成液中溶质的浓度,质量分率。 二.能量衡算(energy balance) 仍参见图片(5-13) ,设加热蒸汽的冷凝液在饱和温度下排出,则由蒸发器的热量衡算得 (5-3) 或(5-3a ) 式中 D———加热蒸汽耗量,kg/h ; H———加热蒸汽的焓,kJ/kg ; h0———原料液的焓,kJ/kg ; H'———二次蒸汽的焓,kJ/kg ; h1———完成液的焓,kJ/kg ; hc ———冷凝水的焓,kJ/kg ; QL———蒸发器的热损失,kJ/h ; Q———蒸发器的热负荷或传热速率,kJ/h 。 由式5-3 或5-3a 可知,如果各物流的焓值已知及热损失给定,即可求出加热蒸汽用量D 以及蒸发器的热负荷Q

溶液的焓值是其浓度和温度的函数。对于不同种类的溶液,其焓值与浓度和温度的这种函数关系有很大的差异。因此,在应用式5-3 或5-3a 求算D 时,按两种情况分别讨论:溶液的稀释热可以忽略的情形和稀释热较大的情形。 1.可忽略溶液稀释热的情况 大多数溶液属于此种情况。例如许多无机盐的水溶液在中等浓度时,其稀释的热效应均较小。对于这种溶液,其焓值可由比热容近似计算。若以0℃的溶 液为基准,则 (5-4) (5-4a ) 将上二式代入式5-3a 得 (5-3b) 式中 t0———原料液的温度,℃; t1———完成液的温度,℃; C0———原料液的比热容,℃; C1———完成液的比热容,℃ ; 当溶液溶解的热效应不大时,其比热容可近似按线性加合原则,由水的比热容和溶质的比热容加合计算,即 (5-5) (5-5a) 式中 CW———水的比热容,℃;

Fluent_UDF_第七章_UDF的编译与链接

第七章 UDF的编译与链接 编写好UDF件(详见第三章)后,接下来则准备编译(或链接)它。在7.2或7.3节中指导将用户编写好的UDF如何解释、编译成为共享目标库的UDF。 _ 第 7.1 节: 介绍 _ 第 7.2 节: 解释 UDF _ 第 7.3 节: 编译 UDF 7.1 介绍 解释的UDF和编译的UDF其源码产生途径及编译过程产生的结果代码是不同的。编译后的UDF由C语言系统的编译器编译成本地目标码。这一过程须在FLUENT运行前完成。在FLUENT运行时会执行存放于共享库里的目标码,这一过程称为“动态装载”。 另一方面,解释的UDF被编译成与体系结构无关的中间代码或伪码。这一代码调用时是在内部模拟器或解释器上运行。与体系结构无关的代码牺牲了程序性能,但其UDF可易于共享在不同的结构体系之间,即操作系统和FLUENT版本中。如果执行速度是所关心的,UDF文件可以不用修改直接在编译模式里运行。 为了区别这种不同,在FLUENT中解释UDF和编译UDF的控制面板其形式是不同的。解释UDF的控制面板里有个“Compile按钮”,当点击“Compile按钮”时会实时编译源码。编译UDF的控制面板里有个“Open按钮”,当点击“Open按钮” 时会“打开”或连接目标代码库运行FLUENT(此时在运行FLUENT之前需要编译好目标码)。 当FLUENT程序运行中链接一个已编译好的UDF库时,和该共享库相关的东西都被存放到case文件中。因此,只要读取case文件,这个库会自动地链接到FLUENT 处理过程。同样地,一个已经经过解释的UDF文件在运行时刻被编译,用户自定义的C函数的名称与内容将会被存放到用户的case文件中。只要读取这个case文件,这些函数会被自动编译。 注:已编译的UDF所用到的目标代码库必须适用于当前所使用的计算机体系结构、操作系统以及FLUENT软件的可执行版本。一旦用户的FLUENT升级、操作系统改变了或者运行在不同的类型的计算机,必须重新编译这些库。

