高中数学:几何最值问题求法

合集下载

高中数学椭圆中的最值问题与定点、定值问题

高中数学椭圆中的最值问题与定点、定值问题

椭圆中的最值问题与定点、定值问题解决与椭圆有关的最值问题的常用方法 (1)利用定义转化为几何问题处理;(2)利用数形结合,挖掘数学表达式的几何特征进而求解; (3)利用函数最值得探求方法,将其转化为区间上的二次 函数的最值来处理,此时应注意椭圆中x 、y 的取值范围;(4)利用三角替代(换元法)转化为 三角函数的最值问题处理。

一 、椭圆上一动点与焦点的距离的最值问题 椭圆上一动点与焦点的距离称为焦半径,椭圆上一动点与长轴的两端点重合时,动点与焦点取得最大值a+c (远日点)、最小值a -c (近日点)。

推导:设点),(00y x P 为椭圆)0( 12222>>=+b a by a x 上的任意一点,左焦点为)0,(1c F -,2201)(||y c x PF ++=,由 1220220=+b y a x 得)1(22020ax b y -=,将其代入 20201)(||y c x PF ++=并化简得a x acPF +=01||。

所以,当点),(00y x P 为长轴的右端点)0,(2a A 重合时,a c a a acPF +=+⋅=max 1||;当点),(00y x P 为长轴的左端点)0,(1a A -重合时。

c a a a acPF -=+-⋅=)(||min 1。

当焦点为右焦点)0,(2c F 时,可类似推出。

1. (2015浙江卷)如图,已知椭圆 1222=+y x 上两个 不同的点A 、B 关于直线21+=mx y 对称。

(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点)。

解:(1)由题意知0≠m ,可设直线AB 的方程为b x my +-=1。

联立⎪⎩⎪⎨⎧+-==+bx m y y x 11222,消y 去,得012)121(222=-+-+b x m b x m 。

因为直线b x my +-=1与椭圆 1222=+y x 有两个不同的交点, 所以042222>++-=∆m b 。

借助几何性质解决圆中的最值问题

借助几何性质解决圆中的最值问题

类型四 利用“数形结合方法”解决直线与圆的问题
例4 已知圆C:(x+2)2+y2=1,P(x,y)为圆C上任一点. (1)求xy--21的最大、最小值; 解 法一 设 k=xy--21, 则 y-2=kx-k,即 kx-y+2-k=0. ∵P(x,y)为圆 C 上任一点, ∴圆心(-2,0)到直线 kx-y+2-k=0 的距离 d=|-2k1++2k-2 k|=|21-+3kk2|≤1,
索引
∴3t++1t=-12.∴t=-73, ∵CA= 1+4= 5, ∴直线 l 被圆 C 截得的弦长的最小值为 2 9-5=4.
索引
思维升华
当直线与圆相交时,弦长最短,需使弦心距最大,然后根据垂径定理由垂直 得中点,进而利用弦长的一半,圆的半径及弦心距构造直角三角形,利用勾 股定理解决问题.
索引
借助几何性质解决圆中的最值问题
索引
高中数学中,在研究圆的相关问题时,最值问题又是研究的重点和热点,现把 常见的与圆相关的最值问题总结如下.希望对学生有些启发.
索引
类型一 “圆上一点到直线距离的最值”问题
例 1 已知圆 C 经过(2,5),(-2,1)两点,并且圆心 C 在直线 y=21x 上. (1)求圆 C 的方程; 解 点(2,5)与点(-2,1)连线的中点为(0,3),中垂线方程为 y=-x+3,
索引
即|2-3k|≤ 1+k2, 平方得 8k2-12k+3≤0, 解得3-4 3≤k≤3+4 3, 故xy--21的最大值为3+4 3,最小值为3-4 3;
索引
(2)求x-2y的最大、最小值.
解 设b=x-2y,即x-2y-b=0. ∵P(x,y)为圆C上任一点, ∴圆心(-2,0)到直线的距离 d= 12|+-(2--b2| )2=|b+52|≤1,即|b+2|≤ 5, 则-2- 5≤b≤ 5-2,

求最值方法--高考数学复习

求最值方法--高考数学复习

求最值方法 -- 高考数学复习一问一答 -------- 最值问题方法总论1高中数学求最值有哪些方法?答:有 9 种方法: 1)配方法 2)鉴别式法; 3)不等式法; 4)换元法; 5)函数单一性法; 6)三角函数性质法; 7)导数法; 8)数形联合发;9)向量法2如何将恒成立问题转变为最值问题?答:1) a f ( x)恒成立,则a f (x)max 2)a f ( x)恒成立,则 a f (x)min一元整式函数最值1、二次函数张口方向、对称轴、所给区间均确立,如何求最值 ?答:1)确立对称轴与x轴交点的横坐标能否在所给区间。

2)假如在所给区间,一个最值在极点处获得,另一个最值在与极点横坐标较远的端点处获得。

3)若不在所给区间,利用函数的单一性确立其最值。

2、二次函数所给区间确立,对称轴地点变化,如何求最值 ?答: 1)挪动对称轴,将对称轴平移到定区间的左边、右边及区间内议论, 2)在区间内,只考虑对称轴与区间端点的距离即可。

3、二次函数所给区间变化,对称轴地点确立,如何求最值 ?答:分类议论,分为四种状况: 1)对称轴在闭区间左边;2)对称轴在闭区间右边3)对称轴在闭区间内且在中点的左边; 4)对称轴在闭区间内且在中点的右边(或过中点);4、二次函数所给区间、对称轴地点都不确立,如何求最值 ?答:将此中一个看作是“定”的,另一个看作是“动”的,而后如上分四种状况进行议论。

5、什么状况下运用基本不等式求最值?答:当两个变量的和或积为定值时运用,有时需要变形。

即两个正数的积为定值时,它们的和有最小值,两个正数的和为定值时,它们的积有最大值。

6、对于多项式乘积的最值问题,如何求解答:能够考虑睁开后,利用基本不等式求解7、如何求复合型函数的最值答:若函数f ( x), g( x) 在 [ mn.] 上单调性相同,则h( x) f (x)g(x) 在 [m.n] 上与 f ( x), g( x) 有同样的单一性,可利用单一性求h( x) 在[ mn.] 上的最值。

高中数学立体几何中的最值问题专题辅导

高中数学立体几何中的最值问题专题辅导

高中数学立体几何中的最值问题 海红楼 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。

下面举例说明解决这类问题的常用方法。

一、运用变量的相对性求最值例1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( )A. 55B. 552C. 2D. 1解析:如图1,由于点P 、Q 分别在线段BD 、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动,当OQ 最小时,PQ 最小。

过O 作OQ ⊥SC ,在Rt △SOC 中,552=OQ 中。

又P 在BD 上运动,且当P 运动到点O 时,PQ 最小,等于OQ 的长为552,也就是异面直线BD 和SC 的公垂线段的长。

故选B 。

图1二、定性分析法求最值例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。

AB ⊥CD ,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为______。

解析:如图2,过点B 作平面α的垂线,垂足为O ,连结AO ,则∠BAO=30°。

过B 作BE//CD 交平面α于E ,则BE=CD 。

连结AE ,因为AB ⊥CD ,故AB ⊥BE 。

则在Rt △ABE 中,BE=AB ·tan ∠BAE ≥AB ·tan ∠BAO=3·tan30°=3。

故3≥CD 。

图2三、展成平面求最值例3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a ,AC=BD=b ,AD=BC=c 。

平面α分别截棱AB 、BC 、CD 、DA 于点P 、Q 、R 、S ,则四边形PQRS 的周长的最小值是( )A. 2aB. 2bC. 2cD. a+b+c图3-1解析:如图3-2,将四面体的侧面展开成平面图形。

专题4.4 立体几何中最值问题-2021届高考数学压轴题讲义(选填题)(原卷版)

专题4.4 立体几何中最值问题-2021届高考数学压轴题讲义(选填题)(原卷版)

