材料力学第五章

合集下载

材料力学课件第5章

材料力学课件第5章

M
zM
x
等截面梁
y
注意 当梁为变截面梁时, max 并不一定
发生在|M|max 所在面上.
22
5.3 横力弯曲时梁横截面上的正应力 弯曲正应力强度条件
h
常用图y形Wz
c b
Wz =Iz /ymax
z
Wz
Iz h
bh3 2 12 h
bh2 6
2
h2
h1
y
c
z
Wz
Iz h1
1 ( b1h13 h1 6
z
于是
M
E
Iz
M

1 M
EIz
y
x
代入
E
y得
My
Iz
15
5.2 纯弯曲时梁横截面上的正应力
常用图形y、Iz
h
y
1.矩形
dy
c
y z
Iz
Ay2 d A
h 2
y2b d y bh3
h 2
12
b
y
同理:
Iy
hb3 12
z
Iz
b1h13 12
b2h23 12
c
b2 b1
同理: I y
h1b13 12
y
12 rp
mn
x2
x
x1
12
dx
'=
x2 FN1
FN2
'=
38
5.4 横力弯曲时梁横截面上的切应力 弯曲切应力强度条件
F
Fx 0
FN 2 FN1 dx b
x1
y
12 rp mn
x2
x
12
dx

材料力学第5章弯曲变形ppt课件

材料力学第5章弯曲变形ppt课件

qL
4.22kNm
4.22kNm
M
max
32 M
max
76.4MPa
WZ
d 3
例题
20kN m
A
4m
FA
20kN m
A
MA
4m
试求图示梁的支反力
40kN
B
D
2m
2m
B
B1 FB
FB 40kN
B
D
B2
2m
2m
在小变形条件下,B点轴向力较小可忽略不
计,所以为一次超静定.
C
B1 B2
FBBBMF12AA2383qFEqELBqqLI84LI2LLZZ32F35BFF4FEFB83PBPLIEL7Z3L12IZ.218352.k75N5kFkN2PNmEL2IZ2
x
边界条件
A
L2
B
L2
C
y
连续条件
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
全梁仅一个挠曲线方程
C
q
EA
共有两个积分常数 边界条件
L1
A
x
B
EI Z
L
y
例题 5.5
用积分法求图示各梁挠曲线方程时,试问在列各梁 的挠曲线近似微分方程时应分几段;将分别出现几个 积分常数,并写出其确定积分常数的边界条件
q
a
B C LBC
B
2a
FN
B
q2a4
8EIZ
FN 2a3
3EIZ
C
FN
a
D

《材料力学》 第五章 弯曲内力与弯曲应力

《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。

二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。

变形特点——杆轴线由直线变为一条平面的曲线。

三、梁的概念:主要产生弯曲变形的杆。

四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。

变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。

五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。

2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。

3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。

4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。

5、按杆的横截面上的应力分——纯弯曲;横力弯曲。

六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。

(二)、梁的简化:以梁的轴线代替梁本身。

(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。

2、分布力——荷载作用的范围与整个杆的长度相比不很小时。

3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。

(四)、支座的简化:1、固定端——有三个约束反力。

2、固定铰支座——有二个约束反力。

3、可动铰支座——有一个约束反力。

(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。

超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。

§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。

求:距A 端x 处截面上内力。

解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。

材料力学第五章弯曲内力

材料力学第五章弯曲内力
2、判断各段Q、M图形状:
CA和DB段:q=0,Q图为水平线, M图为斜直线。
AD段:q<0, Q图为向下斜直线, M图为上凸抛物线。
3、先确定各分段点的Q 、M 值,用相应形状的线条连接。
32
§5-6 纯弯曲时的正应力
• 纯弯曲(Pure Bending):某段梁的 内力只有弯矩没有剪力时,该段 梁的变形称为纯弯曲。
如图(b)示。
qL A
x1Q1
图(a) M1
图(b)
Y qL Q1 0 Q1 qL
mA(Fi) qLx1 M1 0 M1 qLx1
17
2--2截面处截取的分离体如图(c) qL
Y qL Q2 q(x2 a) 0 Q2 qx2 a qL
剪力等于梁保留一侧横向外
②写出内力方程
Q(x)
P
Q( x ) YO P
M(x) PL
x
M( x ) YOx MO
P( x L ) x
③根据方程画内力图
20
F
a
b
A
C
x1 x2
FAY
l
FS Fb / l
Fa / l
Fab/ l
M
[例]图示简支梁C点受集中力作用。
试写出剪力和弯矩方程,并画 B 出剪力图和弯矩图。
4. 标值、单位、正负号、纵标线
31
例 外伸梁AB承受荷载如图所示,作该梁的Q---M图。
3kN
6kN m 2kN/m
A C
B D
1m
4m
FA
Q 4.2
(kN) +
E
_
3
x=3.1m
1m
FB
_
3.8