对一个简单解释型udf程序的详细解释

对一个简单解释型udf程序的详细解释 #include "udf.h" /*udf.h是一个头文件,如果不写的话就不能使用fluent udf中的宏,函数等*/ DEFINE_PROFILE(pressure_profile, t, i) /*是一个宏,本例中用来说明进口压力与垂直坐标变量(还可以是其他的变量)的关系。pressure_profile 是函数名,可随意指定。t的数据类型是Thread *t ,t 表示指向结构体thread(这里的thread表示边界上所有的网格面的集合)的指针。i的数据类型是Int,表示边界的位置?或者说是什么每个循环内对位置变量(这里应该是质心的纵坐标)设置的数值标签*/ { real x[ND_ND]; /* 定义了质心的三维坐标,数据类型为real*/ real y; /*定义了一个变量y, 数据类型为real */ face_t f; /*定义了一个变量f, 数据类型为face_t,也就是网格面的意思,即f代表一个网格单元的网格面*/ begin_f_loop(f, t) /*表示遍寻网格面,它的意思是说在计算的时候,要扫描所定义边界的所有网格面,对每个网格面都要赋值,值存储在F_PROFILE(f, t, i)中*/ {

F_CENTROID(x,f,t); /*一个函数,它的意思是读取每个网格面质心的二维坐标,并赋值给x。x 为名称,接收三维坐标值。f为网格面(因为这里只是取的面的二维坐标,所以为f,如果是网格单元的话,这里就为c)。t为指向结构体thread(这里的thread 表示边界上所有的网格面的集合)的指针*/ y = x[1]; /*把质心的三维坐标的纵坐标的数值赋给y*/ F_PROFILE(f, t, i) = 1.1e5 - y*y/(.0745*.0745)*0.1e5; /*赋给每个网格面的数值与网格质心纵坐标的关系。其实就是赋给质心的速度值(这里只有大小)与质心纵坐标的函数关系,因为fluent在计算的时候是把数据存储到网格质心上的,所以网格质心的速度值就代表网格的速度值。这里有了网格的质心纵坐标,然后有了质心速度值与纵坐标的函数关系,那么每个进口网格面的速度值也就知道了。f依然代表网格面。t表示指向结构体thread(这里的thread表示边界上所有的网格面的集合)的指针。i每个循环内对位置变量(这里应该是质心的纵坐标)设置的数值标签*/ } end_f_loop(f, t)/*结束循环*/ } 整体来看:包括两个宏:DEFINE_PROFILE(pressure_profile, t, i)和beginend_f_loop(f, t)。两个函数:F_CENTROID(x,f,t)和F_PROFILE(f, t, i)。其他都是变量。

单效蒸发及计算

单效蒸发及计算 一.物料衡算(materialbalance) 对图片5-13所示的单效蒸发器进行溶质的质量衡算,可得 由上式可得水的蒸发量及完成液的浓度分别为 (5-1) (5-2) 式中 F———原料液量,kg/h; W———水的蒸发量,kg/h; L———完成液量,kg/h; x0———料液中溶质的浓度,质量分率; x1———完成液中溶质的浓度,质量分率。 二.能量衡算(energybalance) 仍参见图片(5-13),设加热蒸汽的冷凝液在饱和温度下排出,则由蒸发器的热量衡算得

(5-3) 或(5-3a) 式中 D———加热蒸汽耗量,kg/h; H———加热蒸汽的焓,kJ/kg; h0———原料液的焓,kJ/kg; H'———二次蒸汽的焓,kJ/kg; h1———完成液的焓,kJ/kg; hc———冷凝水的焓,kJ/kg; QL———蒸发器的热损失,kJ/h; Q———蒸发器的热负荷或传热速率,kJ/h。 由式5-3或5-3a可知,如果各物流的焓值已知及热损失给定,即可求出加热蒸汽用量D以及蒸发器的热负荷Q。 溶液的焓值是其浓度和温度的函数。对于不同种类的溶液,其焓值与浓度和温度的这种函数关系有很大的差异。因此,在应用式5-3或5-3a求算D时,按两种情况分别讨论:溶液的稀释热可以忽略的情形和稀释热较大的情形。 1.可忽略溶液稀释热的情况 大多数溶液属于此种情况。例如许多无机盐的水溶液在中等浓度时,其稀释的热效应均较小。对于这种溶液,其焓值可由比热容近似计算。若以0℃的溶液为基准,则 (5-4) (5-4a) 将上二式代入式5-3a得

(5-3b) 式中 t0———原料液的温度,℃; t1———完成液的温度,℃; C0———原料液的比热容,℃; C1———完成液的比热容,℃; 当溶液溶解的热效应不大时,其比热容可近似按线性加合原则,由水的比热容和溶质的比热容加合计算,即 (5-5) (5-5a) 式中 CW———水的比热容,℃; CB———溶质的比热容,℃。 将式5-5与5-5a联立消去CB并代入式5-2中,可得 ,再将上式代入式5-3b中,并整理得 (5-6) 由于已假定加热蒸汽的冷凝水在饱和温度下排出,则上式中的即为加热蒸汽的冷凝潜热,即 (5-7) 但由于溶液的沸点升高,二次蒸汽的温度与溶液温度t1并不相同(下面还要详细讨论)。但作为近似,可以认为 (5-8) 式中