一.方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解.二.解题策略类型一距离最值问题【例1】【河南省焦作市2019届高三三模】在棱长为4的正方体ABCD﹣A1B1C1D1中,点E、F分别在棱AA1和AB上,且C1E⊥EF,则|AF|的最大值为()A.B.1 C.D.2【指点迷津】建立空间直角坐标系,求出坐标,利用C 1E⊥EF,求出|AF|满足的关系式,然后求出最大值即可.利用向量法得到|AF|的关系式是解题的关键,故选D.【举一反三】1、【江西省吉安市2019届高三上学期期末】若某几何体的三视图如图所示,则该几何体的最长棱的棱长为A .B .C .D .2、【河南省顶级名校2019届高三第四次联合测评】在侧棱长为的正三棱锥中,侧棱OA ,OB ,OC 两两垂直,现有一小球P 在该几何体内,则小球P 最大的半径为 A . B . C .D .3、如右图所示,在棱长为2的正方体1111ABCD A B C D -中, E 为棱1CC 的中点,点,P Q 分别为面1111A B C D 和线段1B C 上的动点,则PEQ ∆周长的最小值为_______.类型二 面积的最值问题【例2】【河南省郑州市2019年高三第二次质量检测】在长方体中,,,分别是棱的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为( )A .B .C .D .【指点迷津】截面问题,往往涉及线面平行,面面平行定义的应用等,考查空间想象能力、逻辑思维能力及计算求解能力.解题的关键是注意明确截面形状,确定几何量.本题由直线与平面没有公共点可知线面平行,补全所给截面后,易得两个平行截面,从而确定点P 所在线段,得解. 【举一反三】1、【湖南省衡阳市2019届高三二模】如图,直角三角形,,,将绕边旋转至位置,若二面角的大小为,则四面体的外接球的表面积的最小值为( )A .B .C .D .2、如图,在正四棱柱1111D C B A ABCD -中,2,11==AA AB ,点P 是平面1111D C B A 内的一个动点,则三棱锥ABC P -的正视图与俯视图的面积之比的最大值为( )A .1B .2C .21 D .41 3、【福建省2019届高三模拟】若某几何体的三视图如图所示,则该几何体的所有侧面和底面中,面积的最大值为( )A .2B .C .3D .类型三 体积的最值问题 【例3】如图,已知平面平面,,、是直线上的两点,、是平面内的两点,且,,,,,是平面上的一动点,且有,则四棱锥体积的最大值是( )A.B.C.D.【指点迷津】本题主要考查面面垂直的性质,棱锥的体积公式以及求最值问题. 求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图像法,本题首先根据线面关系将体积最值转化为函数求最值问题,然后应用方法①解答的. 【举一反三】1、已知AD 与BC 是四面体ABCD 中相互垂直的棱,若6AD BC ==,且60ABD ACD ∠=∠=,则四面体ABCD 的体积的最大值是A. 182B. 362C. 18D. 36 2、如图,已知平面l αβ=,A 、B 是l 上的两个点,C 、D 在平面β内,且,,DA CB αα⊥⊥4AD =,6,8AB BC ==,在平面α上有一个动点P ,使得APD BPC ∠=∠,则P ABCD -体积的最大值是( )A.243B.16C.48D.1443.【河南省八市重点高中联盟“领军考试”2019届高三第三次测评】已知一个高为l 的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,内有 一个体积为的球,则的最大值为( ) A .B .C .D .类型四 角的最值问题【例4】如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为.【指点迷津】空间的角的问题,只要便于建立坐标系均可建立坐标系,然后利用公式求解.解本题要注意,空间两直线所成的角是不超过90度的.几何问题还可结合图形分析何时取得最大值.当点M 在点P 处时,EM 与AF 所成角为直角,此时余弦值为0(最小),当点M 向左移动时,.EM 与AF 所成角逐渐变小,点M 到达点Q 时,角最小,余弦值最大. 【举一反三】1、矩形ABCD 中,,,将△ABC 与△ADC 沿AC 所在的直线进行随意翻折,在翻折过程中直线AD 与直线BC 成的角范围(包含初始状态)为( )A.B.C.D.2、在正方体1111D C B A ABCD -中,O 是BD 中点,点P 在线段11D B 上,直线OP 与平面BD A 1所成的角为α,则αsin 的取值范围是( ) A .]33,32[B .]21,31[C .]33,43[D .]31,41[ 3.【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】如图,在正方体中,点P 为AD 的中点,点Q 为上的动点,给出下列说法:可能与平面平行;与BC 所成的最大角为; 与PQ 一定垂直; 与所成的最大角的正切值为;.其中正确的有______写出所有正确命题的序号4、在正四面体P ABC -中,点M 是棱PC 的中点,点N 是线段AB 上一动点,且AN AB λ=,设异面直线NM 与AC 所成角为α,当1233λ≤≤时,则cos α的取值范围是__________.三.强化训练 一、选择题1、【甘肃省2019届高三第一次高考诊断】四棱锥的顶点均在一个半径为3的球面上,若正方形的边长为4,则四棱锥的体积最大值为( )A .B .C .D .2.【广东省东莞市2019届高三第二次调研】已知一个四棱锥的正主视图和俯视图如图所示,其中,则该四棱锥的高的最大值为A .B .C .4D .2 3.【四川省教考联盟2019届高三第三次诊断】已知四棱锥的底面四边形的外接圆半径为3,且此外接圆圆心到点距离为2,则此四棱锥体积的最大值为( ) A .12B .6C .32D .244.【安徽省蚌埠市2019届高三第一次检查】某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,三棱锥表面上的点M 在俯视图上的对应点为A ,三棱锥表面上的点N 在左视图上的对应点为B ,则线段MN 的长度的最大值为A .B .C .D .5.如图,在矩形ABCD 中, 2,1AB AD ==,点E 为CD 的中点, F 为线段CE (端点除外)上一动点现将DAF ∆沿AF 折起,使得平面ABD ⊥平面ABC 设直线FD 与平面ABCF 所成角为θ,则sin θ的最大值为( )A.13 B. 24 C. 12 D. 236.【2019年4月2019届高三第二次全国大联考】已知正四面体的表面积为,点在内(不含边界). 若,且,则实数的取值范围为( ) A . B . C .D .二、填空题7.【山东省青岛市2019届高三3月一模】在四棱锥中,底面是边长为2的正方形,面,且,若在这个四棱锥内有一个球,则此球的最大表面积为__________.8.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知正四棱柱和半径为的半球O ,底面ABCD 在半球O 底面所在平面上,,,,四点均在球面上,则该正四棱柱的体积的最大值为______.9.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知圆柱和半径为的半球O ,圆柱的下底面在半球O 底面所在平面上,圆柱的上底面内接于球O ,则该圆柱的体积的最大值为_____.10.【江西省上饶市2019届高三二模】一个棱长为的正方体形状的铁盒内放置一个正四面体,且能使该正四面体在铁盒内任意转动,则该正四面体的体积的最大值是_____.11.【河北省衡水市第二中学2019届高三上期中】已知体积为的正四棱锥外接球的球心为,其中在四棱锥内部.设球的半径为,球心到底面的距离为.过的中点作球的截面,则所得截面圆面积的最小值是___________.12.【江西省临川第一中学等九校2019届高三3月联考】如图所示,三棱锥的顶点,,,都在同一球面上,过球心且,是边长为2等边三角形,点、分别为线段,上的动点(不含端点),且,则三棱锥体积的最大值为__________.13.【安徽省蚌埠市2019届高三下学期第二次检查】正三棱锥中,,点在棱上,且.正三棱锥的外接球为球,过点作球的截面,截球所得截面面积的最小值为__________.14.【江西师范大学附属中学2019高三上学期期末】若一个四棱锥的底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球的体积最小时,它的高为_________.15.【江西省上饶市2019届高三二模】已知正方体的棱长为,平面与对角线垂直且与每个面均有交点,若截此正方体所得的截面面积为,周长为,则的最大值为______.16.【河南省洛阳市2019届高三第二次统考】正四面体中,是的中点,是棱上一动点,的最小值为,则该四面体内切球的体积为_____.17.【2019届湘赣十四校高三联考第二次考试】如图,正三棱锥的高,底面边长为4,,分别在和上,且,当三棱锥体积最大时,三棱锥的内切球的半径为________.。