材料力学第五章

材料力学第五章
l
F l a x
l
材料力学
第五章 梁的剪力图与弯矩图
梁的横截面上位于横截面 内的内力FS是与横截面左右两 侧的两段梁在与梁轴相垂直方 向的错动(剪切)相对应,故称 为剪力;梁的横截面上作用在 纵向平面内的内力偶矩是与梁 的弯曲相对应,故称为弯矩。
材料力学
第五章 梁的剪力图与弯矩图
为使无论取横截面左边或右边为分离体,求得同一横
截面上的剪力和弯矩其正负号相同,剪力和弯矩的正负号
要以其所在横截面处梁的微段的变形情况确定,如下图。
材料力学
第五章 梁的剪力图与弯矩图
综上所述可知: (1) 横截面上的剪力——使截开部分梁产生顺时针方向
转动为正;产生逆时针方向转动为负。
(2) 横截面上的弯矩——作用在左侧面上使截开部分 逆时针方向转动,或者作用在右侧截面上使截开部分顺时 针方向转动者为正;反之为负。
图d,e所示梁及其约束力不能单独利用平衡方程确定, 称为超静定梁。
材料力学
第五章 梁的剪力图与弯矩图
§5.2 梁的内力及其与外力的相互关系
Ⅰ. 梁的剪力和弯矩(梁的横截面上的两种内力)
图a所示跨度为l的简支梁其
约束力为:
FA
Fl
l
a,
FB
Fa l
梁的左段内任一横截面m-
m上的内力,由m-m左边分离
杆件:某一方向尺寸远大于其它方向尺寸的构件。 直杆:杆件的轴线为直线。 杆的可能变形为:
轴向拉压—内力为轴力。如拉、撑、活塞杆、钢缆、柱。
扭转 —内力为扭矩。如各种传动轴等。
(轴)
弯曲 —内力为弯矩。如桥梁、房梁、地板等。(梁)
材料力学
梁的分类
F
q
第五章 梁的剪力图与弯矩图

材料力学第五章

材料力学第五章

y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力

第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力

材料力学第五章

材料力学第五章

IZ
bh3 12
0.12 0.183 12
5.832 10 5 m4
K
MC yK IZ
60103 (-60) 103 5.832105
x -61.7 106 Pa -61.7MPa(压应力)
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
M ql2 / 8 67.5kN m
by1
d
y1
b 2
h2 4
y 2
Fs 2I z
h2 4
y2
yh, 2
y 0,
0
max
Fs h2 8I z
弯曲切应力强度条件
说明:
max
Fs
max
S
z max
Izb
1. 对细长梁,只需考虑弯曲正应力的强度条件;
2. 必须进行梁的弯曲切应力强度校核的情况:
梁的跨度较短(l / h < 5); 或在支座附近作用较大载荷(载荷靠近支座);
微应力 σ d A
FN、My、Mz
FN
σdA
A
=0
M y
zσ d A
A
=0
M z
yσ d A
A
= Me
FN

d
A
E ρ
A
yd
A
0
A y d A Sz 0
中性轴通过截面形心
σE y ρ
M y Azσ d A 0
M y
zσ d A
A
E
ρ A yz d A 0
A yzd A I yz 0
kN
10kN
3.825 kNmin 3.75kN