蒸发过程UDF程序fluent

F l u e n t蒸发相变模拟U D F 经过几天的不懈折腾,终于找到一个较为完成的用于fluent蒸发相变模拟的udf的一个程序。而且注释相对完整。 #include "udf.h" //包括常规宏 #include "sg_mphase.h" // 包括体积分数宏CVOF(C,T) #define T_SAT 373 //定义蒸发温度100℃ #define LAT_HT 1.e3 //定义蒸发潜热J/Kg DEFINE_SOURCE(liq_src, cell, pri_th, dS, eqn) //液相质量源项UDF { Thread *mix_th, *sec_th; //定义计算区线指针 real m_dot_l; //定义液相质量转移 kg/(m2.s) mix_th = THREAD_SUPER_THREAD(pri_th); //指向混合区的主相即液相的指针 sec_th = THREAD_SUB_THREAD(mix_th, 1); //指向单相控制区的气相的指针,气相为第二相

if(C_T(cell, mix_th)>=T_SAT) //如果液相单元的温度高于蒸发温度,液相向气相的质量质量转移{ m_dot_l = -0.1*C_VOF(cell, pri_th)*C_R(cell, pri_th)* fabs(C_T(cell, mix_th) - T_SAT)/T_SAT; dS[eqn] = -0.1*C_R(cell, pri_th)*fabs(C_T(cell, mix_th) - T_SAT)/T_SAT; //定义源项对质量转移偏导} else { m_dot_l = 0.1*C_VOF(cell, sec_th)*C_R(cell, sec_th)* fabs(T_SAT-C_T(cell,mix_th))/T_SAT; //如果指向混合区液相的单元温度小于蒸发温度,气相向液相的质量转移,液相得 dS[eqn] = 0.;//由于是气相向液相转移,所以液相的质量源项对质量转移的偏导为零} return m_dot_l; }

对一个简单解释型udf程序的详细解释教学文稿

对一个简单解释型u d f程序的详细解释

精品资料 对一个简单解释型udf程序的详细解释 #include "udf.h" /*udf.h是一个头文件,如果不写的话就不能使用fluent udf中的宏,函数等*/ DEFINE_PROFILE(pressure_profile, t, i) /*是一个宏,本例中用来说明进口压力与垂直坐标变量(还可以是其他的变量)的关系。pressure_profile 是函数名,可随意指定。t的数据类型是Thread *t ,t表示指向结构体thread(这里的thread表示边界上所有的网格面的集合)的指针。i的数据类型是Int,表示边界的位置?或者说是什么每个循环内对位置变量(这里应该是质心的纵坐标)设置的数值标签*/ { real x[ND_ND]; /* 定义了质心的三维坐标,数据类型为real*/ real y; /*定义了一个变量y, 数据类型为real */ face_t f; /*定义了一个变量f, 数据类型为face_t,也就是网格面的意思,即f代表一个网格单元的网格面 */ begin_f_loop(f, t) /*表示遍寻网格面,它的意思是说在计算的时候,要扫描所定义边界的所有网格面,对每个网格面都要赋值,值存储在F_PROFILE(f, t, i)中*/ { F_CENTROID(x,f,t); /*一个函数,它的意思是读取每个网格面质心的二维坐标,并赋值给x。x 为名称,接收三维坐标值。f为网格面(因为这里只是取的面的二维坐标,所以为f,如果是网格单元的话,这里就为c)。t为指向结构体thread(这里的thread表示边界上所有的网格面的集合)的指针*/ 仅供学习与交流,如有侵权请联系网站删除谢谢2