高中数学-圆锥曲线中的定点、定值与最值问题

高中数学-圆锥曲线中的定点、定值与最值问题

[例 2] 如图,在平面直角
坐标系 xOy 中,椭圆xa22+by22=1(a>b>0)的左、
右焦点分别为 F1(-c,0),F2(c,0).已知点(1,e)
和e,
23都在椭圆上,其中
e
为椭圆的离心率.
(1)求椭圆的方程;
(2)设 A,B 是椭圆上位于 x 轴上方的两点,且直线 AF1 与直
线 BF2 平行,AF2 与 BF1 交于点 P,
法二:同(2)法一假设前内容. 假设平面内存在定点M满足条件,由图形对称性知,点M 必在x轴上. 取k=0,m= 3,此时P(0, 3),Q(4, 3), 以PQ为直径的圆为(x-2)2+(y- 3)2=4, 交x轴于点M1(1,0),M2(3,0); 取k=-12,m=2,此时P1,32,Q(4,0), 以PQ为直径的圆为x-522+y-342=4156, 交x轴于点M3(1,0),M4(4,0).
因为 MP =-4mk-x1,m3 , MQ =(4-x1,4k+m), 由 MP ·MQ =0,得-1m6k+4kmx1-4x1+x12+1m2k+3=0, 整理,得(4x1-4)mk +x12-4x1+3=0.(**) 由于(**)式对满足(*)式的m,k恒成立, 所以4x1x2-1-4x41=+03,=0, 解得x1=1. 故存在定点M(1,0),使得以PQ为直径的圆恒过点M.
圆锥曲线中的最值问题
[例3] 如图,在直角坐标系xOy中,点 P1,12到抛物线C:y2=2px(p>0)的准线的距 离为54.点M(t,1)是C上的定点,A,B是C上的 两动点,且线段AB被直线OM平分.
(1)求p,t的值; (2)求△ABP面积的最大值.
[思路点拨] (1)利用点M(t,1)在曲线上及点P 1,12 到准线的距 离为54求p与t的值;

高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)


设M(x1,y1),M′(x2,y2), 设 MF1 的方程为 x=my- 3,
x=my- 3,
由x42+y2=1
得(m2+4)y2-2 3my-1=0,
故yy11+y2=y2=-mm2 221++3m44.,
设F1M与F2N的距离为d,四边形F1F2NM的面积为S,
则 S=12(|F1M|+|F2N|)d=12(|F1M′|+|F1M|)d=12|MM′|d= S△MF2M′,
2
PART TWO
真题体验 押题预测
真题体验 (2018·全国Ⅰ,文,20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与 C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程;
解 当l与x轴垂直时,l的方程为x=2, 可得点M的坐标为(2,2)或(2,-2). 所以直线 BM 的方程为 y=12x+1 或 y=-12x-1. 即x-2y+2=0或x+2y+2=0.
所以 y1+y2=2k,y1y2=-4.
直线 BM,BN 的斜率之和 kBM+kBN=x1y+1 2+x2y+2 2=x2y1+x1x+1y22+x22+y12+ y2.

将 x1=yk1+2,x2=yk2+2 及 y1+y2,y1y2 的表达式代入①式分子,
可得 x2y1+x1y2+2(y1+y2)=2y1y2+4kky1+y2=-8k+8=0.
当且仅当 t2=92,即 t=±322时取等号.
故△BPQ
的面积的最大值为
2 2.
热点二 范围问题
圆锥曲线的范围问题的常见解法 (1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形 性质来解决; (2)代数法:若题目中的条件和结论能体现一种明确的函数关系或不等关系或已知 参数与新参数之间的等量关系等,则可利用这些关系去求参数的范围.

高中数学立体几何中的最值问题

高中数学立体几何中的最值问题在高中数学的学习中,立体几何一直是一个重点和难点,而其中的最值问题更是让许多同学感到头疼。

这类问题往往需要我们综合运用空间想象力、几何知识以及数学方法来求解。

接下来,让我们一起深入探讨立体几何中的最值问题。

一、常见类型及解法1、距离最值问题(1)两点间距离最值在立体几何中,求两点间距离的最值,常常需要我们将空间中的两点转化到同一平面内。

例如,在长方体中,求异面直线上两点的最短距离,就需要通过平移将其转化为共面直线,然后利用平面几何中的知识求解。

(2)点到直线距离最值求点到直线的距离最值时,通常要找到点在直线上的投影。

如果直线是某一平面的斜线,那么可以通过作垂线找到投影,再利用勾股定理计算距离。

(3)点到平面距离最值对于点到平面的距离最值,一般可以利用空间向量法。

先求出平面的法向量,然后通过向量的数量积来计算点到平面的距离。

2、面积最值问题(1)三角形面积最值在立体几何中,涉及三角形面积的最值问题,可能需要考虑三角形的边长关系或者角度大小。

例如,已知三角形的两边及其夹角,当夹角为直角时,面积最大。

(2)四边形面积最值对于四边形,如平行四边形,其面积可以表示为底边乘以高。

当底边长度固定时,高取得最大值时面积最大;或者当四边形的对角线相互垂直时,面积等于对角线乘积的一半。

3、体积最值问题(1)柱体体积最值对于柱体,如圆柱、棱柱,其体积等于底面积乘以高。

当底面积不变时,高最大则体积最大;反之,高最小时体积最小。

(2)锥体体积最值锥体体积为三分之一底面积乘以高。

在求解锥体体积最值时,需要关注底面积和高的变化。

二、例题分析例 1:在棱长为 2 的正方体 ABCD A1B1C1D1 中,E、F 分别是棱AB、BC 的中点,求点 A1 到直线 EF 的距离。

解:连接 A1C1、C1F、EF,因为 A1C1 平行于 EF,所以点 A1 到直线 EF 的距离等于点 A1 到直线 C1F 的距离。

高考数学利用均值不等式求圆锥曲线中的最值(解析版)