材料力学 第五章ppt课件

材料力学 第五章ppt课件
A A
s

A

(对称面)
2 Ey E2 EI z M ( d A ) y d A y d A M z A A
s
A

EIz
A

2 Iz y A 轴 惯 性矩 d
1 Mz EI z
M y s x I z
… …(3)
杆的抗弯刚度。
. . . . . . ( 4 )
d4
64
d
Iz d3 W z ym a x 32
4 D 4 空心圆 I ( 1 a ) z
d D
ad
64
D
3 I D 4 z W ( 1 a ) z y max 32
11
三、常见截面的IZ和WZ:
3 bh 矩形 Iz 12
b b
2 Iz bh W z y 6 m ax
§5-3 横力弯曲时梁横截面上的正应力 一、正应力近似公式:
M y s x I z . . . . . . ( 4 )
二、横截面上最大正应力:
M s max Wz
… …(5)
I z W z 抗 弯 截 面 模 量 。 y m a x
10
三、常见截面的IZ和WZ:
圆 Iz
M 60 4 1 s 10 92 . 6 MP 1 max
M 67 . 5 4 max s 10 104 . 2 MP max W 6 . 48 z
120 M
求曲率半径
qL 8
+
2
EI 5 . 832 z 200 10 194 . 4 m 1 M 60 1
力状态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
§5-3 横力弯曲时的正应力
q=60kN/m
180 120 B C
4. C 截面曲率半径ρ
30 z C 截面弯矩
A
x l = 3m
FBY
K
y
1m
FAY
M C 60kN m
C 截面惯性矩
FS 90kN

M x 90kN
I Z 5.832105 m4 1 M EI
3 36c工字钢 Wz 962cm
(5)讨论
q 71.34kg/m
目录
§5-3 横力弯曲时的正应力
试校核梁的强度。
例题5-4
T型截面铸铁梁,截面尺寸如图示。 t 30MPa, c 60MPa,
分析: 非对称截面,要寻找中性轴位置 作弯矩图,寻找需要校核的截面 要同时满足 t ,max t , c,max c
M C 901 601 0.5 60kN m
M

bh3 0.12 0.183 x IZ 5.832105 m 4 12 12 90kN 180 60103 ( 30) 103 M y 2 K C K IZ 5.832105
x
(压应力) 61.7 106 P a 61.7MP a
第五章 弯曲应力
目录
第五章
弯曲应力
§5-1 纯弯曲 §5-2 纯弯曲时的正应力 §5-3 横力弯曲时的正应力 §5-4 弯曲切应力 §5-6 提高弯曲强度的措施
目录
§5-1 纯弯曲
回顾与比较 内力 应力
FN A
T IP
M
FS
目录
? ?
§5-1 纯弯曲
纯弯曲
梁段CD上,只有弯矩,没有剪力--纯弯曲
截面惯性矩
1m
FAY
FS 90kN
I z 5.832105 m4

M x 90kN
max
M max ymax IZ 180 103 2 5.832 105
ql2 / 8 67.5kN m

x
67.5 103

104.17 106 P a 104.17MP a
目录
§5-3 横力弯曲时的正应力横Βιβλιοθήκη 弯曲正应力公式My IZ
公式适用范围
•细长梁的纯弯曲或横力弯曲 •横截面惯性积 IYZ =0 •弹性变形阶段 横力弯曲最大正应力
max
M max ymax M max IZ WZ
目录
§5-3 横力弯曲时的正应力
弯曲正应力强度条件
σmax
M
梁段AC和BD上,既有弯矩,又有剪力--横力弯曲
目录
§5-2 纯弯曲时的正应力
一、变形几何关系
m a b n

a
b
m´ n´

b´ m´
m x n
a´ b´

平面假设:
横截面变形后保持为平 面,且仍然垂直于变形后的 梁轴线,只是绕截面内某一 轴线偏转了一个角度。
§5-2 纯弯曲时的正应力
梁满足强度要求
目录
§5-4 弯曲切应力
分几种截面形状讨论弯曲切应力 一、矩形截面梁
b y A n x n1 dx P m m1
q(x)
m h
m
m1 O
Fs z q1 y
B x
p n dx p1 n1 y
x
关于切应力的分布作两点假设:
1、横截面上各点的切应力方向平行于剪力 ( // Fs )
2、切应力沿截面宽度均匀分布
max max
=6(l/d)
(l 为梁的跨度)
目录
§5-4 弯曲切应力
实心截面梁正应力与切应力比较 对于宽为b、高为h 的矩形截面
max max
=4(l/h)
(l 为梁的跨度)
目录
§5-4 弯曲切应力
有些情况必须考虑弯曲切应力
梁的跨度较短(l / h < 5); 在支座附近作用较大载荷(载荷靠近支座);
d
4
D
3
4
64
64
(1 4 )
b0 h0 bh3 IZ 12 12
3
d
3
32
Wz
bh 6
2
b0 h03 bh3 D ) /(h0 / 2) Wz (1 4 ) Wz ( 12 12 32
目录
§5-3 横力弯曲时的正应力
横力弯曲
弹性力学精确分析表明, 当跨度 l 与横截面高度 h 之 比 l / h > 5 (细长梁)时, 纯弯曲正应力公式对于横力 弯曲近似成立。
目录
§5-3 横力弯曲时的正应力
q=60kN/m
180 A C B 2.C 截面最大正应力
120
x l = 3m
FBY
K
y
30 z
C 截面弯矩
M C 60kN m
C 截面惯性矩
1m
FAY
FS 90kN
I Z 5.832105 m4