udf编译的经验总结

转帖 udf编译的经验总结 关于:"nmake"不是内部命令或外部命令,也不是可运行程序 我在编译UDF时出现如下错误: Error: Floating point error: divide by zero Error Object: () > "nmake"不是内部命令或外部命令,也不是可运行程序 Error Object: () Error: open_udf_library:系统找不到指定目录 Error: Floating point error: divide by zero Error Object: () 我原来装的时turbo c/c++编译器,可能时环境变量没有设好的缘故。换用vc++6.0以后就没有这个问题了,另外,我用的是fluent6.2.16,希望遇到同样问题的同学借鉴一下,呵 呵。 udf编译的经验总结1)安装vc时候,只要选择了“环境变量”这一项,就不需要在“我 的电脑 > 属性 > 高级 > 环境变量”中 更改“include”“lib”“path”变量的值,保持默认状态即可; 2)如果是fluent6.1以上的版本,读入你的case文件,只要在 define->user-defined->functions->complied中, add你的udf源文件(*.c)和“udf.h”头文件,然后确定用户共享库(library name)的 名称,按“build”,就 相当于nmake用户共享库;在这一步中常出现的错误: (a)(system "move user_nt.udf libudf\ntx86\2d")0 (system "copy C:\Fluent.Inc\fluent6.1.22\src\makefile_nt.udf libudf\ntx86\2d\makefile")已复制 1 个文件。 (chdir "libudf")() (chdir "ntx86\2d")() 'nmake' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 'nmake' 不是内部或外部命令,也不是可运行的程序

单效蒸发过程分析参考文本

单效蒸发过程分析参考文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

单效蒸发过程分析参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、单效蒸发的流程 如图13—1所示是一套典型的单效蒸发操作装置流 程,左面的设备是用来进行蒸发操作的主体设备蒸发器, 它的下部是由若干加热管组成的加热室1,加热蒸汽在管间 (壳方)被冷凝,它所释放出来的冷凝潜热通过管壁传给被加 热的料液,使溶液沸腾汽化。在沸腾汽化过程中,将不可 避免地要夹带一部分液体,为此,在蒸发器的上部设置了 一个称为分离室2的分离空间,并在其出口处装有除沫装 置,以便将夹带的液体分离开,蒸汽则进入冷凝器4内, 被冷却水冷凝后排出。在加热室管内的溶液中,随着溶剂 的汽化,溶液浓度得到提高,浓缩以后的完成液从蒸发器 的底部出料口排出。

蒸发操作可以在常压、加压或减压下进行,上述流程是采用减压蒸发操作的。减压蒸发是指在低于大气压的条件下进行的蒸发,具有如下优点: ①在加热蒸汽压强相同的情况下,减压蒸发时溶液的沸点低,传热温差可以增大,当传热量一定时,蒸发器的传热面积可以相应地减小; ②可以蒸发不耐高温的溶液; ③可以利用低压蒸汽或废气作为加热剂; ④操作温度低,损失于外界的热量也相应地减小。 但是,减压蒸发也有一定的缺点,这主要是由于溶液沸点降低,黏度增大,导致总的传热系数下降,同时还要有减压装置,需配置如图中 所示的真空泵、缓冲罐、气液分离器等辅助设备,使基建费用和操作费用相应增加。

Fluent UDF 中文教程UDF第7章 编译与链接

第七章UDF的编译与链接 编写好UDF件(详见第三章)后,接下来则准备编译(或链接)它。在7.2或7.3节中指导将用户编写好的UDF如何解释、编译成为共享目标库的UDF。 _ 第 7.1 节: 介绍 _ 第 7.2 节: 解释 UDF _ 第 7.3 节: 编译 UDF 7.1 介绍 解释的UDF和编译的UDF其源码产生途径及编译过程产生的结果代码是不同的。编译后的UDF由C语言系统的编译器编译成本地目标码。这一过程须在FLUENT运行前完成。在FLUENT运行时会执行存放于共享库里的目标码,这一过程称为“动态装载”。 另一方面,解释的UDF被编译成与体系结构无关的中间代码或伪码。这一代码调用时是在内部模拟器或解释器上运行。与体系结构无关的代码牺牲了程序性能,但其UDF可易于共享在不同的结构体系之间,即操作系统和FLUENT版本中。如果执行速度是所关心的,UDF文件可以不用修改直接在编译模式里运行。 为了区别这种不同,在FLUENT中解释UDF和编译UDF的控制面板其形式是不同的。解释UDF的控制面板里有个“Compile按钮”,当点击“Compile按钮”时会实时编译源码。编译UDF的控制面板里有个“Open 按钮”,当点击“Open按钮”时会“打开”或连接目标代码库运行