利用均值不等式求圆锥曲线中的最值一、考情分析与圆锥曲线有关的最值问题,在高考中常以解答题形式考查,且难度较大,它能综合应用函数、三角、不等式等有关知识,因而备受命题者青睐,其中利用均值不等式求圆锥曲线中的最值是一类常见问题,求解时常涉及函数与方程、化归转化等数学思想.二、解题秘籍(一)利用均值不等式求圆锥曲线中最值的方法与策略利用均值不等式求圆锥曲线中的最值,一是直接根据圆锥曲线中的和(积)为定值的性质求积(和)的最大(小)值,如根据椭圆中PF 1 +PF 2 为定值,可求PF 1 PF 2 的最大值,二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用基本不等式求最值,求解这类问题的核心是建立参数之间的等量关系.【例1】(2023届湖北省荆荆宜三校高三上学期9月联考)设椭圆Γ:x 2a 2+y 2b2=1a >b >0 ,F 1,F 2是椭圆Γ的左、右焦点,点A 1,32 在椭圆Γ上,点P 4,0 在椭圆Γ外,且PF 2 =4-3.(1)求椭圆Γ的方程;(2)若B 1,-32,点C 为椭圆Γ上横坐标大于1的一点,过点C 的直线l 与椭圆有且仅有一个交点,并与直线PA ,PB 交于M ,N 两点,O 为坐标原点,记△OMN ,△PMN 的面积分别为S 1,S 2,求S 21-S 1S 2+S 22的最小值.【解析】(1)因为点A 1,32 在椭圆Γ上,所以1a 2+34b 2=1,①因为点P 4,0 在椭圆Γ外,且PF 2 =4-3,所以c =3,即a 2-b 2=c 2=3,②由①②解得a 2=4,b 2=1,故椭圆Γ的方程为x 24+y 2=1.(2)设点M x 1,y 1 ,N x 2,y 2 ,设直线MN :x =my +t ,由椭圆性质以及点C 的横坐标大于1可知,t >2,将直线MN 代入方程x 24+y 2=1并化简可得,my +t 2+4y 2-4=0,即m 2+4 y 2+2mty +t 2-4=0,因为直线l 与椭圆有且仅有一个交点,所以Δ=4m 2t 2-4m 2+4 t 2-4 =0,即t 2=m 2+4.直线AP 的方程为:x =4-23y ;直线BP 的方程为l BP :x =4+23y ,联立方程x =my +t ,x =4-23y ,得y 1=4-t 23+m ,同理得y 2=t -423-m,所以y 1-y 2=4-t -43 m 2-12=43t +4,所以S 1=12t y 1-y 2 ,S 2=124-t y 1-y 2 ,所以S 21-S 1S 2+S 22=14t 2y 1-y 2 2-t 4-t 4y 1-y 2 2+14(4-t )2y 1-y 22=14y 1-y 2 2t 2-4t +t 2+16-8t +t 2 =14×48t +4 23t 2-12t +16 =36-489t +8 t 2+8t +16,令9t +8=λλ>26 ,则S 21-S 1S 2+S 22=36-48×81λ+282λ+56≥97,当且仅当λ=28,即t =209时,不等式取等号,故当t =209时,S 21-S 1S 2+S 22取得最小值97.【例2】已知椭圆C :y 2a 2+x 2b2=1a >b >0 的离心率为32,且过点1,2 .(1)求椭圆C 的方程;(2)若直线l 被圆x 2+y 2=a 2截得的弦长为26,设直线l 与椭圆C 交于A ,B 两点,O 为坐标原点,求△OAB 面积的最大值.【解析】(1)e =32,b a =a 2-c 2a =1-e 2=12,由椭圆过点1,2 得4a 2+1b 2=1,解得a 2=8,b 2=2,∴椭圆C 的方程为y 28+x 22=1.(2)直线l 被圆x 2+y 2=8截得的弦长为26,则圆心到直线l 的距离d 满足6 2=22 2-d 2,解得d =2,当l 的斜率存在时,设l :y =kx +m ,A x 1,y 1 ,B x 2,y 2 ,圆心为原点则有d =m 1+k 2=2,∴m 2=2k 2+1.将l 方程代入椭圆方程中整理得:k 2+4 x 2+2mkx +m 2-8=0,∴x 1+x 2=-2mk k 2+4,x 1x 2=m 2-8k 2+4,AB =k 2+1⋅x 1+x 2 2-4x 1x 2=k 2+1⋅42k 2+8-m 2k 2+4=46⋅k 2+1k 2+4,∴S △OAB =12AB d =43×1k 2+1+3k 2+1≤2,当且仅当k 2+1=3k 2+1,即k =±2时取等号.当l 的斜率不存在时,则l :x =±2,过椭圆的左、右顶点,此时直线l 与椭圆只有一个交点,不符合题意.∴△OAB 面积的最大值为2.(二)把距离或长度用单变量表示,然后利用均值不等式求最值.此类问题通常利用两点间距离或弦长公式,把距离或长度表示成关于直线斜率、截距或点的横坐标(纵坐标)的函数,然后利用均值不等式求最值.【例3】已知圆C 过定点A (0,p )(p >0),圆心C 在抛物线x 2=2py 上运动,若MN 为圆C 在x 轴上截得的弦,设|AM |=m ,|AN |=n ,∠MAN =θ.(1)当点C 运动时,|MN |是否变化?试证明你的结论;(2)求m n +n m的最大值.【解析】(1)设C x 0,x 202p ,则AC =x 20+x 202p -p 2,故圆C 的方程x -x 0 2+y -x 202p2=x 20+x 202p -p2 ,令y =0有x -x 0 2+x 404p 2=x 20+x 404p 2-x 20+p 2,故x -x 0 2=p 2,解得x 1=x 0+p ,x 2=x 0-p ,故MN =x 1-x 2 =2p 不变化,为定值(2)由(1)不妨设M x 0-p ,0 ,N x 0+p ,0 ,故m =x 0-p 2+p 2,n =x 0+p 2+p 2,故m n +nm=m 2+n 2mn =x 0-p 2+p 2+x 0+p 2+p 2x 0-p 2+p 2x 0+p 2+p 2=2x 20+4p 2x 20+2p 2 2-4p 2x 2=2x 20+2p 2 x 40+4p 4=21+4x 20p 2x 40+4p 4=21+4p 2x 20+4p 4x 2≤21+4p 22x 20⋅4p 4x 20=22,当且仅当x 2=4p 4x 20,即x 0=±2p 时取等号.故m n +nm 的最大值为22(三)把面积表示为单变量函数,然后利用基本不等式求值该类问题求解的基本思路是把三角形面积表示成关于直线斜率与截距的函数,然后利用均值不等式求最值.【例4】(2022届陕西省汉中市高三上学期质量检测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1(-3,0),F 2(3,0)且经过点P (3,2).(1)求椭圆C 的标准方程;(2)若斜率为1的直线与椭圆C 交于A ,B 两点,求△AOB 面积的最大值(O 为坐标原点)【解析】(1)由椭圆的定义,可知2a =PF 1 +PF 2 =(23)2+4+2=4+2=6解得a =3,又b 2=a 2-(3)2=6.∴椭圆C 的标准方程为x 29+y 26=1.(2)设直线l 的方程为y =x +m ,联立椭圆方程,得5x 2+6mx +3m 2-18=0,△=36m 2-60m 2+360>0,得-15<m <15设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=-6m 5,x 1⋅x 2=3m 2-185,∴|AB |=2⋅x 1+x 2 2-4x 1⋅x 2=2⋅36m 225-12m 2-725=435⋅15-m 2,点O (0,0)到直线l :x +y -m =0的距离d =|m |2,∴S △AOB =12|AB |⋅d =12×435×15-m 2×|m |2=6515-m 2 ⋅m2≤6515-m 2+m 22 2=65×152=362.当且仅当15-m 2=m 2,(-15<m <15),即m 2=152,m =±302时取等号;∴△AOB 面积的最大值为362.(四)把面积用双变量表示,然后利用均值不等式求最值求解该类问题通常先建立两个变量之间的等量关系,然后利用和或积为定值,借助均值不等式求最值.【例5】(2022届湖南省长沙市高三上学期11月月考)已知椭圆x 2a 2+y 2b2=1的离心率为e =32,Q 2,22 为椭圆上一点.直线l 不经过原点O ,且与椭圆交于A x 1,y 1 ,B x 2,y 2 两点.(1)求椭圆的方程;(2)求△OAB 面积的最大值,并求当△OAB 面积最大时AB 的取值范围.【解析】(1)∵e =c a =32,a 2=b 2+c 2,∴a 2=43c 2,b 2=c 23,∴3x 24c 2+3y 2c 2=1.将Q 2,22 代入得32c 2+32c2=1⇒c =3⇒a 2=4,b 2=1,∴椭圆方程为x24+y 2=1.(2)设l :x =ty +m m ≠0 ,与椭圆联立得:t 2+4 y 2+2tmy +m 2-4=0,所以y 1+y 2=-2tm t 2+4,y 1y 2=m 2-4t 2+4,Δ=16t 2+4-m 2 >0.则S △OAB =12m ⋅y 1-y 2 =2m t 2+4-m 2t 2+4=2m 2t 2+41-m 2t 2+4 ,因为t 2+4-m 2>0,故0<m 2t 2+4<1,所以2m 2t 2+41-m 2t 2+4 ≤m 2t 2+4+1-m 2t 2+4 =1当且仅当m 2t 2+4=12时取等号,此时Δ=16m 2>0,符合题意.所以S △OAB ≤1,即△OAB 面积的最大值为1.当t 不存在时,设l :y =h h ≠0 ,则S △OAB =21-h 2⋅h ≤1,当h =22时取等号.综上,△OAB 面积的最大值为1当△OAB 面积最大时:若t 存在,则此时t 2=2m 2-4≥0⇒m 2≥2,则AB =1+t 2⋅4t 2+4-m 2t 2+4=22-3m 2∈2,22 ,若t 不存在,则此时AB =41-h 2=22.综上,AB ∈2,22 ..(五)与斜率有关的最值问题与斜率有关的最值问题的思路一是设出动点.是利用斜率定义表示出斜率,然后利用函数或不等式知识求解,二是设出直线的点斜式或斜截式方程,利用根与系数之间的关系或题中条件整理关于斜率的等式或不等式求解.【例6】(2022届福建省福州第十八中学高三上学期考试)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ =9QF,求直线OQ 斜率的最大值.