M x 90kN
Cmax
M C ymax IZ 180 103 2 5.832 105
2
Fl
5.梁的许可载荷为 F Fi min 3.75kN 10kN 3.825kNmin 3.75kN
M
Mymax max IZ
max
M WZ
目录
IZ WZ ymax
min
M WZ
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
I Z y 2 dA
A
IZ Wz y max
圆截面
IZ Wz
矩形截面
bh IZ 12
3
空心圆截面
IZ
空心矩形截面
FS
M

F1
F
解: 1.画梁的剪力图和弯矩图 2.按正应力强度条件计算许可载荷
max
6l
Fl
bh2 107 100 1502 109 3750N 3.75kN
6
M max 6F1l 2 Wz bh
max 3FS / 2 A 3F2 / 2bh F2 2 bh/ 3 2 106 100 150 106 / 3 10000 10kN N
目录
§5-3 横力弯曲时的正应力
z1 52 z
解:
(1)求截面形心
80 20 10 120 20 80 yc 52 mm 80 20 120 20
(2)求截面对中性轴z的惯性矩
80 203 Iz 80 20 422 12 201203 20120 282 12 7.64106 m 4
FN、My、Mz
M EI Z
目录
1
§5-2 纯弯曲时的正应力
变形几何关系 物理关系 静力学关系
E
M EI Z 1

y
E
y


正应力公式
为曲率半径,
1
为梁弯曲变形后的曲率

My IZ
目录
§5-2 纯弯曲时的正应力
正应力分布
M
My IZ
• 正应力大小与其到中 性轴距离成正比; • 与中性轴距离相等的点, 正应力相等; • 中性轴上,正应力等于零
目录
3.按切应力强度条件计算许可载荷
§5-4 弯曲切应力
F
50 z50 50 100
4.按胶合面强度条件 计算许可载荷
l
FS
M


F
h F3 b * FS S Z 3 4F3 g g bh3 IZb 3bh b 12
3 100 150 10 6 0.34 106 F3 4 4 3825N 3.825k N 3bh g
目录
§5-4 弯曲切应力
3 FS 2 A
目录
§5-4 弯曲切应力
二、工字型截面梁
B b0
F
s
h h 0
z y
y
Fs b0 h0
目录
§5-4 弯曲切应力
三、圆形截面梁
d
Fs
z
k
O'
O
k'
y
max
4 Fs 3 R 2
§5-4 弯曲切应力
实心截面梁正应力与切应力比较
对于直径为 d 的圆截面
分析(1)
max
max
M max ymax Iz
M
max
(2)弯矩 M 最大的截面
(3)抗弯截面系数 Wz 最
Wz

小的截面
目录
§5-3 横力弯曲时的正应力
解: (1)计算简图
(2)绘弯矩图
(3)B截面,C截面需校核 (4)强度校核 B截面:
Fb Fa
C截面:
目录
(5)结论 轴满足强度要求
§5-3 横力弯曲时的正应力
例题5-3
某车间欲安装简易吊车,大梁选用工字钢。已知电葫芦自 重 F1 6.7kN,起重量 F2 50kN, 跨度 l 9.5m, 材料的许用应力 140MPa, 试选择工字钢的型号。 分析 (1)确定危险截面 (2) max M max Wz (3)计算 M max
(4)计算 Wz
,选择工
字钢型号
目录
§5-3 横力弯曲时的正应力
解:(1)计算简图
(2)绘弯矩图
(3)根据 max
相关文档
最新文档