FLUENT(此时在运行FLUENT之前需要编译好目标码)。 当FLUENT程序运行中链接一个已编译好的UDF库时,和该共享库相关的东西都被存放到case文件中。因此,只要读取case文件,这个库会自动地链接到FLUENT处理过程。同样地,一个已经经过解释的UDF文件在运行时刻被编译,用户自定义的C函数的名称与内容将会被存放到用户的case文件中。只要读取这个case文件,这些函数会被自动编译。 注:已编译的UDF所用到的目标代码库必须适用于当前所使用的计算机体系结构、操作系统以及FLUENT软件的可执行版本。一旦用户的FLUENT升级、操作系统改变了或者运行在不同的类型的计算机,必须重新编译这些库。 UDF必须用DEFINE宏进行定义,DEFINE宏的定义是在udf.h文件中。因此,在用户编译UDF之前,udf.h文件必须被放到一个可被找到的路径,或者放到当前的工作目录中。 udf.h文件放置在: path/Fluent.Inc/fluent6.+x/src/udf.h 其中path是Fluent软件的安装目录,即Fluent.Inc目录。X代表了你所安装的版本号。 通常情况下,用户不应该从安装默认目录中复制udf.h文件。编译器先在当前目录中寻找该文件,如果没找到,编译器会自动到/src目录下寻找。如果你升级了软件的版本,但是没有从你的工作目录中删除旧版本的udf.h文件,你则不能访问到该文件的最新版本。在任何情

udf宏的功能

2.3. Model-Specific DEFINE Macros The DEFINE macros presented in this section are used to set parameters for a particular model in ANSYS Fluent. Table 2.2: Quick Reference Guide for Model-Specific DEFINE Functions – Table 2.6: Quick Reference Guide for Model-Specific DEFINE Functions MULTIPHASE ONLY provides a quick reference guide to the DEFINE macros, the functions they are used to define, and the dialog boxes where they are activated in ANSYS Fluent. Definitions of each DEFINE macro are listed in udf.h. For your convenience, they are listed in Appendix B. DEFINE_ANISOTROPIC_CONDUCTIVITY DEFINE_CHEM_STEP DEFINE_CPHI DEFINE_DIFFUSIVITY DEFINE_DOM_DIFFUSE_REFLECTIVITY DEFINE_DOM_SOURCE DEFINE_DOM_SPECULAR_REFLECTIVITY DEFINE_ECFM_SOURCE DEFINE_ECFM_SPARK_SOURCE DEFINE_EC_RATE DEFINE_EMISSIVITY_WEIGHTING_FACTOR DEFINE_FLAMELET_PARAMETERS DEFINE_ZONE_MOTION DEFINE_GRAY_BAND_ABS_COEFF DEFINE_HEAT_FLUX DEFINE_IGNITE_SOURCE DEFINE_NET_REACTION_RATE DEFINE_NOX_RATE DEFINE_PDF_TABLE DEFINE_PR_RATE DEFINE_PRANDTL UDFs DEFINE_PROFILE DEFINE_PROPERTY UDFs DEFINE_REACTING_CHANNEL_BC DEFINE_REACTING_CHANNEL_SOLVER DEFINE_SBES_BF DEFINE_SCAT_PHASE_FUNC DEFINE_SOLAR_INTENSITY DEFINE_SOLIDIFICATION_PARAMS DEFINE_SOOT_MASS_RATES DEFINE_SOOT_NUCLEATION_RATES DEFINE_SOOT_OXIDATION_RATE DEFINE_SOOT_PRECURSOR DEFINE_SOURCE DEFINE_SOX_RATE DEFINE_SPARK_GEOM (R14.5 spark model) DEFINE_SPECIFIC_HEAT DEFINE_SR_RATE DEFINE_THICKENED_FLAME_MODEL DEFINE_TRANS UDFs DEFINE_TRANSIENT_PROFILE DEFINE_TURB_PREMIX_SOURCE DEFINE_TURB_SCHMIDT UDF DEFINE_TURBULENT_VISCOSITY DEFINE_VR_RATE DEFINE_WALL_FUNCTIONS DEFINE_WSGGM_ABS_COEFF Table 2.2: Quick Reference Guide for Model-Specific DEFINE Functions Function DEFINE Macro Dialog Box Activated In anisotropic thermal conductivity DEFINE_ANISOTROPIC_CONDUCTIVITY Create/Edit Materials mixing constant DEFINE_CPHI User-Defined Function Hooks homogeneous net mass reaction rate for DEFINE_CHEM_STEP User-Defined Function Hooks all species, integrated over a time step