【解析】(1)抛物线C :y 2=2px (p >0)的焦点F p 2,0 ,准线方程为x =-p2,由题意,该抛物线焦点到准线的距离为p 2--p2=p =2,所以该抛物线的方程为y 2=4x ;(2)设Q x 0,y 0 ,则PQ =9QF=9-9x 0,-9y 0 ,所以P 10x 0-9,10y 0 ,由P 在抛物线上可得10y 0 2=410x 0-9 ,即x 0=25y 20+910,据此整理可得点Q 的轨迹方程为y 2=25x -925,所以直线OQ 的斜率k OQ =y 0x 0=y 025y 20+910=10y 025y 20+9,当y 0=0时,k OQ =0;当y 0≠0时,k OQ =1025y 0+9y 0,当y 0>0时,因为25y 0+9y 0≥225y 0⋅9y 0=30,此时0<k OQ ≤13,当且仅当25y 0=9y 0,即y 0=35时,等号成立;当y 0<0时,k OQ <0;综上,直线OQ 的斜率的最大值为13.(六)与数量积有关的最值问题求解与数量积有关的最值问题,通常利用数量积的定义或坐标运算,把数量积表示成某个变量的函数,然后再利用均值不等式求最值.【例7】设椭圆x 25+y 24=1的两条互相垂直的切线的交点轨迹为C ,曲线C 的两条切线PA 、PB 交于点P ,且与C 分别切于A 、B 两点,求PA ⋅PB的最小值.【解析】设椭圆的两切线为l 1,l 2.①当l 1⊥x 轴或l 1⎳x 轴时,对应l 2⎳x 轴或l 2⊥x 轴,可知切点为;②当l 1与x 轴不垂直且不平行时,x ≠±5,设l 1的斜率为k ,则k ≠0,l 2的斜率为-1k,并设l 1,l 2 的交点为x 0,y 0 ,则l 1的方程为y -y 0=k x -x 0 ,联立x 25+y 24=1,得:5k 2+4 x 2+10y 0-kx 0 kx +5y 0-k 0x 0 2-20=0 ,∵直线与椭圆相切,∴Δ=0,得5y 0-kx 0 2k 2-5k 2+4 y 0-kx 0 2-4 =0,∴x 20-5 k 2-2x 0y 0k +y 20-4=0,∴k 是方程x 20-5 k 2-2x 0y 0k +y 20-4=0的一个根,同理-1k是方程x 20-5 k 2-2x 0y 0k +y 20-4=0的另一个根,∴k ⋅-1k =y 20-4x 20-5得x 20+y 20=9,其中x ≠±5,∴交点的轨迹方程为:x 2+y 2=9x ≠±5 ,∵±5,±2 也满足上式;综上知:轨迹C 方程为x 2+y 2=9;设PA =PB =x ,∠APB =θ,则在△AOB 与△APB 中应用余弦定理知,AB 2=OA 2+OB 2-2OA ⋅OB ⋅cos ∠AOB =PA 2+PB 2-2PA ⋅PB ⋅cos ∠APB ,即32+32-2⋅3⋅3cos 180°-θ =x 2+x 2-2x ⋅x ⋅cos θ ,即x 2=91+cos θ1-cos θ,PA ⋅PB =PA ⋅PB cos ∠APB =x ⋅x cos θ=91+cos θ cos θ1-cos θ,令t =1-cos θ∈0,2 ,则cos θ=1-t ,PA ⋅PB =92-t 1-t t =9t 2-3t +2 t =9⋅t +2t-3 ≥9⋅2t ⋅2t -3 =922-3 ,当且仅当t =2t,即t =2时,PA ⋅PB 取得最小922-3 ;综上,PA ⋅PB 的最小为922-3 .三、跟踪检测1.(2023届山东省青岛市高三上学期检测)在平面直角坐标系Oxy 中,动圆P 与圆C 1:x 2+y 2+2x -454=0内切,且与圆C 2:x 2+y 2-2x +34=0外切,记动圆P 的圆心的轨迹为E .(1)求轨迹E 的方程;(2)不过圆心C 2且与x 轴垂直的直线交轨迹E 于A ,M 两个不同的点,连接AC 2交轨迹E 于点B .(i )若直线MB 交x 轴于点N ,证明:N 为一个定点;(ii )若过圆心C 1的直线交轨迹E 于D ,G 两个不同的点,且AB ⊥DG ,求四边形ADBG 面积的最小值.【解析】(1)设动圆P 的半径为R ,圆心P 的坐标为x ,y由题意可知:圆C 1的圆心为C 1-1,0 ,半径为72;圆C 2的圆心为C 21,0 ,半径为12.∵动圆P 与圆C 1内切,且与圆C 2外切,∴PC 1 =72-RPC 2 =12+R⇒PC 1 +PC 2 =4>C 1C 2 =2∴动圆P 的圆心的轨迹E 是以C 1,C 2为焦点的椭圆,设其方程为:x 2a 2+y 2b2=1(a >b >0),其中2a =4,2c =2,∴a =2,b 2=3从而轨迹E 的方程为:x 24+y 23=1(2)(i )设直线AB 的方程为y =k x -1 k ≠0 ,A x 1,y 1 ,B x 2,y 2 ,则M x 1,-y 1 由y =k x -1x 24+y 23=1可得:4k 2+3 x 2-8k 2x +4k 2-12=0∴x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3直线BM 的方程为y +y 1=y 2+y 1x 2-x 1x -x 1 ,令y =0可得N 点的横坐标为:x N =x 2-x 1y 2+y 1y 1+x 1=k x 2-x 1 x 1-1 k x 1+x 2-2+x 1=2x 1x 2-x 1+x 2 x 1+x 2-2=2×4k 2-124k 2+3-8k 24k 2+38k 24k 2+3-2=4∴N 为一个定点,其坐标为4,0(ii )根据(i )可进一步求得:AB =1+k 2x 2-x 1 =1+k 2×x 2+x 12-4x 1x 2=1+k 2×8k 24k 2+3 2-4×4k 2-124k 2+3=12k 2+1 4k 2+3.∵AB ⊥DG ,∴k DG =-1k,则DG =12k 2+13k 2+4∵AB ⊥DG ,∴四边形ADBG面积S=12AB×DG=12×12k2+14k2+3×12k2+13k2+4=72k2+124k2+33k2+4(法一)S=72k2+124k2+33k2+4≥72k2+124k2+3+3k2+422=28849等号当且仅当4k2+3=3k2+4时取,即k=±1时,S min=288 49(法二)令k2+1=t,∵k≠0,∴t>1,则S=72t212t2+t-1=72-1t2+1t+12=72-1t-122+494当1t=12,即k=±1时,S min=288492.已知椭圆x2a2+y2b2=1(a>b>0)经过点3,-32,且椭圆的离心率e=12,过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A,B及C、D.(1)求椭圆的方程;(2)求证:1|AB|+1|CD|为定值;(3)求|AB|+916|CD|的最小值.【解析】(1)由e=ca=12,得c2a2=14,∴a2=4c2=4(a2-b2),∴3a2=4b2.①,由椭圆过点3,-3 2知,3a2+34b2=1②.联立①②式解得a2=4,b2=3.故椭圆的方程是x24+y23=1.(2)1|AB|+1|CD|为定值712.证明:椭圆的右焦点为F(1,0),分两种情况.1°不妨设当AB的斜率不存在时,AB:x=1,则CD:y=0.此时|AB|=2b2a=3,|CD|=2a=4,1|AB|+1|CD|=712;2°当直线AB的斜率存在时,设AB:y=k(x-1)(k≠0),则CD:y=-1k(x-1).又设点A(x1,y1),B(x2,y2).联立方程组y=k(x-1)3x2+4y2=12 ,消去y并化简得(4k2+3)x2-8k2x+4k2-12=0,∴x1+x2=8k24k2+3,x1∙x2=4k2-124k2+3,∴|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2∙(x1+x2)2-4x1x2=1+k2∙64k4-16(k2-3)(4k2+3)(4k2+3)2=12(k2+1)4k2+3,由题知,直线CD的斜率为-1 k,同理可得|CD |=12(1+k 2)4+3k 2所以1|AB |+1|CD |=7k 2+712(k 2+1)=712为定值.(3)解:由(2)知1|AB |+1|CD |=712,∴|AB |+916|CD |=127|AB |+916|CD | 1|AB |+1|CD |=1272516+916|CD ||AB |+|AB ||CD |≥1272516+2916|CD ||AB |×|AB ||CD |=214,当且仅当916|CD ||AB |=|AB ||CD |,即|AB |=34|CD |,即|AB |=3,|CD |=4时取等号,∴|AB |+916|CD |的最小值为214.3.(2023届四川省隆昌市第一中学高三上学期考试)已知离心率为12的椭圆C 1:x 2a 2+y 2b2=1a >b >0 过点1,32,抛物线C 2:y 2=2px p >0 .(1)若抛物线C 2的焦点恰为椭圆C 1的右顶点,求抛物线方程;(2)若椭圆C 1与抛物线C 2在第一象限的交点为A ,过A 但不经过原点的直线l 交椭圆C 1于B ,交抛物线C 2于M ,且AM =MB,求p 的最大值,并求出此时直线l 的斜率.【解析】(1)由c a =12设a 2=4c 2,b 2=3c 2,所以将点1,32 代入椭圆C 1:x 24c 2+y 23c 2=1得:椭圆C 1:x 24+y 23=1,所以C 1的右顶点为2,0 ,依题意p 2=2,所以抛物线C 2方程为y 2=8x ;(2)设直线l 的方程为x =my +t t ≠0 ,A x 1,y 1 ,B x 2,y 2 ,M x 0,y 0 ,联立x =my +t x 24+y 23=1,消去x 整理得3m 2+4 y 2+6mty +3t 2-12=0,显然Δ>0则y 1+y 2=-6km 3m 2+4,所以y 0=y 1+y 22=-3km 3m 2+4,x 0=my 0+t =4t3m 2+4;联立x =my +t y 2=2px,消去x 整理得y 2-2pmy -2pt =0,∴Δ>0,且y 1y 0=-2pt∴y 1=-2pty 0=2p 3m 2+4 3m由抛物线方程得x 1=y 212p =2p 3m 2+4 29m 2,所以点坐标为A 2p 3m 2+4 29m 2,2p 3m 2+4 3m,将点A 代入椭圆方程3x 2+4y 2=12有:32p 3m 2+429m 22+42p 3m 2+4 3m 2=12整理得:27p2=133m +4m 4+43m +4m 2,令t =3m +4m2,则t ≥23m ⋅4m 2=48,当且仅当3m =4m即m =43,即直线l 的斜率k =32时t ≥48取等号,所以27p2=13t 2+4t ≥20×48,∴p 2≤9320,∴p ≤3540,即p 的最大值为3540,此时直线l 的斜率为32.4.平面直角坐标系中,椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为26,过焦点的最短弦长为 2.(1)求椭圆的标准方程;(2)斜率为12的直线与椭圆交于A ,B 两点,P 为椭圆上异于A ,B 的点,求△PAB 的面积的最大值.【解析】(1)由题意得2c =26,2b 2a =2a 2-b 2=c 2⇒a 2=8,b 2=2,故椭圆的标准方程为x 28+y 22=1;(2)设直线AB 的方程为y =12x +m ,则x 28+y 22=1y =12x +m⇒x 2+2mx +2m 2-4=0,,Δ=16-4m 2>0⇒-2<m <2,设A (x 1,y 1),B (x 2,y 2),x 1+x 2=-2m x 1x 2=2m 2-4AB =16-4m 2×1+14=5×4-m 2,当-2<m ≤0时,当P 到AB 的距离最大时,点P 在第二象限且过P 点的切线正好与AB 平行,设切线方程为y =12x +n ,n >0,x 28+y 22=1y =12x +n⇒x 2+2nx +2n 2-4=0,由Δ=16-4n 2=0得n =2,此时P (-2,1),P 到AB 的距离最大为d =m -21+14=2m -2 5,故△PAB 的面积S =12×AB ×d =12×5×4-m 2×2m -2 5=4-m 2×m -2 ,则S 2=(2+m )(2-m )3=13(6+3m )(2-m )3≤13×6+3m +6-3m 4 4=27,故S ≤33,当且仅当m =-1时取等号. 当0<m <2时,当P 到AB 的距离最大时,点P 在第四象限且过P 点的切线正好与AB 平行,设切线方程为y =12x +n ,n <0,x 28+y 22=1y =12x +n⇒x 2+2nx +2n 2-4=0,由Δ=16-4n 2=0得n =-2,此时P (2,-1),P 到AB 的距离最大为d =m +21+14=2m +2 5,故△PAB 的面积S =12×AB ×d =12×5×4-m 2×2m +2 5=4-m 2×m +2 ,则S 2=(2-m )(2+m )3=13(6-3m )(2+m )3≤13×6-3m +6+3m 4 4=27,故S ≤33,当且仅当m =1时取等号. 所以△PAB 的面积的最大值为33.5.平面直角坐标系中,过点(1,0)的圆C 与直线x =-1相切.圆心C 的轨迹记为曲线Γ.(1)求曲线Γ的方程;(2)设A ,B 为曲线Γ上的两点,记AB 中点为M ,过M 作AB 的垂线交x 轴于N .①求x N -x M ;②当AB =10时,求x N 的最大值.【解析】(1)设C (x ,y ),由题意,则C 到(1,0)的距离等于C 到x =-1的距离,故C 的轨迹为抛物线y 2=4x ;(2)设A y 124,y 1 ,B y 224,y 2 ,则M y 12+y 228,y 1+y 22,①k AB =y 1-y 2y 124-y 224=4y 1+y 2故k MN=-y 1+y 24,MN :y -y 1+y 22=-y 1+y 24x -y 12+y 228,令y =0,得0-y 1+y 22=-y 1+y 24x -y 12+y 228,故x N =y 12+y 228+2,即xN -x M =2,②由题意y 124-y 2242+(y 1-y 2)2=10,即40=(y 1-y 2)2[(y 1+y 2)2+16]≤(y 1-y 2)2+(y 1+y 2)2+162=y 12+y 22+8,故x N =y 12+y 228+2≥6.6.已知点F 1、F 2分别为椭圆Γ:x 22+y 2=1的左、右焦点,直线l :y =kx +t 与椭圆Γ有且仅有一个公共点,直线F 1M ⊥l ,F 2N ⊥l ,垂足分别为点M 、N .(1)求证:t 2=2k 2+1;(2)求证:F 1M ⋅F 2N为定值,并求出该定值;(3)求OM +ON ⋅ OM -ON的最大值.【解析】(1)联立l :y =kx +t 与Γ:x 22+y 2=1得:2k 2+1 x 2+4ktx +2t 2-2=0,由直线与椭圆有一个公共点可知:Δ=4kt 2-42k 2+1 2t 2-2 =0,化简得:t 2=2k 2+1;(2)由题意得:F 1-1,0 ,F 21,0 ,因为F 1M ⊥l ,F 2N ⊥l ,所以F 1M ∥F 2N ,故F 1M ⋅F 2N =F 1M ⋅F 2N ,其中F 1M =-k +tk 2+1,F 2N =k +tk 2+1,所以F 1M ⋅F 2N =F 1M ⋅F 2N =-k +t k 2+1⋅k +t k 2+1=t 2-k 2 k 2+1=2k 2+1-k 2k 2+1=1,F 1M ⋅F 2N为定值,该定值为1;(3)OM +ON =OF 1 +F 1M +OF 2 +F 2N =F 1M +F 2N =F 1M +F 2N ,由题意得:点F 1,F 2在直线l 的同侧,所以F 1M +F 2N =-k +t k 2+1+k +t k 2+1=2t k 2+1,OM -ON =NM =F 1F 2 ⋅MNMN=F 1F 2 cos α=2k 2+1,(其中α为F 1F 2 ,MN 的夹角),由此可知:OM +ON ⋅ OM -ON =4t k 2+1=8t t 2+1=8t +1t ≤82t ⋅1t=4,当且仅当t =1t即t =1,k =0时,等号成立,所以OM +ON ⋅ OM -ON 的最大值为4.7.(2022届广东省佛山市高三上学期12月模拟)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e =22,且点P 2,1 在椭圆C 上.(1)求椭圆C 的方程;(2)若点A ,B 都在椭圆C 上,且AB 中点M 在线段OP (不包括端点)上.求△AOB 面积的最大值.【解析】(1)离心率e =c a =22,将P 代入椭圆方程,可得4a 2+1b2=1,又a 2-b 2=c 2 ,∴联立上述方程,可得:a =6, b =c =3,∴椭圆方程为x 26+y 23=1;(2)设A x 1,y 1 ,B x 2,y 2 可得:x 21+2y 21=6,x 22+2y 22=6,相减可得:x 1-x 2 x 1+x 2 +2y 1-y 2 y 1+y 2 =0,由题意,k OM =k OP =12,即y 1+y 2x 1+x 2=12,∴直线AB 的斜率y 1-y 2x 1-x 2=-x 1+x 22y 1+y 2=-12×2=-1,故可设直线AB 为y =-x +t ,代入椭圆方程可得:3x 2-4tx +2t 2-6=0,由Δ=16t 2-12(2t 2-6)>0,解得-3<t <3,∴x 1+x 2=4t 3,x 1x 2=2t 2-63,AB =2⋅(x 1+x 2)2-4x 1x 2=2⋅16t 29-8t 2-243=439-t 2,又O 到AB 的距离为d =t2,∴△AOB 面积为S =12AB d =23t 29-t 2≤23⋅t 2+9-t 22=322,当且仅当t 2=9-t 2,即t =±322时,S 取得最大值322.8.(2022届衡水金卷高三一轮复习摸底测试)已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的上顶点为B 0,1 ,过点2,0 且与x 轴垂直的直线被截得的线段长为233.(1)求椭圆Γ的标准方程﹔(2)设直线l 1交椭圆Γ于异于点B 的P ,Q 两点,以PQ 为直径的圆经过点B ,线段PQ 的中垂线l 2与x 轴的交点为(x 0,0),求x 0的取值范围.【解析】(1)由已知条件得:b =1,令x =2,得y =±1-2a2,由题意知:21-2a 2=233,解得a =3,∴椭圆的标准方程为x 23+y 2=1,(2)①当直线PQ 的斜率不存在时,显然不合题意;②当直线PQ 斜率存在时,设PQ :y =kx +m ,当k =0时,此时P ,Q 关于y 轴对称,令P (x ,y ),Q (-x ,y ),∴BP =(x ,y -1),BQ =(-x ,y -1)且BP ⋅BQ=0,则(y -1)2=x 2,又x 2=3-3y 2,∴2y 2-y -1=0,解得y =-12或y =1(舍),则P 32,-12 ,Q -32,-12符合题设.∴此时有x 0=0;当k ≠0时,则y =kx +mx 2+3y 2=3,得1+3k 2 x 2+6km x +3m 2-3=0,Δ=36k 2+12-12m 2>0,设P x 1,y 1 ,Q x 2,y 2 ,则y =kx +mx 2+3y 2=3,得1+3k 2 x 2+6km x +3m 2-3=0,Δ=36k 2+12-12m 2>0,且x 1+x 2=-6km 1+3k2x 1x 2=3m 2-31+3k 2,由BP ⋅BQ=x 1x 2+y 1-1 y 2-1 =0,即1+k 2 x 1x 2+k m -1 x 1+x 2 +m -1 2=0,∴1+k 2 ⋅3m 2-31+3k 2-k m -1 ⋅6km 1+3k 2+m -1 2=0,整理得2m 2-m -1=0,解得m =-12,m =1(舍去),代入Δ=36k 2+12-12m 2>0得:k ∈R ,∴PQ 为y =kx -12,得:x M =x 1+x 22=3k 21+3k 2 ,y M =-121+3k 2 ,则线段的PQ 中垂线l 2为y +121+3k 2 =-1k x -3k 21+3k 2,∴在x 轴上截距x 0=k 1+3k 2,而x 0=k 1+3k 2≤k 2×3k=36,∴-36≤x 0≤36且x 0≠0,综合①②:线段PQ 的中垂线l 2在x 轴上的截距的取值范围是-36,36.9.(2022届河北省高三上学期12月教学质量监测)在平面直角坐标系xOy 中,已知点F 1-1,0 ,F 21,0 ,点P 满足PF 1 +PF 2 =22,点P 的轨迹为C .(1)求C 的方程;(2)不过F 1的直线l 与C 交于A 、B 两点,若直线l 的斜率是直线AF 1、BF 1斜率的等差中项,直线AB 和线段AB 的垂直平分线与y 轴分别交于P 、Q ,求PQ 的最小值.【解析】(1)由椭圆的定义知,点P 在以F 1,F 2为焦点且a =2的椭圆上,所以其方程为:x 22+y 2=1(2)由题意得直线l 的斜率存在且不为0.