fluent UDF第二章

第二章.UDF的C语言基础 本章介绍了UDF的C语言基础 2.1引言 2.2注释你的C代码 2.3FLUENT中的C数据类型 2.4常数 2.5变量 2.6自定义数据类型 2.7强制转换 2.8函数 2.9数组 2.10指针 2.11声明 2.12常用C操作符 2.13C库函数 2.14用#define实现宏置换 2.15用#include实现文件包含 2.16与FORTRAN比较 2.1引言 本章介绍了C语言的一些基本信息,这些信息对处理FLUENT的UDF很有帮助。本章首先假定你有一些编程经验而不是C语言的初级介绍。本章不会介绍诸如while-do循环,联合,递归,结构以及读写文件的基础知识。如果你对C语言不熟悉可以参阅C语言的相关书籍。 2.2注释你的C代码 熟悉C语言的人都知道,注释在编写程序和调试程序等处理中是很重要的。注释的每一行以“/*”开始,后面的是注释的文本行,然后是“*/”结尾 如:/* This is how I put a comment in my C program */ 2.3FLUENT的C数据类型 FLUENT的UDF解释程序支持下面的C数据类型: Int:整型 Long:长整型 Real:实数 Float:浮点型 Double:双精度 Char:字符型

注意:UDF解释函数在单精度算法中定义real类型为float型,在双精度算法宏定义real为double型。因为解释函数自动作如此分配,所以使用在UDF中声明所有的float和double 数据变量时使用real数据类型是很好的编程习惯。 2.4常数 常数是表达式中所使用的绝对值,在C程序中用语句#define来定义。最简单的常数是十进制整数(如:0,1,2)包含小数点或者包含字母e的十进制数被看成浮点常数。按惯例,常数的声明一般都使用大写字母。例如,你可以设定区域的ID或者定义YMIN和YMAX 如下:#define WALL_ID 5 #define YMIN 0.0 #define YMAX 0.4064 2.5变量 变量或者对象保存在可以存储数值的内存中。每一个变量都有类型、名字和值。变量在使用之前必须在C程序中声明。这样,计算机才会提前知道应该如何分配给相应变量的存储类型。 2.5.1声明变量 变量声明的结构如下:首先是数据类型,然后是具有相应类型的一个或多个变量的名字。变量声明时可以给定初值,最后面用分号结尾。变量名的头字母必须是C所允许的合法字符,变量名字中可以有字母,数字和下划线。需要注意的是,在C程序中,字母是区分大小写的。下面是变量声明的例子: int n; /*声明变量n为整型*/ int i1, i2; /*声明变量i1和i2为整型*/ float tmax = 0.; /* tmax为浮点型实数,初值为0 */ real average_temp = 0.0; /* average_temp为实数,赋初值为0.1*/ 2.5.2局部变量 局部变量只用于单一的函数中。当函数调用时,就被创建了,函数返回之后,这个变量就不存在了,局部变量在函数内部(大括号内)声明。在下面的例子中,mu_lam和temp是局部变量。 DEFINE_PROPERTY(cell_viscosity, cell, thread) { real mu_lam; real temp = C_T(cell, thread); if (temp > 288.) mu_lam = 5.5e-3; else if (temp > 286.) mu_lam = 143.2135 - 0.49725 * temp; else mu_lam = 1.;

单效蒸发过程分析示范文本

文件编号:RHD-QB-K6454 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 单效蒸发过程分析示范 文本

单效蒸发过程分析示范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 一、单效蒸发的流程 如图13—1所示是一套典型的单效蒸发操作装置流程,左面的设备是用来进行蒸发操作的主体设备蒸发器,它的下部是由若干加热管组成的加热室1,加热蒸汽在管间(壳方)被冷凝,它所释放出来的冷凝潜热通过管壁传给被加热的料液,使溶液沸腾汽化。在沸腾汽化过程中,将不可避免地要夹带一部分液体,为此,在蒸发器的上部设置了一个称为分离室2的分离空间,并在其出口处装有除沫装置,以便将夹带的液体分离开,蒸汽则进入冷凝器4内,被冷却水冷凝后排出。在加热室管内的溶液中,随着溶剂的

汽化,溶液浓度得到提高,浓缩以后的完成液从蒸发器的底部出料口排出。 蒸发操作可以在常压、加压或减压下进行,上述流程是采用减压蒸发操作的。减压蒸发是指在低于大气压的条件下进行的蒸发,具有如下优点: ①在加热蒸汽压强相同的情况下,减压蒸发时溶液的沸点低,传热温差可以增大,当传热量一定时,蒸发器的传热面积可以相应地减小; ②可以蒸发不耐高温的溶液; ③可以利用低压蒸汽或废气作为加热剂; ④操作温度低,损失于外界的热量也相应地减小。 但是,减压蒸发也有一定的缺点,这主要是由于溶液沸点降低,黏度增大,导致总的传热系数下降,