直线l 的方程为y =kx +b ,A x 1,y 1 ,B x 2,y 2 ,直线方程与椭圆方程联立得x 2+2y 2=2y =kx +b得1+2k 2 x 2+4kb x +2b 2-2=0,所以Δ=4kb 2-41+2k 2 2b 2-2 >0得k 2+1>b 2x 1+x 2=-4kb 1+2k 2,x 1x 2=2b 2-21+2k 2由题意得2k =y 1x 1+1+y 2x 2+1,即2k x 1+1 x 2+1 =kx 1+b x 2+1 +kx 2+b x 1+1整理得b -k x 1+x 2 =2k -b∵直线l 不过F 1,∴b ≠k ,x 1+x 2=-2∴-4kb 1+2k 2=-2,∴b =1+2k 22k ∵b 2<k 2+1,∴1+2k 22k 2<k 2+1,解得k >22或k <-22线段AB 的中点为-1,b -k ,线段AB 中垂线方程为y -b -k =-1kx +1 当x =0时,y Q =-1k-k +b ,直线AB 与y 轴交点的纵坐标y P =b PQ =y P -y Q =k +1k,k >22或k <-22当k =±1时,PQ 最小,最小值为2.10.已知两圆C 1:(x -2)2+y 2=54,C 2:(x +2)2+y 2=6,动圆M 在圆C 1内部且和圆C 1内切,和圆C 2外切.(1)求动圆圆心M 的轨迹C 的方程;(2)过点A 3,0 的直线与曲线C 交于P ,Q 两点.P 关于x 轴的对称点为R ,求△ARQ 面积的最大值.【解析】(1)依题意,圆C 1的圆心C 12,0 ,半径r 1=36,圆C 2的圆心C 2-2,0 ,半径r 2=6,设圆M 的半径为r ,则有MC 1 =r 1-r ,MC 2 =r 2+r ,因此,MC 1 +MC 2 =r 1+r 2=46>4=C 1C 2 ,于是得点M 的轨迹是以C 1,C 2为焦点,长轴长2a =46的椭圆,此时,焦距2c =4,短半轴长b 有:b 2=a 2-c 2=20,所以动圆圆心M 的轨迹C 的方程为:x 224+y 220=1.(2)显然直线PQ 不垂直于坐标轴,设直线PQ 的方程为x =my +3(m ≠0),P (x 1,y 1),Q (x 2,y 2),由x =my +35x 2+6y 2=120消去x 得:(5m 2+6)x 2+30my -75=0,则y 1+y 2=-30m 5m 2+6,y 1y 2=-755m 2+6,点P 关于x 轴的对称点R (x 1,-y 1),S △PQR =12⋅|2y 1|⋅|x 2-x 1|,S △APR =12⋅2y 1⋅ 3-x 1 ,如图,显然x 1与x 2在3的两侧,即x 2-x 1与3-x 1同号,于是得S △AQR =S △PQR -S △APR =y 1 x 2-x 1- 3-x 1 =y 1⋅ x 2-x 1 -3-x 1=|y 1|⋅|x 2-3|=|y 1|⋅|my 2|=|my 1y 2|=75|m |5m 2+6=755|m |+6|m |≤7525|m |⋅6|m |=5304,当且仅当5|m |=6|m |,即m =±305时取“=”,因此,当m =±305时,(S △AQR )max =5304,所以△ARQ 面积的最大值5304.11.已知椭圆C :x 2a2+y 2=1(a >0)的离心率为22,分别过左、右焦点F 1,F 2作两条平行直线l 1和l 2.(1)求l 1和l 2之间距离的最大值;(2)设l 1与C 的一个交点为A ,l 2与C 的一个交点为B ,且A ,B 位于x 轴同侧,求四边形AF 1F 2B 面积的最大值.【解析】(1)∵椭圆C :x 2a2+y 2=1(a >0)的离心率为22,且b =1,∴a =2,b =1,c =1,∴x 22+y 2=1,设直线l 1:x =ty -1;直线l 2:x =ty +1.∴l 1和l 2之间距离d =21+t 2≤2,当t =0时,d max =2;(2)根据题意,不妨设直线l 1与椭圆C 交于A 、D 两点,直线l 2与椭圆C 交于B 、N 两点,则AD ∥BN ,且AD =BN ,即四边形ABND 为平行四边形,∴四边形AF 1F 2B 面积为四边形ABND 面积的一半,由(1)知,d =21+t 2,联立方程x =ty -1x 2+2y 2=2 ,则2+t 2 y 2-2ty -1=0,∴Δ=8t 2+1 >0,y 1+y 2=2t 2+t 2,y 1y 2=-12+t 2,∴AD =1+t 2y 1-y 2 =22t 2+1 2+t 2,∴12S ▱ABND =12d ⋅AD =12×21+t 2×22t 2+1 2+t 2=221+t 22+t 22,令u =1+t 2≥1,12S ▱ABND =22u u +1 2=221u +1u+2,∵u ≥1,∴u +1u+2≥4,∴12S ▱ABND ≤2,当且仅当t =0时,取等号.故四边形AF 1F 2B 面积的最大值2.12.(2022届广西玉林市、贵港市高三12月模拟)设椭圆E :x 2a 2+y 2b2=1(a >b >0)过M 1,32 ,N 3,12 两点,O 为坐标原点.(1)求椭圆E 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA ⊥OB若存在,写出该圆的方程,并求|AB |的取值范围;若不存在,说明理由.【解析】(1)将M ,N 的坐标代入椭圆E 的方程得1a 2+34b 2=13a 2+14b 2=1 ,解得a 2=4,b 2=1.所以椭圆E 的方程为x 24+y 2=1.(2)假设满足题意的圆存在,其方程为x 2+y 2=R 2,其中0<R <1,设该圆的任意一条切线AB 和椭圆E 交于A x 1,y 1 ,B x 2,y 2 两点,当直线AB 的斜率存在时,令直线AB 的方程为y =kx +m ,①将其代入椭圆E 的方程并整理得4k 2+1 x 2+8km x +4m 2-4=0,由韦达定理得x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,②因为OA ⊥OB ,所以x 1x 2+y 1y 2=0,③将①代入③并整理得1+k 2 x 1x 2+km x 1+x 2 +m 2=0,联立②得m 2=451+k 2 ,④因为直线AB 和圆相切,因此R =|m |1+k 2,由④得R =255,所以存在圆x 2+y 2=45满足题意.当切线AB 的斜率不存在时,易得x 12=x 22=45,由椭圆方程得y 12=y 22=45,显然OA ⊥OB ,综上所述,存在圆x 2+y 2=45满足题意.当切线AB 的斜率存在时,由①②④得AB =x 1-x 22+y 1-y 2 2=1+k 2x 1-x 2 2=1+k 2x 1+x 2 2-4x 1x 2=1+k 2-8km 4k 2+1 2-4×4m 2-44k 2+1=1+k216+64k 2-16m 21+4k 22=4551+k 21+16k 21+4k 22=45516k 4+17k 2+116k 4+8k 2+1=4551+9k 216k 4+8k 2+1=4551+916k 2+1k2+8,由16k 2+1k 2≥8,得1<1+916k 2+1k2+8≤54,即455≤AB ≤5.当切线AB 的斜率不存在时,易得AB =455,所以455≤AB ≤5.综上所述,存在圆心在原点的圆x 2+y 2=45满足题意,且455≤AB ≤5.13.(2022届上海市青浦区高三一模)已知抛物线y 2=x .(1)过抛物线焦点F 的直线交抛物线于A 、B 两点,求OA ∙OB 的值(其中O 为坐标原点);(2)过抛物线上一点C x 0,y 0 ,分别作两条直线交抛物线于另外两点P x p ,y p 、Q x Q ,y Q ,交直线x =-1于A 1-1,1 、B 1-1,-1 两点,求证:y p ⋅y Q 为常数(3)已知点D 1,1 ,在抛物线上是否存在异于点D 的两个不同点M 、N ,使得DM ⏊MN ?若存在,求N 点纵坐标的取值范围,若不存在,请说明理由.【解析】(1)由题知,直线斜率不为0,故可设过焦点F 的直线为x =my +14,联立y 2=xx =my +14得y 2-my -14=0,y 1+y 2=my 1⋅y 2=-14,设A x 1,y 1 ,B x 2,y 2 ,则OA ∙OB =x 1x 2+y 1y 2=y 21⋅y 22+y 1y 2=-316;(2)由题可设过点C x 0,y 0 的一条直线交抛物线于P x p ,y p ,交直线x =-1于A 1-1,1 ,另一条直线交抛物线于Q x Q ,y Q ,交直线x =-1于B 1-1,-1 ,则k A 1C ≠0,k B 1C ≠0,k A 1C =y 0-1x 0+1,k B 1C =y 0+1x 0+1,直线A 1C 方程可表示为:y =y 0-1x 0+1x +1 +1,直线B 1C 方程可表示为:y =y 0+1x 0+1x +1 +1,联立直线A 1C 与抛物线方程y 2=xy =y 0-1x 0+1x +1+1可得y 2-x 0+1y 0-1y +x 0+1y 0-1+1 ,故y 0+y p =x 0+1y 0-1,即y p =x 0+1y 0-1-y 0,同理联立直线B 1C 和抛物线方程化简可得y 2-x 0+1y 0-1y +1-x 0+1y 0-1=0,故y 0+y Q =x 0+1y 0+1,y Q =x 0+1y 0+1-y 0,即y p ⋅y Q =x 0+1y 0-1-y 0 x 0+1y 0+1-y 0 =y 20+1y 0-1-y 0 y 20+1y 0+1-y 0=y 0+1y 0-1⋅1-y 0y 0+1=-1(3)假设存在点D 满足DM ⏊MN ,设M y 23,y 3 ,N y 24,y 4 ,DM =y 23-1,y 3-1 ,MN =y 24-y 23,y 4-y 3 ,则DM ⋅MN =y 23-1 ⋅y 24-y 23 +y 3-1 y 4-y 3 =0,易知y 3≠1,y 4≠y 3,化简得y 3+1 y 4+y 3 +1=0,即y 4=-1y 3+1+y 3 =-1y 3+1+y 3+1 -1,当y 3+1<0时,y 4=-1y 3+1-y 3+1 +1≥2-1y 3+1⋅-y 3+1 +1=3,当且仅当y 3=-2时取到等号,故y 4≥3;当y 3+1>0时,y 4=-1y 3+1+y 3+1 -1 ≤-21y 3+1⋅y 3+1 -1 =-1,当且仅当y 3=0时取到等号,因为y 3≠1,故y 3+1≠2,令t =y 3+1,则t +1t ≠52,但t =y 3+1=12能取到,此时t +1t =52,故y 4∈-∞,-1 ;故y 4∈-∞,-1 ⋃3,+∞ .。

高中数学最大小值解题大招

高中数学最大小值解题大招
在高中数学中,求最大值和最小值是一种经常出现的问题,无论是在函数或几何中都会遇到。

为了更好地解决这些问题,我们需要掌握以下几个重要的解题技巧。

1. 寻找极值点
在求解最大值或最小值的过程中,首先需要找到函数的极值点。

对于一元函数而言,极值点可以通过求导数的方式来得到。

当导数等于0时,该点可能为极值点。

此时,需要再通过二阶导数的符号来判断该点是否为真正的极值点。

2. 应用拉格朗日乘数法
对于多元函数,如果要求解其最大值或最小值,可以使用拉格朗日乘数法。

这种方法可以将约束条件和目标函数结合起来,通过构建拉格朗日函数来求解最优解。

3. 利用特殊性质进行简化
对于一些特殊的函数,我们可以利用其性质进行简化,从而快速求解最大值或最小值。

比如,周期函数的最大值和最小值只需要在一个周期内求解即可。

同时,对于对称函数来说,最大值和最小值往往在对称轴上取得。

4. 利用几何意义进行分析
对于一些几何问题,我们可以通过建立几何模型来求解最大值或最小值。

比如,在求解矩形的最大面积时,可以将其看作是一个长方形,然后通过长方形的性质来求解。

总之,在解决最大小值问题时,需要灵活运用各种解题技巧和方法,不断深化自己的数学思维和能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学:几何最值问题求法
最值问题是平面解析几何中的一个既典型又综合的问题.求最值常见的方法有两种:代数法和几何法.若题目条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.若题目条件和结论能明显体现某种函数关系,则可先建立目标函数,再求函数的最值,这就是代数法.
一、几何法
利用平面几何性质求解最值问题,这种解法若运用得当,往往显得非常简洁明快.
例1、已知P(x,y)是圆上的一点,求的最大值与最小值。

分析:,于是问题就可以转化为在以A(2,0)为圆心,以为半径的圆上求点P,使它与原点连线的斜率为最大或最小。

由示意图可知,当OP与此圆相切时,其斜率达到最大值或最小值。

由OA=2,AP1=AP2=
,且AP1⊥OP1,AP2⊥OP2,OP1=OP2=1,且
∠AOP1=∠AOP2=60°,得。

二、代数法
用代数法求最值常用的方法有以下几种:
1、利用判别式法求最值、利用此法求最值时,必须同时求得变量的范围,因为方程有解,Δ≥0所指的是在()范围内方程有解,这一点应切记.
例2、(同例1)
分析:设,将y=kx代入圆方程得。

x为实数,方程有解,,解得,故。

即。

2、利用二次函数性质求最值.用此法求最值时,必须注意变量的取值范围.
例3、已知椭圆及点P(0,5),求点P到椭圆上点的距离的最大值与最小值.
分析:以(0,5)为圆心,若内切于椭圆的圆半径为r1,则r1为点P到椭圆上点的距离的最小值;若外切于椭圆的圆半径为r2,则r2为点P到椭圆上点的距离的最大值.
因,故点P(0,5)在椭圆内部.
设以(0,5)为圆心的圆方程为,与椭圆方程联立消去x2,得。

当时,,即;当y=7时,,即。

注:这里将距离的最大值、最小值的探求转化为半径r的函数,利用函数的性质求得定义域内的最大值、最小值.值得注意的是因为r的定义域的限制,这里不适合利用判别式法.3、利用基本不等式求最值.利用基本不等式求最值时,必须
注意应用基本不等式的条件,特别要注意等号的条件以及
“和”(或“积”)是不是常数,若连续应用不等式,那么要特别注意同时取等号的条件是否存在.若存在,有最值;
若不存在,无最值.
例4、过点A(1,4)作一直线,它在两坐标轴上的截距都为正数,且其和为最小,求这条直线的方程.
分析:可用截距式设所求直线方程为。


∴,当且仅当时s 取最小值,即b=6。

故所求直线方程为。


▍ ▍
▍。

相关文档
最新文档