UDF(用户自定义特征)的创建和使用

UDF(用户自定义特征)的创建和使用 bysgjunfeng 1、什么是UDF? 2、UDF使用过程 2.1创建参照模型 2.2创建UDF 2.3放置UDF 3、替换UDF 4、UDF搭配族表的使用 1、什么是UDF? UDF即用户自定义特征。也就是说可以将数个特征组合起来形成一个新的自己定义的特征,并且会保存在UDF数据库中,随时调入。(类似于AutoCAD中的动态 块) 用户自定义特征用来复制相同或相近外形的特征组,此功能类似于“特征复制”,但又有所不同,功能上比较全面、灵活,但相应的步骤比较繁琐。因此,如果会用特征复制,特别是特征复制里的新参考,将会对此命令有所帮助。 UDF和特征复制的最大区别有以下两点: ●特征复制仅适用于当前的模型,而UDF可以适用与不同的模型。 ●特征复制的局部组无法用另一个局部组替换,而UDF可被另一个UDF替换 UDF的使用流程大体可分为三步:规划并创建参照模型——建立UDF——放置UDF,下面我们用一个简单的例子来说明如何使用UDF。 2、UDF使用过程 在使用UDF之前,首先要创建UDF,缺省时,Pro/ENGINEER将创建的UDF保存在当前工作目录中。为此,可创建UDF库目录,要访问Pro/ENGINEER 的UDF库目

录,可指定带置文件选项"pro_group_dir"的目录名。这样,每次插入UDF时将 自动打开该目录。 建立好参照模型后,单击单击"工具"(Tools)>"UDF 库"(UDF Library)。出现下 图所示UDF菜单 该对话框各选项含义如下: 创建 (Create):建立新的UDF并将其添加到UDF库。 修改 (Modify):修改现有的 UDF。如果有参照零件,系统将在单独的零件窗口 显示 UDF。 列表 (List):列出当前目录中的所有UDF文件,用于查看UDF信息。 数据库管理 (Dbms):管理当前UDF数据库。即对当前UDF数据库中的UDF进行保存、另存为、备份、重命名、拭除、清除、删除等操作。 集成 (Integrate):解决源 UDF 和目标 UDF 之间的差异。 以下以实例说明如何创建及使用UDF。 假定背景:在很多时候建立零件模型时,零件的粗坯都是一个长方体,并且要求该长方体关于基准平面左右前后对称(如下图所示),这就要求在草绘里绘制矩形时要多绘制两条中心线或多标两个尺寸。下面我们将演示如何将这样的长方体 作为UDF来使用。 本实例重在介绍UDF的使用过程,希望能起到抛砖引玉的作用,使大家在实际应

单效蒸发过程分析

编号:SM-ZD-16091 单效蒸发过程分析 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

单效蒸发过程分析 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、单效蒸发的流程 如图13—1所示是一套典型的单效蒸发操作装置流程,左面的设备是用来进行蒸发操作的主体设备蒸发器,它的下部是由若干加热管组成的加热室1,加热蒸汽在管间(壳方)被冷凝,它所释放出来的冷凝潜热通过管壁传给被加热的料液,使溶液沸腾汽化。在沸腾汽化过程中,将不可避免地要夹带一部分液体,为此,在蒸发器的上部设置了一个称为分离室2的分离空间,并在其出口处装有除沫装置,以便将夹带的液体分离开,蒸汽则进入冷凝器4内,被冷却水冷凝后排出。在加热室管内的溶液中,随着溶剂的汽化,溶液浓度得到提高,浓缩以后的完成液从蒸发器的底部出料口排出。 蒸发操作可以在常压、加压或减压下进行,上述流程是采用减压蒸发操作的。减压蒸发是指在低于大气压的条件下进行的蒸发,具有如下优点: ①在加热蒸汽压强相同的情况下,减压蒸发时溶液的沸

udf使用心得

我接触UDF的时间不算长,2007年7月份开始看UDF的中文帮助,花了一周时间大体看完后,第一感觉:不难啊,至少不像以前别人给我讲的很高深的样子。然后就是UDF编程,直到10月底吧。然后用的时间就不多了。然后就是这两周,我马上就要研究生毕业了,可能这周结束后用UDF编程的可能性会很小了,所以想写点东西,给刚刚学UDF编程的人,希望对大家有用。对于UDF高手,估计是不用向下看了。 UDF框架 光看书,感觉UDF不难。看例子,有些看个四五遍之后才能差不多看懂。原来,得靠UDF帮助。我主要用的是fluent v6.3自带的html格式的帮助,里面东西很全,当然也包括UDF Manual。里面自带的search功能相当好,只是要注意用好+或-号(逻辑符号),另外,这个功能似乎有些浏览器支持不太好,不过基本上用IE不太容易出问题。 对于从零开始学习UDF,建议还是先看一下UDF中文帮助,我估计大家知道的都是马世虎翻译的那本吧,感觉挺好。(没想到马世虎跟我是校友,去年给安世亚太投过一份简历,他给我打过电话,当时一阵兴奋,呵呵。) 对于只涉及到边界条件或物性等的UDF,一般用interpret就可以的,这些我觉得只需要根据例子改一下就是了。 $$ 对于要添加UDS方程的,相对难一点。我编程用的是三到五个UDS,几十个UDM。一开始编程时,没有头绪,后来看别人编的,才慢慢发现了一些基本思路。比如,可以用枚举定义UDS 或UDM,这样用起来方便。 enum{ NP, RHOH2O_Y_UP_X, RHOH2O_Y_UP_Y, RHOH2O_Y_UP_Z, N_REQUIRED_UDS };//枚举UDS变量名 对于UDM,则用N_REQUIRED_UDM代表个数。 然后在INIT与ADJUST函数中,检查变量个数时则比较方便,如: DEFINE_INIT(init_parameter,domain) { if (n_uds < N_REQUIRED_UDS) Error(”Not enough user defined scalars!(init)\n”); if (n_udm

UDF程序

/* reflect boundary condition for inert particles */ #include "udf.h" DEFINE_DPM_BC(bc_reflect,p,t,f,f_normal,dim) { real alpha; /* angle of particle path with face normal */ real vn=0.; real normal[3]; real vt[3]; real vn1[3]; real angle=0; int i, idim=dim; real NV_VEC(x); #if RP_2D /* dim is always 2 in 2D compilation. Need special treatment for 2d axisymmetric and swirl flows */ if (rp_axi_swirl) { real R=sqrt(P_POS(p)[1]*P_POS(p)[1]+P_POS(p)[2]*P_POS(p)[2]); if (R>1.e-20) { idim=3; normal[0]=f_normal[0];

normal[1]=(f_normal[1]*P_POS(p)[1])/R; normal[2]=(f_normal[1]*P_POS(p)[2])/R; } else { for (i=0; i

Fluent UDF造波源程序集

法一:边界造波法 程序一:inlet.c #include "udf.h" /* #include (输入输出)*/ #include #include #define HH 0.5 /*waver hight*/ /*不同波形需要修改的波形参数*/ #define LL 0.95 /*波长*/ #define g 9.81 #define pi 3.1415925 #define d 0.5 /*water deepth */ DEFINE_PROFILE(x_velocity,thread,index) { real kk = 2.0*pi/LL; real c = sqrt(g*tanh(kk*d)/kk); /*参见一般性公式的推导*/ real TT = LL/c; real x[ND_ND]; /* this will hold the position vector */ real y = 0; real s = 0; real ct = 0; /*相位角*/ face_t f; real t = CURRENT_TIME; real u = 0; t=RP_Get_Real("flow-time"); begin_f_loop(f,thread) /* loops over all faces in the thread passed in the DEFINE macro argument */ { F_CENTROID(x,f,thread); y = x[1]; s = y+d; ct = kk*(x[0]-c*t); /*参见一般性公式的推导*/ if(y < 0.5*HH*sin(ct)) /*水面以下,其中,0.5*HH*sin(ct)为波面方程*/ u = pi*HH*cosh(kk*s)*sin(ct)/(TT*sinh(kk*d)); /*x方向速度分量公 式,参见一般性公式的推导*/ else u = 0.0; /*水面以上流体单位速度矢量的x方向分量*/ F_PROFILE(f,thread,index) = u; } end_f_loop(f,thread) } DEFINE_PROFILE(y_velocity,thread,index) { real kk = 2.0*pi/LL; real c = sqrt(g*tanh(kk*d)/kk); real TT = LL/c; real x[ND_ND]; /* this will hold the position vector */

相关文档
最新文档